“§') HOKKAIDO UNIVERSITY
~N X7
Title CROSSED-PRODUCTS OF TOTALLY DISCONNECTED SPACES BY $\mathbb{Z} 2*\mathbb{Z} 2%
Author(s) BRATTELLI, O.; EVANS, DE; KISHIMOTO, A.
Citation ERGODIC THEORY AND DYNAMICAL SYSTEMS, 13, 445-484
Issue Date 1993
Doc URL http://hdl.handle.net/2115/6077
Rights Copyright © 1993 Cambridge University Press
Type article
File Information ETDS13.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP


https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Ergod. Th. & Dynam. Sys. (1993), 13, 445484
Printed in Great Britain Copyright © Cambridge University Press

Crossed products of totally disconnected spaces
by Zz*Zz

OLA BRATTELI}
Institute of Mathematics, University of Trondheim, N-7034 Trondheim-NTH, Norway

DAVID E. EVANS

Department of Mathematics and Computer Science, University College of Swansea,
Swansea SA2 8PP, Wales, UK

AKITAKA KISHIMOTO
Department of Mathematics, Hokkaido University, Sapporo, 060 Japan

(Received 21 October 1991)

Abstract. Let  be a totally disconnected compact metrizable space, and let o be a
minimal homeomorphism of . Let o be a homeomorphism of order 2 on Q2 such that
oo = oa~!, and assume that o or ao has a fixed point. We prove (Theorem 3.5) that
the crossed product C(2) Xq Z X Zy is an AF-algebra.

0. Introduction
We prove the result stated in the abstract by an elaboration of Putnam’s tower construction
in [Put2]. He proves, without the assumptions involving o, that any finite number of
elements in C(S2) X« Z can be approximated by elements in a unital subalgebra of the
form

My, ® C(T)] & My, ® My, ® ... © My,

and as a consequence C(S2) X Z has stable rank one.

In §1 we make a o-covariant version of Putnam’s construction, and the main result is
Theorem 1.1.

In §2 we use spectral theory to prove, in a o-covariant way, that C(2) X, Z contains
an increasing sequence of algebras of the above form with dense union—see Theorem
2.1. A similar theorem, without o-covariance and injectivity follows from Theorem 4.3
of [ENl]. As a corollary, C(S2) X« Z X Z contains an increasing sequence of subalgebras
of the form

Bo® M, &My, &®...0 My,

1 Present address: Mathematics Institute, University of Oslo, PO Box 1053 Blindern, N-0316 Oslo 3, Norway.
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where
By={xeC(, Myy) : Ex(—1) =x(-=1)E and Ex(1) = x(1)E}

and I = [—1, 1] is the unit interval, and E € M»y, is a projection of dimension J;—see
Corollary 2.4.

In §3 we extend the methods of [BEEK1] to prove from Corollary 2.4, together with
the fact that C () X Z has real rank zero, that C(Q) X4 Z X, Z; is AF, see Theorem
35.

Finally, in §4, we use Kumjian’s method from [Kum2] to compute the K-theory of
C(Q) Xq Z X5 Zy.

In a subsequent paper, [BK], the methods of this paper will be extended to prove
that the flip-invariant part of the irrational rotation algebra is AF. The irrational rotation
algebra is the universal algebra generated by two unitaries U, V with VU = UV,
where @ is irrational, and the flip o is defined by o(V) = V7!, o(U) = U™, [Rie],
[BEEK2], [BEEK3]. The methods used in [BK] are somewhat different from those of
[Put3]. Instead of cutting up the circle, the projections in [Kuml] are used.

1. The tower construction and Berg’s technique for Z X s Z

Let  be a totally disconnected compact metrizable space. Let « : § — €2 be a minimal
action on £, i.e. o is a homeomorphism of  such that the orbit {o"w; n € Z} is dense
in Q for each w € Q. Let o : © — § be an action of Z, = Z/2Z on L, ie. 0 is a
homeomorphism of € such that 02 =1, where ¢ is the identity. Assume that

co =ocal. (1.1)

In particular, this entails that each of the homeomorphisms oo, n € Z, are of order two.
To prove our theorem we shall also need the assumption that there exists some w € Q2
such that

oow = w, (1.2)

and we do not know if the theorem is true without this hypothesis. It should, however,
be pointed out that since the relation between o and « is the same as that between o
and o, given by (1.1), one could replace o by oca = o~ 'o in all subsequent arguments,
and hence (1.2) could be replaced throughout by

ocw=w (1.2)0
or, for that sake, by

a'ow = w (1.2),

for any n € Z. But since e.g. (1.2), implies " 'oa™'w = o, i.e. a" 2o (0" lw) =a o,

it follows that the assumption (1.2), is the same as (1.2) if n is odd, and the same as
(1.2)g if n is even.

At this point it is instructive to consider the case that Q is finite, since the proof
in the general case is to some extent modelled on this case. Then € is necessarily
homeomorphic to Zy = Z/NZ in such a way that o is homeomorphic to the shift

an=n+1.
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A simple computation shows that o must have the form
on=M-—n

for M = 00 € Zy, so if N is even o either has none or two fixed points whilst co has
two or none, and if N is odd o and o have exactly one fixed point each. In this case
an explicit computation shows that

C(Q) X Z= My QC(T)
and
CU) XeZxsZry Z{Ae Moy ®@C(I),A0)E = EA(0), A)E = EA(1)},
where E is an N-dimensional projection in M,y, [BEEK1], [BE1]. Alternatively
C(Q) Xo Zy = My

and
C(Q) Xg ZN Xo Zz = My @ My.

Throughout the rest of the paper we shall assume that
Q is infinite. (1.3)
We shall also identify «, o with the corresponding actions on C(£2) by
af (@) = fl@™'w), of(®) = flow).

We shall follow the general notation of [Put2], but change the formalism a little. For
example, we keep the convention that a partition of € is a finite partition of € into closed
and open (clopen) subsets, and if P is a partition, then C(P) is the finite dimensional
abelian C*-algebra of functions on 2 which are constant over each set in P.

The part of the following theorem which does not involve o is Theorem 2.1 of [Put2],
and the new proof is executed by an extension of the techniques of [Put2], which again
is based on what is called Berg’s technique in [Verl], [Ver2].

THEOREM 1.1. Adopt the notation and assumptions above. It follows that for any finite
partition P of 2 (into clopen subsets) and any € > O there is a unital C*-subalgebra
A C C(2) Xy Z of the form

M, @CMIOM; & ... 0 My, (1.4)

for some integers Jy, ..., Jx such that C(P) C A, and there is a unitary u' € A such that
lu — || < &, where u is the canonical unitary in C(2) X Z. Furthermore o(A) = A,
and o acts on the canonical unitary z — z in 1;, ® C(T) by sending it into z — Z, and

on a certain set of matrix units ei‘j, i,j=0,...,J1 — 1 of M;, ® 1 by sending them into
e}l_]_i’ Si=1=j> respectively. On the remaining part
Mp®.. &My

of A, o acts by interchanging summands Mj, Mj, with J; = J; or by globally fixing

summands M, sendin, ek into e . ., _._.. (In our construction Jy is even.
[ ij Je=1=i,J=1-j
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We first establish the following subsidiary result.

PROPOSITION 1.2. Adopt the notation and assumptions before Theorem 1.1. It follows that
for any finite partition P of Q into clopen subsets and any N € N there exists clopen sets
Y1, Ya, ..., Yk in Q and integers Ji, ..., Jg such that

(15 Jy=2N+2fork=1,..., K.

(1.6) The sets a*(Y;), k=0,1,...,Ji—1Li=1,...,K are mutually disjoint with union
Q, and thus constitute a partition Py of 2.

(1.7) Py is a refinement of P.

(1.8) {o(¥1),...,o(¥x)} = {7111, ...,a’*"'(Yx)) (as unordered sets). Define
Y =Y,UY,U...UYk. Then, furthermore

(1.9) For k =0, 1, ..., N there exists Ay, By € P such that

oY) S Ax oak(¥) =aFa(Y) C Bk

Remark 1.3. It follows immediately from (1.6) and (1.8) that the tower structure defined
by Y1, Y, ..., Yk is o-invariant, i.e. if

oY) = 7N (Y))
then J; = J; and

o (1) = a7\ (X)), (1.10)

(One uses the involutory nature of the homeomorphisms afo = o™ together with an
induction argument, starting with the tower of greatest height J;.)
Other consequences of Proposition 1.2 are

P, is o-invariant. (1.11)

(In fact it follows from (1.8) and oak = a*o that o applied to a tower, either reverses
the tower or interchanges it with another tower, reversing both.)

K
Y = o) (1.12)
k=1
(follows from (1.6)).
ac(Y)=Y (1.13)

(follows from (1.12) and (1.8)).
As a preliminary to Proposition 1.2 again we prove:
LEMMA 1.4. Let Y be a clopen set in S with the property (1.13):
ac(Y) =Y.

Define .
Mw) = min{n > 0; ¢"(w) € Y}

for w € Y. Then X is continuous, and thus has a finite range

AY)Y={J1,.... Jk}
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where J; < Jp < ... < Jg. Define
Y =171

Then
(@) k=0,...,Ji—1,i=1,...,K}

is a partition of Q into clopen sets, and
oY) =’ 1(1) (1.14)
fori=1,..., K.

Proof. This lemma has already been established in §2 of [Put2] apart from the
property (1.14). (Note that the continuity of A alternatively follows from the relation
AN =7 (Y) ﬂo<j<,(a‘j(Q\Y)) NnY for J=1,2,...) Butas

() cy

one has
ool TV(Y)) = acadi(¥) Cac(Y) =Y.

Now, assume
p € oo’ 7I(Y),

i.e. there is a w € Y; such that
p= oo’ Hw) = ol (w) = a liao(w)

and thus
a’i(p) = ao(w) € Y.

It follows that
A(p) < Ji.

Now, if J; is the smallest of the J’s, ie. i =1, then necessarily A(o0) = J; and p € I7.
Thus
O’d!‘—l(Yl) cy.

But, conversely, as oot~ is its own inverse
Ji-1
Y1 Coa’™ (1)

and hence
Y, = oo 7H(YY).

Repeating this argument for the successively higher values J, < J3 < ... < Jg one
establishes by induction that
Ye = oo~ (Ye)

fork=2,3,...,K.
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Proof of Proposition 1.2. We shall prove the proposition by making a careful choice of
Y in Lemma 1.3, and then refine the partition. At this point, we must use the existence
of a fixed point for ao, (1.2). So let wy be a fixed point

o wy = wy.

For N given, there exist sets Ay, By in P for k =0, 1, ..., N such that

o*wg € Ay od*wy =a Fowy € By.
Put
N
Z =)@ ™*(4) Noa*(By).
k=0
Then wgy € Z, and ¥ (Z) C Ay, 0o*(Z) C By fork =0, 1, ..., N. Now, as « is minimal
and o wy = wy, it follows that all the points awy, cafwy = o *owy, k=0, 1, ... are

distinct. Hence, choosing Z even smaller, but still containing wp, we may furthermore
assume that the sets
a*(2),005(z), k=0,1,...,N

are disjoint. Put
Y=ZNao(2).

Then Y # {4 since wy € Y, the sets
ok (Y),00*(Y) k=0,1,...,N

are pairwise disjoint, and

ak(Y) € A
sak(Y) C By k=0,1;::q N (1.9)
Now, constructing Y7, ..., Y as in Lemma 1.3, all the conditions of Proposition 1.2 are

fulfilled with the possible exception of (1.7), since P has not entered the construction
yet. But by further cutting up the towers o(¥;), i = 0,...,Jy — 1 from bottom to
top as in [Put2], more precisely, partitioning each Y} into a oo’ ~!-invariant family of
subsets, one may also ensure that (1.7) is fulfilled as well as (1.8). This ends the proof
of Proposition 1.2. 2

At this point, equip 2 with a probability measure u which is both - and o-invariant.
This is possible as Q is compact and Z %, Z, is amenable. Let u(a), u(c) be the
unitaries implementing & and o on L%(§2, ),

@Y (@) =¥ o), u©o)¥) =ylow). (1.15)
Represent C(2) on L?(S2, w) in the standard way
fY(w) = f(w)¥(w). (1.16)

If X is a clopen subset of €2, x, denotes the characteristic function of X.
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LEMMA 1.5. Adopt the assumptions of Proposition 1.2, and let Ay be the C*-algebra
on L%(S2, ) generated by C(Po) and the operator u() Xa\o(v)- It follows that Ag is
finite-dimensional, and the operators

ek = u(@) xru(@* = u(@)' ™ xwi ) (1.17)
fori,j=0,1,....,k =1, k=1,2,..., K constitute a complete set of matrix units for

Aqo. Furthermore, Ay is invariant under Ad(u(o)) and
u(o)eku(o) = el j-1-> (1.18)
where k = £, or k # £ with Ji = Js.

Proof. It is easily verified from Proposition 1.2 that (efj} constitute a complete set of
matrix units, and (1.18) follows from (1.10) in Remark 1.3. One has

k= Xawy, i=0,..,hi—1L k=1..K (1.19)
and
K J;—Z K .’,'—'2
Z Z ef+1,i = Z Z u(a) Xai () = U(@) Xa\o (1)) (1.20)
k=1 i=0 k=1 i=0

where we used that the roof of the tower is o(¥) = |, @’~'(¥)). These relations
imply that Ag = C*(C(Po), u(e) Xa-s(1)) is exactly the C*-algebra defined by the matrix
units. ‘

Still following [Put2], we next modify u(c) to a unitary operator vo in Ay, i.e.

Ji=2 K

K
_ k k
v = 2 : 2 :ei+1,i + Z :eo,Jk—l
k=1 i=0 k=1

K
u@)xevom + ) #@™ " xanizy
k=1

K
= w@xawm + Y xpu@* (1.21)
k=1
Thus v is a sum of cyclic unitaries, one for each tower. The unitary vg lifts each floor
of each tower one floor up except for the top floor which is mapped onto the bottom
one. We also introduce another unitary operator uo measuring how far v is from u(a),
ie. ' :

(@) = uovo. (1.22)

Thus «
uo = u(@vy = xar + 9 #(@)" x. (1.23)

k=1

To proceed, we need even more structure in Proposition 1.2, i.e.

PROPOSITION 1.6. The clopen subsets Y1, Ya,..., Yk in Proposition 1.2 may be chosen
50 that they have the following further properties in addition to (1.5)—(1.9):

YeNao(Y) =@ fork=1,...,K. (1.24) -
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Proof. Note that if the set ¥ in Lemma 1.4 is replaced by an ao-invariant clopen subset,
the tower over each point becomes higher. Thus we take the ¥ used in the proof of
Proposition 1.2 and throw away a clopen neighbourhood of the co-fixed points in Y.
Since oo anticommutes with «, each o-orbit contains at most one fixed point for ao,
and since « is minimal, it follows that the set of co-fixed points contains no open set.
Hence the complement of the set of ao-fixed points is open and dense, and hence we
may arrange that Y is still non-empty after throwing away the clopen neighbourhood of
the aro-fixed points. Since the new set ¥ contains no ao-fixed points, co (¥) contains
no ao-fixed point, so replacing Y by ao(¥Y) UY, we may assume that the new Y still
satisfies
ac(Y)y=Y.

Since Y does not contain any co-fixed point we can find a partition P; of Y such
that P; is ao-invariant, and ao(A) N A = @ for any A € P;. Now repeat the proof of
Proposition 1.2 from Lemma 1.3, but replace the old partition P by the joint refinement
of P and P;. This ensures the property (1.24), and since each of the new Y’s are
contained in one of the old ones we do keep property (1.9).

We next explore some consequences of Propositions 1.2 and 1.6.

LEMMA 1.7. Assume that Y = Y, U...U Yk satisfy the conclusions of Propositions 1.2
and 1.6. It follows that there exist some Yy, Y1 say, such that

There is a w € Y; such that oot~ (0) = o, (1.25)
oo 7l(1) =1, (1.26)
Jy is even. (1.27)

Moreover, Y; can be taken to be any Yy such that an ao-fixed point wg lies in the tower
over Yi.

Proof. Since (1.24) implies that Y contains no ao-fixed point, it is clear that the ao-fixed
point must lie in the tower over some Y, say Y}, and not in the bottom floor Y7 of the
tower. Since a(cwy) = wy, it follows that cwy also lies in the Y; tower in the floor
below wq. Hence there is some k < J; — 1 and a w € Y; such that

ok w = o (wp).

But then, as oa* is its own inverse,
k
a'wy = o(w).

Hence

wy = acwy = o w

and then
o (@) = adfwy = o w. (1.28)

Since o reverses the towers by (1.18), and the two points wy and cwg are mapped into
each other by o, it follows that these two points lie in the middle of the tower over Y.
Tt follows from (1.28) and (1.8) that J; = 2k +2, o(¥}) = &’ ~!(¥}) and oo/~ = w.
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LEMMA 1.8. Assume that Y = Y,U. . .UYx satisfy the conclusions of Propositions 1.2 and
1.6, and choose Yy as in Lemma 1.7. It follows that Y contains three mutually disjoint
clopen subsets A, B, C such that

alt'71(A) = o (4), (1.29)
a’'"1(B) = 0 (0), (1.30)
o "1(C) = o(B), (1.31)

and if k is the smallest positive integer such that oka(A) N Y, # @, then
B=d*0c(A), ANa/(A)=0 if0<j<k. (1.32)
Proof. By Lemma 1.7, oot~ is a homeomorphism of Y; of order 2 with a fixed point w,

and hence o has a neighbourhood basis of clopen sets which is invariant under oali1,
Thus, if A is one of the sets in the basis, then

a'71(4) =0 (A).

Since o’i~lw = ow and « is free, it follows that afow # w for k = 1,2,.... Hence,
choosing A small enough, we may ensure that if k is the smallest positive k such that
ako(A) N Y; # @, then o (A) N A = @, and choosing A even smaller we may ensure
that oko(A) C Y, for this k. By choosing A even smaller we may also ensure that

cali7loko (A) Nato(A) = 0.

This is possible since

=Ni+1-k

o w # dfow

forall k=1,2,..., because @’ "'w = cw. Now put
B=d*0c(4), C= oa’'"!B,

and use (ca’'~1)? = ¢ to verify (1.30) and (1.31). Finally, choosing A as an even smaller
clopen neighbourhood of w, one may ensure that

e (A)NA=0

for j=0,1,...,k—1, since & is free.
Next we shall repeat the tower construction with ¥ replaced by

X =AUao(4), (1.33)

where A is defined in Lemma 1.8. Define vy, 41, A; for the new tower construction as
o, o, Ag were defined for the old, but such that the role of P is replaced by Py, i.e. the
new tower partition P is a refinement of Po.

LEMMA 1.9. One has
Ad(vou(o))(vivg) = (vivg)* (1.34)

and
U]'U; €A (135)
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Proof. Since P, is a refinement of P, one sees from (1.17) that Ao € Ay, and hence
v1v§ € A;. Next, from (1.18) and (1.21)

K J—2 K
u(@)vou(@) =3 Y ek it ehi0="1% (1.36)
k=1 i=0 k=1 _
and similarly
u(o)viu(o) = vj. 1.37)

Thus
Ad(vou(0)) (v198) = vou(o)viu(o)u(o)vgu(o) vy = vovivovy = Vo] = (vivg)*.

To understand the significance of the next lemma, we have to analyse the action of v;vg
on the towers corresponding to X. Each of the towers are left globally invariant but the
floors are shuffled as follows displayed in Figure 1, in a typical tower.

Vo U 0 Us‘
T T
( ) T
T T
T o
' 4
1 1
T T
T
T T
T T
T T
" ;
1 +
T T

FIGURE 1.

Here the marked subtowers are parts of the Y-towers. Hence inside each minimal
projection of the center of Ay, v;v§ is a direct sum of the identity and a cyclic unitary,
and the order of the cyclic unitary is equal to the number of floors which intersect ¥
(and then are contained in Y).

LEMMA 1.10. If X = X U X, U... U Xk is the partition of X defined by the tower
construction, then for any k such that o maps the tower over X into itself (i.e.
a1X, = o(Xy)) the number of floors in this tower contained in Y is odd, and hence

the restriction of viv§ to the corresponding central projection in Ay has odd order.

Proof. If o maps the tower over X into itself, then o reverses the floorplan, by (1.18).
Since ao(Y) =Y, it follows that if D is a floor in the tower and D is contained in Y,
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then o (D) is a floor in the tower and hence, unless D is the ground floor X; (and thus
o (D) is the top fivor), o (D) is another floor in the tower and ao (D) is contained in
Y. Furthermore oo (D) is distinct from D since D is contained in some Y;, and Y; is
disjoint from o (Y;) by Proposition 1.6. Thus, excluding the ground floor, the floors
contained in Y occur in distinct pairs Dao (D). Therefore, counting also the ground
floor, the number of floors in the tower which are contained in Y is odd.

LEMMA 1.11. There exists a unitary operator w € Ay such that

wxa\y = Xa\y (1.38)
w = v} (1.39)
Ad(vou(o))(w) = w* (1.40)
111 — w|| < 7/2N. (1.41)

Proof. Let
' vivy = Z Ae(X)
x

be the spectral decomposition of vy vg. It follows from (1.34) that
Ad(vou(0))(e()) = e(R).

Thus, if —1 is not in the spectrum of v;v§, we may define

w= ZAI/ZNe(k),
A

where z!/2V is the branch of the holomorphic function with 1//2¥ = 1 and cut along
the negative real axis. The properties (1.38)—(1.41) are then immediate. However, if
e(—1) # 0, we must find a decomposition

e(—1) =ey+e_
of e(—1) such that Ad(vou(o))(ey) = e— and Ad(vou(o))(e-) = e+, and then define

w= Z AN g0y 4 TN 4T,
AE—1

The existence of such a decomposition follows from Lemma 1.10. Given the central
projection Py, corresponding to the tower over X, there are two possibilities: if this
tower is mapped into itself by o, then v} Py, has odd order, hence —1 is not an
eigenvalue of v} Py, and there is no problem. If on the other hand the tower is
interchanged with the tower over X, by o, then o (Px,) = Px, and 0(Px,) = Px,. If
all such pairs are ordered, and P, is the sum of the Py,’s corresponding to the first
member of the pair, and P_ the sum over the second members, then Py, P_ are central
projections in A; such that o (Py) = P_, o(P-) = Py and P, P_ = 0. Now put

e, =e(—1)Py, e_=e(—=1)P-.



456 O. Bratteli et al -

We have already computed that
Ad(vou(0))(e(=1)) = e(=1)
and as vp commutes with the central projections P, and P_ in A;, we have
Ad(vou(0))(Py) = P-, Ad(vou(0))(P-) = P,.
This establishes the desired properties
Ad(vou(0))(e4) = e-, Ad(vou(o))(e-) = e,
We also have to construct another unitary operator u:

LEMMA 1.12. There exists a unitary operator u € Ay such that

Uxa\y = Xo\y (1.42)

uV xru™ > w ¥ yyw® (1.43)
Ad(vo(vou(o))(u) =u (1.44)
[[1 —u]| <=/N. (1.45)

Proof. It suffices to construct a unitary operator #” in the finite-dimensional algebra
A; with the properties

uNXQ\Y = XQ\Y (1.46)
uV xyu™ > w N yxw" (1.43)
Ad(vou(e)) (") = u¥ (1.47)

and then define u by spectral theory. ,
First note that as X = A U o (A), one of the towers in the X-tower construction is
A, a(4), a?(4),...,a""1(A) = 0 (A), and thus

VIXo(A)V] = XA-

But this is also part of the tower over Y; in the Y-tower construction, and thus

*
Vg XAV0 = Xo(A)-
Hence
* * __ * __
U1Vp XAVoV; = V1 Xo(A)V] = XA>

or
VIVgXA = XAVIVg- (1.48)

In particular, this means that all the spectral projections e(A) of vjv§ commute with xa,
and since x4 € A; also the central projections Py and P_ constructed in the proof of
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Lemma 1.11 commutes with x4. Hence, inspecting the proof of Lemma 1.11, all the
spectral projections of w commute with x4, and thus

WYXA = XAW. (1.49)
Let k be the positive integer defined by (1.32) in Lemma 1.8, put
L=k-1, (1.50)
and define an operator V by
V= w_Nvl"lXB + vou(a)w_Nvl_eXBu(U)va‘. (1.51)
As vou(@)wN = w”you(o) by (1.40) and

xpu@)vg = u(0)Xe@u(o)*v}
= u(0)Xo(®Vo

u(o)vgXc,

where the last equality follows from (1.31), we have
V= w‘Nvl_lXB + wNvou(U)vl_zu(a)va‘Xc. (1.52)

Since B and C are disjoint, we thus obtain, using the expression in (1.51) for the last
term,

VV* = w”Nvl"evawa + wNvou(a)vl"‘xgvfu(a)ugw"v. (1.53)

But
v1_£Xvi = Xao(A)- (1.54)
To prove this, we must verify that the iterates alac(A) for j = 0,...,k do not hit

X = AUao (A) before hitting B for j = k. The iterates do not hit A (or even Y;) before
they hit B by (1.32). But if

alac(A) Nao(A) # 0

for some j =0, ...,k — 1, then, one has
o/ (A)NA # 0,
but this is impossible by the last statement of Lemma 1.8. This proves (1.54).
Inserting (1.54) into (1.53), using oo = &', we obtain
VV* = w_NXw,(A)wN + wNvoxa-x(A)vSw_N. (1.55)
Now, as w?¥ = v;v} we have
w =w™V Vg

and inserting this in the last expression of (1.55) we obtain

VV* = w"NXw(A)wN + w‘”lea-x(A)vaN. (1.56)
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By construction, v; maps ¢(X) into X. But
o0(X) =0c(AUaoc(A)) =0(A)Uocac(A) =0(A)U a~1(4),

where the union is disjoint. But o'(A) is part of the roof of the X-towers and is mapped
onto A by v;. Thus a(X)\o(A4) = a~1(A) is mapped onto X\A = ao (A) by vy, i.e.

Vi Xa-1(4)V] = Xao(A)- (1.57)
Inserting (1.57) into (1.56) we see that
VV* = 2w‘NxM(A)wN
so VV* is twice a projection. Thus
Vi=V/V2

is a partial isometry with
wy = w“”xaa(A)wN.

On the other hand, by (1.52),
Vi*Vi < xBuc

and by (1.51), as vou(c) has order two,
Ad(vou(0))(V1) = V1.
Now, extend V; to another partial isometry V; in A, by setting
Vo= xa+ V1.
Since Vi = Vixsuc and B U C is disjoint from A,
VoV =xa+ ViVl = xa + w_NXaa(A)wN-

But x4 commutes with w by (1.49), and X = A U ao(A) where the union is disjoint
and hence
V2V2* = w_NXAUM(A)wN = w_NXwa. (1.58)

Thus V; is indeed a partial isometry, and
V; V2 < Xausuc = Xy, (1.59)

Also, as
Ad(vou(0))(xa) = Ad(vo)(Xo(4)) = Xa

we have
Ad(vou(0))(V2) = Va. (1.60)

Since V; is contained in the finite-dimensional fixed-point subalgebra of A; under the
automorphism Ad(vou(0)), it follows that V; can be extended to a unitary #V in this
algebra, and then from (1.58)—(1.59)

N, . —N -N N
U xnu U Zw U XxW
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which is (1.43), while (1.47) follows from the construction. Since V, lives on
AUBUC CY; €Y and VVy = w ¥ xyw" where X € Y and wxayr = xa\r
it is clear that we can construct the extension u" of V, such that

uNXQ\Y = XQ\Y-

(We use that Ad(vou (o)) (xy) = Ad(vo)(Xe(r)) = Xy to first construct u" inside yy, and
then extend it by setting it equal to 1 on the orthogonal complement of xy.)

Next we use w and u to define still another unitary operator z in A;, with the following
properties:

LEMMA 1.13. There exists a unitary operator 7 in A; with the following properties:

Xy 2" = Xx (1.61)
zu(o) = u(o)z (1.62)
ZvZ* Vgl 2y = V15l L2y (1.63)
llzvoz* — vi|| < 37/2N. (1.64)

Proof. Define

—k
Zv" . xakm+2u(o)v" NN k0 (0) Xato )
k=0 k=0

FXQUUY o ot (UL a-to (1)) (1.65)

Since vy* maps o*(¥) onto ¥, and vy*u(o) maps a~*o(Y) via o*(Y) onto Y for
0 <k < N by (1.21), (1.18) and (1.5), and both u and w restrict to unitary operators on
L?(Y) by (1.38) and (1.42), it is clear that z is unitary and leave each of the subspaces
L%*(a*(Y)) and L%*(e %o (Y)) invariant for k = 0,1,..., N. Also as A, is o-invariant,
Z € A1. As u(0) Xato(r) = Xet(r)#(0) it is clear that z is the mean of an operator in A;
and its conjugate under o, and hence o(z) = z, which is (1.62). To prove (1.61) note
that when z hits xy, only the first term in the first sum defining z survives, and

N, N -N, —N N, —N N, —-N
ZXle =w u Xru w ZwWw o xXxw w = XX;»

where the inequality follows from (1.43). As for (1.63) note that v§ maps L2(Y) onto
L%(o(Y)), and on L2(c(Y)) the unitary z* acts like u(o)u~Vw=Nu(c). Since

vou(a)u“Nw"N,u(a)vs =uNuwV
by (1.40) and (1.44), zvpz*vo acts on L2(Y) as
w¥uVu N = w? = v,

where the last equality is (1.39). This proves (1.63).
To prove (1.64), we first study the restriction of zvpz*vg to each of the subspaces

L2(a*(Y)) and L%2(@ %o (Y)) for k=0, 1,..., N. We have, for k # 0,
k. Nek.— 1 (NeGhe1)). = (N =(=1)) ..~ (k=1
T ey = vkw N Eur gk~ =)y~ W=GmD) =D

s k N k —-1 -~N+k—l —k
= YW Vo lL2@r(ry)-

-1
Vo L2 vy
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Thus
(Z'U()Z*'US - l)le(a"(Y)) = vng'k(u_lw_l - l)w_N+kU0_k|L2(ak(Y))
and hence
I(zvoz*v5 — Dlprapll < [u'w™ =1
4 k14 3

< lu—=Hl+lw-1|| < T AT

by (1.45) and (1.41). But as
nYglr@wp = L@y, (1.66)

(see, e.g., the figure before the statement of Lemma 1.10), it follows that

. 3n
[l(zvoz* vy — vivg) 2@ yll < N (1.67)
for k =1,2,..., N. But in the special case that k = 0 we have already established that

*
Z'U()Z* U; |L2(Y) = V1V |L2(Y)

in (1.63), so (1.67) holds also for kK = 0 (with the right-hand side replaced by 0).

Similarly, for 0 <k <N -1
WV 2oy = u(@)vfw FuN T u(o)vou (o) ugum VT EHD)
xw—(N“(k“)) 'U(-)-k_l u(o’)v[;l |L2(a”‘0'(Y)) .

As u(o)vou(o) = vy = vo" by (1.36), we get further

N—ku —N+k+1

k <k
202 Vg L2 (@*a (1)) = U(0)vgw w vy u(0)| 2 @*o(ry)

and as before this implies

F
[1(zvoz* vy — v1vglL2@+oryll = N (1.68)
for 0 <k < N — 1. But if k = N one computes
20V Yoy = 2V0Vla-Now) = ZlL2e-No))

= u(@)vdvgNu(@) 2oy = Hiza-vewy)

and hence (1.68) holds, with right side zero, for k = N.

Next, one uses the fact that z acts as the identity outside | j_, @*(¥) U U,’:’:O a*o(Y)
to compute that zvpz*v} = vou = 1 on the L2-space on the complement of this set.
Since both zvpz*v} and vy v} leave all the spaces L*(a*(Y)), L*(a~*o (Y)) invariant for
k=0,1,...,N, as well as the orthogonal complement of these spaces, it follows finally
from (1.67) and (1.68) that

llzvoz*vg — vivgl| < 37m/2N

which is (1.64).



Crossed products of totally disconnected spaces by ZoxZs 461

Proof of Theorem 1.1. Recall that u; = u(a)vj, and define
A = C*(zApz", u1). (1.69)

We shall show that A is the subalgebra of the form (1.4) alluded to in Theorem 1.1.

First we show that
C(P) C zAoZ* C A. (1.70)

We have already noticed in Lemma 1.5 that
C(P) C Ao.

Further, note that z leaves each of the spaces L2(a*(Y)), L> (@ *o(Y)), k=0,1,...,N
invariant and acts as the identity L2(Q\(UN_ o*(¥) U Ujo @ o (¥))). Since each of
the sets a*(Y), @ %o (Y) is contained in a single element of P by (1.9), it follows that
z commutes with C(P), and hence (1.70) is clear. ’

Next, as u; € A and vy € Ap, we have

u =ujzve* € A.
As u(a) = ujv; we have
[’ — u(@)|| = llzvoz" — v1|| < 37/2N (1.71)

by (1.64). Thus, if N is chosen so large that 37/2N < &, the canonical unitary in the
crossed product C(S2) X Z is contained within ¢ in A.
To prove the remaining properties of A we introduce the element

Ji—1 Ji—1
V=Y (ukxnz)ui(exnvg e = ) (zepz")un @egz®), (1.72)
k=0 k=0

where we used the matrix units introduced in Lemma 1.5. (V should not be confused
with the V used in the proof of Lemma 1.12.) The last expression for V shows that V
commutes with zAgz*. Furthermore, as

2640 = 27X 2" = Xx ‘ (1.73)

by (1.61), and u; acts as the identity on L?%(22\X) by (1.23), it follows that &, is contained
in the algebra generated by zAoz* and V, i.e.

A = C*(zAeZ", V). (1.74)

Since ze{‘jz*, where e,l‘j are defined by Lemma 1.5, constitute a full set of matrix units
for zAgz*, and V is a unitary on z(Z;’;gl e}i)z*LZ(SZ) commuting with zAoz*, in order
to prove that A has the form (1.4) it suffices to show that V has full spectrum, ie.

Sp(v) =T. (1.75)

But by the K-theoretic reasoning at the end of §2 in [Put2], [u;] is the generator of
K1(C(R) xo Z) which is Z, and hence u; has full spectrum. Since, as we already
remarked, u; ‘lives’ on ze(‘,oz*, it follows from (1.72) that V has full spectrum, and
hence A has the form (1.4).
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Finally, we have to prove the statements of Theorem 1.1 pertaining to o. As
zu(o) = u(o)z by (1.62), the statements concerning the action of o on zAgz* are
immediate from (1.18) in Lemma 1.5. It only remains to show that

w(o)Vu(o) = V*. (1.76)
But u(0)zu(0) = z and u(0)eyu(0) = ey _;_; ; _;» and as ug = u(x)vj we have
u(o)uiu(o) = u(e)*v; = viujvr.

We conclude that

Ji-1
u(o)Vu(o) = Z ze 5 12 viuivize] ;7 1.77)
k=0

But e} | ;| = Xe(ty < Xo(r)» and z carries L*(c(Y)) into itself by the definition
(1.65), and

Vil vy = 2V0Z*| 126 (r)
by (1.63). Hence, from (1.77),

Ji—1
u(@)Vu(o) = Z ze,i,,l_1z*zv(’;z*u{‘zvoz*ze},_1_kz*
k=0

and as voe} _, , = €g, by (1.21), we get

Ji-1
u(e)Vu(o) = Z ze,lcyoz*u’{‘ze(l),kz* = V*,
k=0

which is (1.76). This ends the proof of Theorem 1.1, apart from the last parenthetical
remark, which is (1.27).

2. Inductive limits
The main result of this section is the following Theorem 2.1, as well as Corollary 2.4.

THEOREM 2.1. Let A be a unital separable C*-algebra, and let o be an automorphism of
order 2 of A. Assume that for any € > 0, and any finite number X1, . .., X, of elements in
A there exist a C*-subalgebra B of A, with the same unit as A, such that

B=[M,®@CMISM;,&...0 My @.1)

for suitable natural numbers Jy, Jo, ..., Jg, with the following properties:
(2.2) There exists elements y;, ..., y, in B with

Hye —xill < €

fork=1,...,n.
(2.3) 0(B) = B, and, moreover, o leaves the two subalgebras corresponding to

M, 1]1000...00
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and
O®O®sz@...®MJK

invariant.
(2.4) o maps the canonical generator 7z — z for 1;, @ C(T) into z — Zz, and this generator
is in a nontrivial K-class, in A.

It follows that there exists an increasing sequence A1 S Az C ... of unital C*-
subalgebras of A such that each Ay has the form (2.1), each Ay is ¢-invariant and the
action o |4, has the properties (2.3) and (2.4), and, finally,

(o]
JAe=a4, 2.5)
k=1

where the bar denotes norm closure.

Before going to the proof we remark that a similar theorem, but without the extra
structure given by o, and without injectivity of the embedding, Ay <> A, is Theorem
4.3 in [El].

First, for completeness, we state a known lemma.

LEMMA 2.2 ([Gli, Bral). For any ¢ > 0 and any natural number n there exists a
8(g, n) > Owith the following property: if A is a C*-algebra, and B is a finite-dimensional
*_subalgebra with (linear) dimension not exceeding n, and C is another C*-subalgebra
of A such that any element in the unit sphere of B has distance at most §(¢, n) to C, then

there exists an injective morphism
¢p:B—>C (2.6)

such that
lle(x) —x|| < ellx] 2.7)

forall x € B.
Proof. This is essentially [Gli, Lemma 1.10] or [Bra, Lemma 2.1].

LEMMA 2.3. If A is a unital C*-algebra with an automorphism o of order 2, and B is
a globally o-invariant C*-subalgebra of A with the same urit as A such that B has the
form (2.1), and the restriction of ¢ to B has the form (2.3) and (2.4), and xy, ..., Xn

are elements in B, then for any € > 0 there exists a § > 0 (depending on x1, ..., Xn
and B) such that if C is another globally o -invariant C*-subalgebra of A such that the
generators ef‘j, i,j=0,...,i—1,k=1,..., K andz — z of B all can be approximated
by elements of C within 8, then there exists an injective morphism

¢p:B—>C (2.3)
such.that

lo@xi) — xill < ellx]| (2.9)

fori=1,...,m, and

QoxX = oQPX (2.10)

forall x € B.
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Proof. If B has the form (2.1), define By as the subalgebra corresponding to

M, @1lOM,pD...0 My, (2.11)
and u as the unitary operator corresponding to

[1®z—=2]®l1e...01. (2.12)

Then By is finite-dimensional, o (Bg) = By, o (1) = u*, u commutes with By and B is
generated as C*-algebra by u and By. Moreover, B can be characterized abstractly as the
C*-algebra generated by a finite-dimensional C*-algebra By of the form (2.11) together
with a unitary u with spectrum T commuting with By such that

u(l—P;)=1-Py, (2.13)

where Py, is the central projection in By corresponding to the first summand in (2.11).

As ¢ have order two, for a given k = 1,2, ..., K there are two possibilities. Either
o maps M, onto itself or o interchanges M, with some M;, with Jy = J,. (Here and
later we identify By with (2.11), to save notation.) When k = 1 only the first alternative
occurs. When the first alternative occurs, the restriction of o to M, is implemented by
a self-adjoint unitary since o has order two, and hence we may choose matrix units ek, i
such that a(e ) is either +e or —e for each pair (i, j). In particular U(e ) = e for
all i. When the second alternatlve occurs, we may use the choice

¢ k
e;; = o(e;)

for matrix units for M, once the matrix units e for M, are chosen, and then
kK _ _(t
€ = o(e; j).

Now, the elements xj,...,x, can be approximated arbitrary close by polynomials
in e" s, u and u*. Thus if we can find an injective morphism ¢ : B — C such that
H(o(e, J) — ¢ ,H and |lp(u) — u|| all are sufficiently small, then (2.9) will be fulﬁlled
since ¢ is contractive. We shall argue that we can find such a ¢ provided e and u
all are sufficiently close to C. First it follows from Lemma 2.2 that we can find a
set of matrix units £;% in C such that f% is close to ef; for each i, j, k. We now use
techniques from [Gli] and [Bra] to modify the f,’; In fact we may first apply Lemma 2.2
to the pair Bj, C° of fixed-point algebras under o instead of By, C to find a morphism
¢s : Bj — C? such that ¢, is close to 1. (Note that if x € Bf and y € C with
llx — yll <38, then |lx — 3(c(») + ¥)I| < & and (o (y) +y) € C°) To extend ¥
to By we operate as follows. If M, is a summand invariant under o, and ef; i s a
matrlx element, there are two p0551b111t1es either a(e 1) = e, i thcn simply replace f; "
by gu = cp‘,(eu) or a(eu = —eU In the latter case, as o(e ) = e and o (¢ ]) = ”,
we have

o (gl fhef) ~ — (el fheh).
If one now introduces
= 3(1 —0)(es fijg)
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then
oc(y)=—y and y= efj.

Since y*y & e}‘j one computes that the spectrum of y*y is concentrated near 0 and 1. If

g{‘j is the partial isometry corresponding to that part of the partial isometry in the polar
decomposition of y which lives on the part of y*y near 1, then

o(g) = —gf;
and

ghes =gt
and

878l = 8fr-

In this way one constructs g{‘j unless &' ; can be defined from already constructed g; ;S
by using

ko ok
8 =8ji
or
ko ok ok
8ij = 8ie8¢j-
(The most systematic way is to construct g&, g¢;, - - -» £65,_1 as above, and then define

the other g;;’s by matrix relations.)
The other main case is that M, and M, are interchanged by o. Then

ejj = e,{‘j + efj
form a complete set of matrix units for (M, + M,,)°. Put
8ij = Yo (eij).

Let f € C be a self-adjoint approximant to ef, — ef,. We may assume goof = fgoo = f
by cutting down with ggo. Then

o(fy~~f
and
f*~ goo. ,
Replacing f by %(1 — o), we may assume o (f) = — f. Then if & is the partial isometry
of the polar decomposition of f, then A is self-adjoint,
o(h)y=—h, h*=gy.
Now define
= 3(g00+h) 8% = 5(g00 — )

and verify

8t85 =0, gk +8k =280, (g% = gk

L k k k e £
o(go0) = 800r  8oo ~ €por  8op ™ €o-
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Next, define
ko k £ _ ¢
8ij = 8i080080j»  &ij = 8i080080j
and verify
o(gf) =g
etc.

We now extend ¢, to a morphism By — C by setting
o(ef) = g5

and then ¢ is close to ¢t on By and o = ¢o on Byg.
We next have to extend ¢ to u, i.e. we have to construct a unitary operator # € C
such that

ip(l — Py) =o(1 — Pp), (2.14)
it € (Bo)’, (2.15)

Sp(a) =T, (2.16)

o) =u" (2.17)

i~ u. (2.18)

So let x be an approximant to PjuP; in C. We may assume ¢(Pr)x¢(P;) = x,
and by integrating vxv* over v in the unitary group of ¢(Bp) we may assume that
x € (Bp) N C = Cy, since it already approximately lies there. But as o (u)* ~ u we
have o (x)* ~ x, so replacing x by %(x + o (x)*) we may assume

o(x) = x*.

Now, let v be the partial isometry of the polar decomposition of x inside
o(P;)Cro(Py,). The partial isometry is actually unitary and contained in
©(P;)C19(Py,) since x is approximately unitary there. As |x]?> = x*x we have

o(xP) = o(x*)o (x) = xx* = |x*?
and hence
o(lx]) = |x*|.
Now, applying o to both sides of
x = v|x|

we get
x* =ao)|x*|.

But as |x*| = v|x|v* we obtain
|x|v* = o ()v]x|v*

and hence
o()v = e(Py)
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and
o) =v*.

Hence
a=v+¢(l—Py)

has the properties (2.14), (2.15), (2.17) and (2.18). But just because & is close to , it is
in the same K;-class, and as this is nontrivial it follows that # has full spectrum, which
is (2.16). This ends the proof of Lemma 2.3.

Proof of Theorem 2.1. Let x1,x2,... be a dense sequence in A. We inductively
construct a sequence B, of subalgebras of A of the form (2.1)-(2.4), as well as
elements Yn 1, Yn.2: - - - » Ynk(ny in B, and a dense sequence (z,,){2; in B, and injective
morphisms @, : B, —> By, as follows. Let B = C1, and when By,..., B,
have been constructed, choose B,; as follows: apply Lemma 2.3 with ¢ = 27" and
{x1, ..oy Xm} = On1» -+ +» Ynk(m) to find a 8§ with the properties cited there. Then use
Theorem 1.1 to find a subalgebra B,,; of the apposite form such that the distances of
the generators etl‘j, u of B, to B,y are less than § and the distances of the elements
X1y ..., Xny1 t0 Bny are less than 27", Construct ¢ = @, as in Lemma 2.3, and let the
new set of y’s be the union of the following three sets:

(1) The images of the previous y’s under ;.

(2) The images of Zm 1, - - - » Zm,n UNAET QrPp_1 ... Pm fOr m = 1,...,m.

(3) A set of n+ 1 new y’s approximating xi, ..., Xp+1 to within 27"
Then, let (z,41,:){2, be any countable dense sequence in B,4 containing the new y’s
and such that the set of elements in the sequence is closed under addition, multiplication,
involution and scalar multiplication by rational complex numbers. (If any dense
sequence is given, we obtain the latter property by considering all *-polynomials in
the sequence with rational complex coefficients.) In particular, we have constructed
injective morphisms '

@n : By = Bnii (2.19)
-such that
(102 D) = Yuell < 27" Ymiell (2.20)
fork=1,...,k(n), and
PnO = O Pp. (2:21)

Now let B be the inductive limit of the system
cus = BB Byt = ... (2.22)

and let o’ be the automorphism of order 2 of B which is defined by 0. The automorphism
o’ is well defined because of (2.21). For each n, let ¢ be the canonical injection of B,
into B. Then ¢(B,) is an increasing sequence of subalgebras of B with dense union in
B. Since each ¢(B,) has the form (2.1), Theorem 2.1 will be proved once we can show
that B is isomorphic to A by an isomorphism intertwining o and o’. We shall define
such an isomorphism 7 explicitly as follows:
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First we define n on ¢(B,), i.e. we define an injection 7, : B, — A as follows: if
x € B, and x = 7z, for a suitable k, then for m > max{n, k} we have

PmPm—1 - - - Pn(x) € y-set of Bpi1.
It follows that
[[(@m — Dom—10m—2 .. on(X)|] < 2_m”¢m—1 ()l = 2—m”x”

for m > max{n, k}. Thus m — @, @mu_1...¢,(x) is a Cauchy sequence in A. Let n,(x)
be its limit. As ||@m ...@.(x)|| = ||x|] for all n, we have that 5, is an isometry of the
*-algebra {z,,;}%2, over the rational complex numbers, and it is clear by limiting that 7,
is a *-morphism. We now extend 7, to B, by continuity.

It is clear from the definition that

NMn+16n = Nn (2.23)

and hence we may consistently define an isometric *-morphism
n:|Jo®B) > A
n
by
1n0°¢|p, = 1 (2.24)
Then 7 extends by continuity to an injection of B into A, and
no’ =an.

Furthermore, 1 is surjective by the following reasoning. If x € A, then x lies in the
closure of the set {x,}32 ;. Hence, for any & > 0 there is a natural number n such that

||x — x| < €&/3.
Now choose m > n so that 27"+ < ¢/3. There exists a y in the y-set of B, such that
[lxn — ¥l < €/3.

But as
llom(¥) = yIl 27"l
| @ms19m(Y) = @uODIl < 277y

etc, we have
11m () — Il < 27" y]] < 2ellyll.

But 7, (y) = n(p(y)) and hence
llx — n(eONIl < %e + Lellyll-

Since ||x —y|| < %e, and ¢ was arbitrary, it follows that x is contained in the closure of
the range of n. But this range is closed, so 7 is surjective.

We have proved that the C*-dynamical systems (A, o) and (B, o’) are isomorphic,
and this ends the proof of Theorem 2.1.
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COROLLARY 2.4. Let Q be a totally disconnected compact metrizable space, and let a be
a minimal homeomorphism on Q. Let o be a homeomorphism of order 2 on such that

oo =oa”! (2.25)

and assume that ¢ or oo has a fixed point. It follows that C(Q) X Z X Zy contains
an increasing sequence of unital subalgebras B, with dense union, such that each B, has
the form

Bo® M, ® My, ®...0M,, (2.26)

where
I§o = {x € C(I, May,) : Ex(=1) =x(-1)E and Ex(1) =x(1)E}. 2.27)

Here I = [—1, 1] is the unit interval, E is a projection in Man, of dimension 2ng, and
C(I, M4y,) denotes the C*-algebra of continuous functions from I into May,.

Proof. As mentioned after (1.2) we may for the purposes of this corollary assume that ao
has a fixed point, and hence, by Theorems 1.1 and 2.1, it suffices to prove that the crossed
product of an algebra of the form (1.4) by an automorphism o of order 2 satisfying the
conditions in Theorem 1.1 has the form (2.26). But if o is an automorphism of order 2
of any C*-algebra B then

A B BT (—1)
B xgZo = (Ba(_l) La ) , (2.28)
where ,
B? ={x € B:o(x) =x} (2.29)
and
B°(-1)={x € B:o(x) = —x} (2.30)

see e.g. [BEEK2,(4.3)]. From this it is easy to see that if o flips two summands M,
and Mj,, with J; = J,, this gives rise to a summand My, in the crossed product, and
if o leaves a summand M, invariant, this gives rise to a summand M;, © M,, in the
crossed product. Finally, the crossed product of M,;, ® C(T) by o has the form (2.27)
with 2ng = Ji, see e.g. [BEEK1], [BE1].

3. The AF-algebra
In this section we shall prove Athat C(Q) X¢ Z %y Z, is an AF-algebra. We start with:

LEMMA 3.1 ([EIl}). The algebra C(RY) Xq Z has real rank zero.

Proof. This is referred to before the statement of Theorem 4.3 in [Ell]. By [Putl,
Corollary 5, p 345] there is a canonical one-one correspondence between tracial states
on C(2) xoZ and a-invariant probability measures on Q. Since 2 is totally disconnected,
the projections in C(€2) separate all probability measures on Q, and hence projections in
C(S) X Z separate the trace states on C(£2) Xo Z. Hence, by Theorem 1.3 of [BBEK],
or Theorem 2 of [BDR], together with Theorem 2.1, C(2) X Z has real rank zero.
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Now, let
By =My @ C(M @ Mppy @ ... & My, vy (3.1)

be a definite increasing sequence of unital C*-subalgebras of C(2) X, Z such that | J, B
is dense, and such that the restriction of o to By has the form indicated in Theorem 2.1.
Let

By = Bro® Muty @ - .- © My, 00 (3.2)

be the corresponding sequence growing to C(2) Xy Z Xq Zs, Corollary 2.4,
For k < £ given, if z € T, then z defines an irreducible representation of

B, = [Mjl(e) RC(MI® Mlz(k) R...Q0 Mlxk(k)

by evaluation. The restriction of this representation to the first summand By o = My, ) ®
C(T) of B, decomposes into a certain number [£ : k] of irreducible representations of
By 0, given by evaluation at [£ : k] points z;(2), ..., Zje:x(z), where the number [£ : k]
is independent of z, and the mapping ¢ ¢ : T — ST, which to z assigns the image
of (21(2), - . ., Ziex1(2)) in the [£ : k]-fold symmetric product S¥XT of T, is continuous,
[DNNP], [BE2]. Here SYHT = T4/, . where the symmetric group on [£ : k]
elements acts on T* permuting the coordinates.

Note that as ¢ acts on 1 ® C(T) by flipping the circle, whether in By or By, and the
morphism of My, ® C(T) into My, ® C(T) intertwines o, we have

bre(@) = Pe(2) 3.3)

where the conjugation in T*1/ 37, is coordinatewise.

Note that as By and B, are finite-dimensional apart from the first summand and the
embedding of B, and B, is injective, the embedding of B¢ into Bgg is non-zero, and
hence [£ : k] > 1 and the embedding is injective.

Now, by [BBEK, Theorem 1.3], the algebra C(£2) X4 Z has small eigenvalue-variation
since it has real rank zero. By the characterization of small eigenvalue variation given
in [BE2], this means that C(2) X, Z has small metric variation, i.e.

LEMMA 3.2. For any k and any € there exists an L such that if £ > L, then the
diameter of the range of ¢ in SYNHT is less than e. (The metric on S"T is defined
by d(z, y) = infrey, SUP; k<, @ (2t Yr) for 2= (21,1 20), Y = 15+« Yn)-)

We now embed each By into By. By (2.88)

= ( By B{(=D)
B = k k
¢ (B;:(—l) Bf )

and by [BEEK2, (4.1)] the concrete embedding of By into By is given by

Pi(x) P-(x) =
x € By —> (P_(x) P.,_(x)) € By, (3.4

where Py = (1 £0).
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The embeddings 6 of B into Ek,o can be described analogously. For our purposes,
it is convenient to describe the embedding more concretely as follows. An element
f € By, is then mapped into the function

Fi+iv1—12) 0
’E[_l’”_’( 0 f(t—iﬁ‘—?))

while all of f?k,o can be characterised as the set of functions

_ gu@®) g2
FelbL = (821 ® 822(t)) 3.6)

(3.5)

which commute with the self-adjoint unitary ((1) (1)> at the points —1 and 1. This is

consistent with Corollary 2.4 which states that the spectrum I of Eko consists of the
open interval (—1, 1) together with two limit points at —1 and two limit points at +1.
We may define a set-valued map 6 : I — T dual to 8 (analogously to ¢k ¢ dual to ¢r )
by requiring that the point ¢ € (—1, 1) is mapped into the two points t £iv1—1t2 € T,
and the two points at —1 are both mapped into —1, and the two at +1 into +1. For our
purposes it is better to view 6 as a map from / into T by 6(t) =t +i/1—12

If 1 ¢ denotes the embedding ék,o — Bg,o, then the dual 1/7u maps [ into subsets
of I. But since the diagram

o o ~
Bro — Bro < Bro

¥ bre 3 dre 3 Ve 3.7
Bio > By < By

s

commutes, the diagram

> e 7 4 5
T «~ T <~

I
1 e 1 e P Do (3.3)
r @1 L7

properly interpreted, commutes. A little consideration of the four particular subcases
that 1/fk ¢ maps some endpomt respectxvely interior point of I into some end-point,
respectively interior point of I, show that Wk,l can be lifted to a map I — I by merging
the two points at —1, resp.+1, whenever they occur, and then 1/7,‘,4 maps any point of /
into a set of cardinality [£ : k] in I. The set 1/7u (x) is then nothing but the spectrum
of the image of the function z — Rez in B over the point x in the spectrum Eg,o
(when the end-points are merged). Hence, by Lemma 3.2, or directly by small eigenvalue
variation of this element, we obtain

LEMMA 3.3. For any k and any ¢ there exists an L such that if £ > L, then the diameter
of the range of V¢ in S is less than e.

If we order the points A;(¢), Az(2), ..., Ak (2) in 1/7k,¢(t) in increasing order, then
the condition in Lemma 3.3 can be expressed as

[Ae(®) — M (s)| < ¢
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fork=1,...,[£: k] and all pairs ¢, s € [—1, 1], see [CE]. The functions ¢ — A(t) are
continuous, and if x € By is arbitrary its image ¥, ¢(x) in By, evaluated at t € [—1, 1],
is unitarily equivalent to the matrix

(1 (0)
x(h2(9))
BL)®) = . : (39)

x (A ()

More precisely, this matrix should also have some more zeros on the diagonal coming
from the embedding of the other matrix summands of Ek into Eg‘o, but we leave the
minor extra complications due to this to the reader.

Note that the unitary u(#) such that

(Yr,ex) (@) = u(®) Bx)O)u®)* (3.10)
can be taken to be independent of x, but it cannot in general be taken to depend
continuously on ¢ at points where some of the eigenvalues A1 (x), ..., Az (%) coincide.

However, if l—?k,o and Et,o had been the full homogeneous algebras C(I, M2y, ) and
C(, May,(s)) it was proved in [Tho, Theorem 3.1] that there exists a sequence uy, of
continuous unitary-valued maps such that

(Y,ex) (1) = lim Un () B Oua (1), (3.11)

uniformly in ¢ for each x € C(I, M2y, (). In our case, we have the extra complication
with the two end-points of I. For example, Y is not necessarily extendable to
a morphism of C(I, Maj ) into C(I, My, ). For example, if Bro = {x €
CU, Mp)lx12(—1) = x21(—=1) = x12(1) = x21(1) = 0}, Br,o = Br,o and
x11(2) ‘P(t)xlz(t)>
x)@)=\| —=
Vs (§0(t)x21 x22(2)
where ¢ is a continuous function from (-1, 1) into T, then v ¢ is a morphism, but ¥y ¢
is non-extendable if ¢ is not extendable to a continuous function on [—1, 1]. However,
¥y,¢ can be approximated strongly by extendable morphisms by replacing ¢ by, say, ¢,

where
o(=14+n7Y) if-1<t<-14n7"

on(?) = { o(t) if—1+nt<t<1=n7!
p(l—n"Y ifl-nl<t=<l
Employing this device systematically, and using Thomsen’s theorem, we can also prove
(3.11) in our case. Moreover, since U (2J; (£)) is a compact group, we may assume that
u,(—1) and u,(41) converge as n — 09, and then, modifying u,(¢) near £1, we may
assume that u,(—1) and u,(+1) are independent of n. This is a plausibility argument
of:

LEMMA 3.4. There exists a sequence uy, of continuous U (2J; (£))-valued maps such that

Yea (@) = im un (VB Din(D)” G
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forall x € Ek,o, where the convergence is uniform in t for each x, and such that
un(=1) = u(=1), ux(+1) =u(+1) (3.13)
are both independent of n.
Proof. We write flk,o =M@ ® Ao wﬁere
Ao={f €C)® My : f(£1) € Dy} (3.14)

and where D, are the diagonal matrices of M,. The relative commutant of the image
of My, in C(I) ® M) ® M is again of this form. This allows us to reduce to
the case J;(k) = 1; we assume that Wy, = ¢ where ¢ is a unital embedding of A in
C(I) ® M, ® M3, and that dim¢(1 ® €;i)(t) = m for any t € I. In other words we
assume that 7; o  has &1, and &2, (respectively &] and ¢7) with the same multiplicity,
where 7, : C(1) @ My @ My — My @ M2 is the evaluation at ¢ € I, and sgﬂ :Ag—>C
is defined by £,,(f) = f(E1)u-
First of all there is a unitary u € C(I) ® M, ® M, such that

Aduocp(l1®e;) =101Qe;. (3.15)
There is a maximal Abelian subalgebra C; of C(I) ® M,, such that
Aduop(C(l)®e;) CC; Qe (3.16)
Hence there is a unitary v € C(I) ® My, ® D3 such that
Advu o (C(I) ®e;;) C C(I) ® Dy Q eis 3.17)

where D,, are the diagonal matrices of M. Now take Advu o ¢ for .

Let A;(¢), i = 1,...,m be continuous functions on I such that A;(#) < A;+1(2) and
T >~ ;€ Where &, is the evaluation map of Ag at A. Note that Uir e Il{t €
I : |Ai(®)] = A)° # @} is countable. We choose a sufficiently small § > O such that
{t € I:|x(t)| =1 — 8} has no interior points for any i.

Define

i(t) = 7 0 P(X—145,1-51 ® €12) = u(t) @ e
E_1(t) = m 0 0(X(-1,-1451 ® en) = E_1(1) ® e
Eo(t) = 71 0 p(X[=145,1-8] ® €22) = Eo(t) @ ex

Ei(t) = m o p(X[1-5,1] ® €22) = E1(t) @ ex2

(3.18)

and similarly define ﬁ_l, 13'0, F; like E, with ey in place of ez. (The definition makes
sense by approximating the characteristic functions by continuous functions.) Here u(#)
is a partial isometry of M; such that u(£)*u(t) = Eo(t), u(t)u(t)* = Fo(t) and E, F are
projections of My such that E_;(t) + Eo(t) + E1(t) = 1, efc.

Note that u(t), E«(t)F.(t) are continuous on Nt € IIM@ # 1 - 8}, which is
a dense open subset of I. For any fo € I such that u(t) is not continuous at #5, we
may choose 0 < 8’ < & and construct u' = u, f' etc, as above such that u'(t) etc, are
continuous at f,. Then u/(¢) is an extension of u(z), i.. u'(t)Eo(t) = u(z). Thus it
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easily follows that for each s € I, there is an interval (s — d;, s + 8s) such that there is
a continuous function u; on (s — &, s + 8;) N I into the unitaries of M such that

us (1) Eo(t) = u(?)

us()E_1()us(1)* = F_1 () (3.19)
us(t) Eq (t)us(t)* = Fi(2).
Since I is compact, there is a finite number of points s; < ... < s, such that

U;(si — 85,5i +85) D I and each s; has a u;, as above. To find a unitary v in
C(I) ® My such that

V(DEo(t) =u(®), vE_1(Ov(@®)* = F.1(1), v(OE(D)v®* =F@)  (3.20)

we have to connect ¥ = ug on (ar, b)) = (si — 8,5 +d5) and u® = ug.q on
(a2,b2) = (Sit+1 — 85,41, Si+1 — 8541) into one v on (ai, b), keeping the condition
(3.20). Since u, E, F are continuous on a dense open subset of /, there is an interval
[c,d] C (aa, b;) such that they are continuous on [c,d]. Then it is easy to find a
continuous w on [c, d] such that

w(e) =uP(), w@) =u?@)
w(t)Eo(?) = u(?) (3:21)
Adw()(E£)(2) = Fu(2).

Thus we obtain a v combining u®, w, u® as desired.
By using v satisfying (3.20), we define a map @5 of C(I) ® M, into C(I) @ M ® M,
by
0:(1Qe;)=1®1Qe;

ps(1®@en) =v@en : (3.22)
es(fOD) =¢(f Qey1)+v* @enp(f ®en)v ey

Since @s(C(I) ® 1) commutes with ¢s(1 ® e;;), the map ¢; actually defines a
homeomorphism. It is injective since ¢ is injective. We claim that if x € Ag is constant
on an open neighbourhood of [—1, —1 4+ 8] U [1 — 4§, 1], it follows that @;(x) = @(x).
First for x = f ® e;; with supp f C [-14 4, 1 — 8], the equality follows. For example,
fo(fl)=a®e; +bQexp witha,b e C(I)® Dy, then

o(f®en) = o(f Qen)p(Xi-1+51-5 @ e12)

= au®e
= ub® €12. (323\
Thus b = u*au and so
os(f®en) = V' ®enp(fQen)v®en

VVav®en =>bQexp
o(f ® exn). (3.24)

Il
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(u is not in C(I) ® M, but it behaves as a multiplier for a,b.) Nextlet x = f Q@ ex
be such that f(z) = f(=1) for t € [-1, —1 48] with 8" > 8 and supp f C [-1,1—=4].
(We should also consider f ® ey, for this f, and similar elements concentrated at +1.)
For each t, € I, we find 8” € (8, 8") such that |A;(f)| # 1 — 8", and the u', E", F"
constructed for 8” in place of & are continuous at #. Then it easily follows that

T 0 9(f ® ex) = F (1) ® 22 + 71, 0 9(g ® €22)
7, 0 0(f ® e11) = E” () ® en1 + 71, 0 9(g ® e11),

where g € C(I) satisfies suppg C [—1+ 6,1 —8]. (Express f as the sum of (f — g)
and g such that f — g behaves like the characteristic function of [-1, —1 + 8"1.) Then

(3.25)

mpops(f®en) = (V@ ey - p(f ®en)v® en)h)
v(t0)* F” (to)v(to) ® ex2 + 7y, © 9(8 @ €22)
= E” (to) ® exa+ 1y, 0 p(g Q €22)
Ty 0 (g ® e2), (3.26)
where v(to) F”, (to)v(to) = E” (to) since 8" > 4.

The other cases can be treated similarly. This implies that @s(x) — ¢(x) for x € Ao
as 8 J 0. This ends the proof of Lemma 3.4.

We are now ready to prove

THEOREM 3.5. Let Q be a totally disconnected compact metrizable space, and let a be a
minimal homeomorphism of Q. Let o be a homeomorphism of order 2 on such that

oo =oo”! (3.27)

and assume that o or o has a fixed point.
It follows that C(2) Xq Z X4 Ly is an AF algebra.

Proof. By [Bra, Theorem 2.2] and Corollary 2.4 it suffices to show that if ¢ > O and
XiyiossXm € fi‘k,o, then there exists a £ > k and a finite-dimensional subalgebra Fy of
Eg'o such that the distance between each of the elements ¥ ¢(x;), i = 1,...,m, and Fy
is less than €.

For this we first use Lemma 3.3 to choose £ so large that

[1B(x:)(t) — B9 < &/3 (3.28)

fori =1,...,m,t,s € [—1,1], where 8 is defined by (3.9). Next we use Lemma 3.4
to choose n so large that :

[ () BB ttn (1) — Yo )OI < /3 (3.29)
fori=1,...,m,t €[—1,1]. Now let
A = u!Byoln (3.30)

ie. the elements in A are continuous functions from I into May, g of the form

t = u () x(@)u, (), (3.31)
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where x € Eg,o. Thus
A = {xeC(, My p); [x(-1), u(=1)*Eu(-1)] =0
and[x(+1), u(+1)*Eu(+1)] =0}, (3.32)

where E is the projection defined in Corollary 2.4 (for n = £). In particular, since
un(—1) = u(—1) and u,(+1) = u(+1) are independent of n, we have

B(Bio) S A. (3.33)

Let D_y, resp. D41, be the finite-dimensional (actually 2-dimensional) abelian subalgebra
of My q generated by the projection E of Corollary 2.4 for n = k. (Of course,
D_; = D,, but we view Dy as ‘sitting over’ the points +1 in I, respectively.)
Let C_;, respectively C1, be the Abelian algebra generated by u(—1)*Eu(-1), resp.
u(1)*Eu(1), where E now is the E for n = £. Thus

A={xeCU, Mayp); x(=1) € CLy, x(+1) € C}y}. (3.34)

Define integers n_, ny, m_, my > 0 by

MED = A(=D=...=r_(-D=-1<A_p(-D) =<...
< AMekjong-1(=1) < 1 = Agagon, (=1) = Aesgn,+1(=1) = ... = A (=1)
(3.35)
and
A1) = (D) =...=r_ Q) =-1< Am_+1(1) < ...
< Memgeme—1(1) < 1= Agsgom, (1) = Mesj-m,+1(1) = .. = e (1),
(3.36)
and
N =max{n_,m_}, M =max{ny,my}. (3.37)
Let
B_; = B(Bro)(—1) N May, - (3.38)
Then, from (3.33) and (3.34),
C_1 S B, . (3.39)
and from the definition of 8 on f?k,o, B_; has the form
D_, D_, }
D_; D_,
scalars or
scalar matrices
B = down diagonal ’ @40
D41 ... Dy
k Dyt ... Dy
n_ ny
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where the matrix elements are in May, ). Thus

D_;

D_,
scalars
F_;= along (3.41)
diagonal
Dy,

D/
is a maximal abelian algebra in B_;, and we can find a unitary V_; € B_; such that
Voi1C VA € F . (3.42)

Now, repeat all this at +1 instead of 21, and find a unitary V4, € By =8 (Ek,o)(+1)’ N
M, (¢ such that

Vi Cu VY € Fha. (3.43)
Finally, define the finite-dimensional subalgebra F of M (¢ by
D/
-1
D,
Mo,
F= - . (3.44)
Monw
+1
D/
N [y
—— ———

Then F commutes with both F_; and Fyy, infact F = F/ /NF.,. Let V(1), -1 <t < 1,
be a continuous family of unitaries such that

V() € B_; for—-1<t<0

Vo) = 1

V() € By for0<t=<l1 (3.45)
V(=) = Vg,

VEHD) = Vi

For any of the x;’s, define

i =
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xi(—=1) \ .

xi(=1)
xi(An+1(0))

xi (Aer-m-1(0)
xi (1)

xi(1)
M

\ v
(3.46)

Then the z;’s all lie in the finite-dimensional C*-algebra F. Defining
(V*zV)(@) = V() V(@)

then V*zV all Lie in the finite-dimensional algebra V*FV, and the latter algebra is
contained in A by (3.42) and (3.43).

We now argue that
[1B(xi) = V*z V|| < 2¢/3 (347)

i.e. that
NV (@BE)®OV (@) —zll <2¢/3 (3.48)

for all ¢. But B(x;)(—1) € B_, and V(¢) € B_; for -1 <t < 0, hence by (3.28),

1BG)(=1) = VOBE)OVE*|l = [VEOBE)(-DHVE®)* = VEBE)@V(@)*||
= [|BGx)(=1) = Bx)®Il < /3 (3.49)
for —1 <t < 0. Similarly
NV@®OBE)®OVE)* —B)(HDI <¢/3 (3.50)
for0<t <1. But
Bxi)(—1) =
xi(—1)
xi(—=1)
Xi(An_41(=1))
x(Mekj—n,-1(=1))
Xpex1(—1)
\ X (=1

(3.51)
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Comparing this with (3.46), and using (3.28) (which implies that the variation of x; (A (¢))
with ¢ is at most &/3), it follows that

1B(x:)(—1) — zll < &/3, (3.52)

and similarly
B(x:)(+1) — zll <&/3. (3.53)

Combining this with (3.49) and (3.50), we obtain (3.48) and hence (3.47).
Finally 3
uV*FVul Cu,Au; = By,
where the last equality follows from (3.30). Combining (3.47) with (3.29) we have
Wk, e(xi) —unV*zVuyl| <2¢/3+¢/3 =¢.

Thus ¥y ¢(x;) all lie within & of the finite-dimensional subalgebra u,V*FVu; of ée,o.
Thus, by the first remark of the proof, C(2) Xo Z X Z5 is AF.

4. K-theory
In this section we shall compute Ko(C(S2) Xy Z X4 Z3) (as an abelian group) in the case
that o and oo have at most a finite number of fixed points. (The computation is valid
even when o and ao have no fixed points, i.e. outside the range of validity of Theorem
35)
The starting point is that
Ko(C(2)) = C(Q,7Z) “.1)

since 2 is totally disconnected. The actions e, o, defined by o, 0 on Ko(C(£2)) are
given by
(@ f)@) = fle '), (af)(®) = flow) 4.2)

for f e C(R2,Z), w € Q. Now, by the Pimsner—Voiculescu exact sequence, [PV, Bla],
the following sequence is exact

1—a,

0> Z5CQ,2) 3 C,2) 5 Ko(CQ) xa Z) — 0, (4.3)

where i maps Z into the constant functions and j : C() — C(Q) X, Z is the natural
embedding. It follows that

Ko(C(R) xo Z) = C(Q, Z) /(1 — a,)(C(Q, Z)) (4.4)

and ¢, acts naturally on the latter group.
(Note that (1 — a,)(C (2, Z)) = 0. ((1 — a)(C (R, Z))) since
0. (1 — ) (C(R, Z))) = (1 — ;) (0:(C(R, 2)))
= (& — (20, (C(R, 2))) = (1 — %.)(C(2, 2)).)
We first state a general theorem, and later, in Corollary 4.4, consider the special case

that Q = Ty, where 6 is irrational and T, is the circle cut up at all the points of the orbit
Z8.
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THEOREM 4.1. Let Q be a totally disconnected compact metrizable space and let a be a
minimal homeomorphism of Q. Let o be a homeomorphism of order 2 on Q such that
ao = oa~ !, and assume that o and co has at most a finite number n, and nys of fixed

points.
It follows that Ko(C(2) Xo Z X¢ Z,) is isomorphic to

(1 + ) (C(Q,2)/(1 — ) (C(RQ, 1)) ® L. (4.5)

Let Z, * Z, be the free group product, with generators 10 and 0x1. Define an action
y of Zy % Z, on C(R) by Y10 =0 and o« = ao. Then it follows from [Kum2] that
C(R) X¢ Z X Zy is naturally isomorphic to C(2) X, Zg * Zs.

LEMMA 4.2. The following sequence is exact:
0 =  Ko(CE)"S™ Ko(C(Q) X0 Za) & Ko(C(RQ) Xag Z2)
Judde g (C(Q) Xo Z Xg Zg) = 0, 4.6)

where i : C() = C(Q)XsZy, j1: C(Q)XsZy — C(Q) Xy ZyxZy == C(Q) XaZX Lo,
etc, are natural embeddings.

Proof. See [Nat] and [Kum2]. The injectivity of i1 — iz« follows from minimality of &.
We now identify Ko(C(2)) with C(; Z). Let x1, X2, ..., Xn, be the fixed points of
o. Then C(2) X, Z, is isomorphic to

(f € C(Q: Mp)|f oo = Aduo f) @7
shiere u=(~(l) (1)) Thus it follows that Ko(C(R) X Z) is identified with

Go ={(f,a,b) e C(Q,Z)DZL" ®Z™ : 0(f) = f, f(x:) =a: + by, i=1,...,ns}

4.8)

and under this identification, the map i1, : C(S2, Z) — G, is given by
ie(h) = (B 4 o (h)) © (B2, h(x)) ® (B h(x:)). 4.9
Similarly, using the fixed points yi,..., Y, of aoc, we define G4; and describe

i : C(2,Z) > Gyo-
From now, identify Ko(C(S2) X Z) with C(R, Z)/(1 —a,)(C(R, Z)) as in (4.4). We
define amap B : Gy ® Goo = Ko(C(Q) X Z) ® Z' & L' as follows:

B((f,a,b) @ (g, ¢, d) = (Jju(f) + ju(8)) ® (a —b) & (c — ). (4.10)

It is obvious that j.(f) + Jj«(g) are o.-invariant. We assert:
LEMMA 4.3. The sequence
C(,2) "5 Gy ® Gao 5 Ko(C(Q) Xo Z) O L™ S L' @.11)

is exact at G, @ Gyg-
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Proof. 1t is obvious that B o (i1« —ize) = 0. We only have to show that Im
(i1x—i2e) D Ker B. Suppose that B((f, a, b)®(g,c,d)) = 0. Then j.(f+g) =0,a =b,
= d and f(x;) = 2a; and g(y;) = 2c; are even. By (4.3) there exists ¢ € C(2,7Z)
such that
f+g=9—a).

Note that
f+o(g) =0(p) —oalp), a(f)+g=cao(p)—olp)

and that
f—a(f) =9 —ap) —ao(p) + o)

g—o(g) =9 —alp) —o(p)+ac(p).
By computation it follows that

f-o@—¢—alf—o()—¢) =0,
g+UW%HK@—a*@+a@)+M@)=g+UW%Hd@—0@+J@N+ﬂ@)#0
since o~! = 020~ = 0 oo and g + o (p) + a(p) is eo-invariant. Thus

f-o@—9=2il, g+o(p) +alp)=pnl
for some constants A, u. Since
fH+g—o+al)=Gr+ul

it follows that A + & = 0. Since f(x;) is even, A = f (x,:) — 2¢(x;) is even. Let
h=o0o(p) + -;—)». Then h € C(2, Z) and

F=h+o(), —g=h+aoh).

Thus it follows that (i1« — i2s)(R) = (f, a,b) ® (g, ¢, d).

To conclude the proof of Theorem 4.1 it suffices to show that
ImB =~ (14 0,)Ko(C(Q) X Z) ®ZL" ® L™ .

Let {E;} be a mutually disjoint famify of o-invariant clopen sets of 2 such that E; 3 x;,
and {F;} a mutually disjoint family of ao-invariant clopen sets of Q such that F; > y;.
We assert that the image of B is generated by

K=(0+0)Ko(C(Q) X Z)® 0O
j*XE,'®8i$Oy i=11---’n¢7
j*XBGBO@}’j, j=11'-'1nm79

where {8;} (resp. {y;}) is a canonical basis for Z" (respectively Z"=). It is obvious that
they are contained in Im B and that the latter n, + nao elements generate the subgroup
H, which is isomorphic to Z" @ Z"=. It is also obvious that H N K = {0}. We now
conclude the proof by showing that H + K D Im B.
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Let (f,a,b) € G, and (g,c,d) € Gyo. Let

x =j*<2’(bi —ai)XEi) ®b—-—a)®0eG,

i=1

y= A(Z(dj - c,-)xF,.) ®(@—c)®0€ G
j=1

Then B(x & y) € H and
ﬁ((fva’b)EB(g,C:d)'*‘x@}’)=J*(§01+(P2)@0®0,

where

pr=f+ Z(bi — a;) XE
¢2=f+ Y (dj—cp)xg-

Let
Vi=oi— Y 2bixe, Va=¢2— ) 2dix-

Since ¥1(x;) = 0 and o (¥1) = ¥ (respectively ¥2(y;) = 0 and ao (¥2) = ), it easily
follows that there is an element | (resp. ;) in C(2, Z) such that .

Y1 =Y +o(¥;) (respectively ¥ = ¥ + ao (¥3)).

Letting
=91+ ZbiXE,- (respectively ¢y = Yo+ 3 djXF)

one obtains that o1 = ¢) + o (), and @, = ¢, + ao (¢3) for ¢y, 95 € C(Q, Z). Hence
Ju(pr + @) = j*((o; + ‘Pé) + U*(j*(‘ﬂi + ‘Pé))

which imples that j.(¢; + ¢2) ® 0@ 0 € K. This completes the proof of Theorem 4.1.

We next consider a special case of Theorem 4.1. Let 6 be an irrational number between

0 and % and let Ty be the totally disconnected space obtained from T = R/Z =~ [0, 1)

by replacing each x, = n6 + Z by two points x;, x; for n € Z, with topology induced

from the total order on Ty, inheriting the order on T, satisfying x, < x;/, n € Z. Define
a homeomorphism « of Ty by

a(x) =x+06(modZ), x¢&OPZ+Z
a(xf):x,ﬁ_l, neZl

and a o by
c(x)=1—x(modZ), x&0Z+7Z

a(x¥) =xF, nek

Note that ¢o has a fixed point, i.e. a(%e) = %0 and that ¢ is minimal. From the
previous sections it follows that C(Ty) xXq Z x4 Z, is AF.
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COROLLARY 4.4. For Ty, o, o as above,
(i) Ko(C(Te) xq Z) = Z?
(i) Ko(C(Ty) Xo Z X¢g L) == Z3.

Proof. By Theorem 2.1 of [Putl], (i) follows since o~ ! defines an interval exchange
transformation on [0, 1), exchanging [0, 6) and [0, 1). Since o has one fixed point and
oo has two, (ii) follows since o, is the identity on Ko(C(R2) X« Z).
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