Supplemental Material for

Signatures of quantum-tunneling diffusion
of hydrogen atoms on water ice at 10 K

Kazuaki Kuwahata, a) Tetsuya Hama, Akira Kouchi, and Naoki Watanabe b)

Institute of Low Temperature Science, Hokkaido University, Sapporo, 060–0819, Japan

a) Present address: Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 Japan;

b) Corresponding author: watanabe@lowtem.hokudai.ac.jp
(1) Experimental apparatus and procedure

Fig. S1. (A) The experimental apparatus. MCP: microchannel plate, PTFE: polytetrafluoroethylene, QMS: quadrupole mass spectrometer, PSD: photo-stimulated desorption. REMPI: resonance-enhanced multiphoton ionization. (B) Schematic illustration of the timing chart for the present experiment. The PSD and REMPI are performed under continuous atomic deposition onto amorphous solid water (ASW) or polycrystalline ice (PCI).
(2) Energy dependence of the 532 nm PSD laser on the PSD-REMPI signal intensity of H and D atoms from ASW and PCI.

FIG. S2. PSD-REMPI signal intensity of H and D atoms from (A) ASW and (B) PCI as a function of the 532 nm PSD laser energy. The signal intensities of H and D atoms are normalized by those at 0.59 mJ pulse$^{-1}$ for ASW and 1.04 mJ pulse$^{-1}$ for PCI.

FIG. S2. PSD-REMPI signal intensity of H and D atoms from (A) ASW and (B) PCI as a function of the 532 nm PSD laser energy. The signal intensities of H and D atoms are normalized by those at 0.59 mJ pulse$^{-1}$ for ASW and 1.04 mJ pulse$^{-1}$ for PCI.
(3) Incident energy dependence of H atoms on the surface number density of adsorbed atoms on the PCI surface at 10 K.

FIG. S3. Delay-time spectra of the PSD–REMPI signal of H atoms from the PCI surface at 10 K, for Al-pipe temperatures (used for atomic cooling) of 66 K (black) and 300 K (red). The H-atom flux is approximately 1.5×10^{14} cm$^{-2}$ s$^{-1}$.
(4) Additional H₂ and D₂ co-deposition experiments

Figure S4 shows the PSD–REMPI signal intensities of H and D atoms from the ASW and PCI surfaces as a function of the pressure of additional H₂ or D₂. These additional molecules were introduced into the chamber by background vapor deposition up to 3×10^{-4} Pa, which corresponds to fluxes of approximately 3×10^{15} cm⁻² s⁻¹. The PSD–REMPI signals for both H and D atoms gradually decrease as the deposition of H₂ and D₂ increases, respectively. These results show that atomic adsorption was inhibited by competitive long-term adsorption of molecules on the surface at 10 K. However, the ratio of the signals of the H and D atoms was similar for each pressure, indicating that the presence of molecules barely affects the diffusion mechanism of atoms on the ice surfaces. Figure S4 also indicates that the coverage of H₂ or D₂ molecules is less than unity during H₂ or D₂ co-deposition, because the amount of adsorbed molecules increased with increasing fluxes (deposition pressure). This demonstrates that thermal desorption of the molecules should occur at 10 K, also indirectly suggesting the occurrence of monoatomic desorption of H and D atom from the ASW and PCI surfaces at 10 K. However, we have previously shown that the diffusive recombination rate, $k_{H+H}[H]^2$, is much faster than the monoatomic desorption rate, $k_{\text{des}}[H]$ at around 10 K. [1] Thus, monoatomic desorption did not strongly contribute to the observed [H] or [D].
FIG. S4. PSD–REMPI signal intensity of H and D atoms from (A) ASW and (B) PCI surfaces as a function of the pressure of additional H$_2$ or D$_2$ co-deposition by background vapor deposition.

References