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Abstract. Let Q be a totally disconnected compact metrizable space, and let (t be a 
minimal homeomorphism of Q. Let 0" be a homeomorphism of order 2 on Q such that 
(to" = O"(t-l, and assume that 0" or (to" has a fixed point. We prove (Theorem 3.5) that 
the crossed product C(Q) Xa 2 Xu 22 is an AF-algebra. 

O. Introduction 
We prove the result stated in the abstract by an elaboration of Putnam's tower construction 
in [Put2]. He proves, without the assumptions involving 0", that any finite number of 
elements in C(Q) Xa 2 can be approximated by elements in a unital subalgebra of the 
form 

and as a consequence C(Q) Xa 2 has stable rank one. 
In §1 we make a O"-covariant version of Putnam's construction, and the main result is 

Theorem 1.1. 
In §2 we use spectral theory to prove, in a O"-covariant way, that C(Q) Xa 2 contains 

an increasing sequence of algebras of the above form with dense union-see Theorem 
2.1. A similar theorem, without O"-covariance and injectivity follows from Theorem 4.3 
of [Ell]. As a corollary, C(Q) Xa 2 Xu 22 contains an increasing sequence of subalgebras 
of the form 

t Present address: Mathematics Institute, University of Oslo, PO Box 1053 Blindern, N-0316 Oslo 3, Norway. 



446 O. Bratteli et al 

where 

Eo = {x E C(/, M 2J) : Ex(-l) = x(-l)E and Ex(l) = x(l)E} 

and I = [-1, 1] is the unit interval, and E E M2JI is a projection of dimension ii-see 
Corollary 2.4. 

In §3 we extend the methods of [HEEKI] to prove from Corollary 2.4, together with 
the fact that C(S1) Xa 1£ has real rank zero, that C(S1) Xa 1£ Xu 1£2 is AF, see Theorem 
3.5. 

Finally, in §4, we use Kumjian's method from [Kum2] to compute the K-theory of 
C(S1) Xa 1£ Xu 1£2. 

In a subsequent paper, [BK], the methods of this paper will be extended to prove 
that the flip-invariant part of the irrational rotation algebra is AF. The irrational rotation 
algebra is the universal algebra generated by two unitaries U, V with VU = e21riOUV, 

where e is irrational, and the flip O' is defined by O'(V) = V-I, O'(U) = U-I , [Rie], 
[BEEK2], [BEEK3]. The methods used in [BK] are somewhat different from those of 
[Put3]. Instead of cutting up the circie, the projections in [Kuml] are used. 

1. The tower construction and Berg's technique for 1£ Xu 1£2 

Let S1 be a totally disconnected compact metrizable space. Let a : S1 -+ S1 be a minimal 
action on S1, i.e. a is a homeomorphism of S1 such that the orbit {anw; n E Z} is dense 
in S1 for each w E S1. Let O' : S1 -+ S1 be an action of 1£2 = 1£/21£ on S1, i.e. O' is a 
homeomorphism of S1 such that O'2 = l, where t is the identity. Assume that 

-I aO' = O'a . (1.1) 

In particular, this entails that each of the homeomorphisms anO', nEZ, are of order two. 
To prove our theorem we shall also need the assumption that there exists some w E S1 
such that 

aO'w = w, (1.2) 

and we do not know if the theorem is true without this hypothesis. It should, however, 
be pointed out that since the relation between O'a and a is the same as that between O' 
and a, given by (1.1), one could replace O' by O'a = a- IO' in all subsequent arguments, 
and hence (1.2) could be replaced throughout by 

O'w = w (1 .2)0 

or, for that sake, by 

for any n E Z. But since e.g. (1.2)n implies an-IO'a-lw = w, i.e. a n- 2O'(a- lw) = a-Iw, 

it folIows that the assumption (1.2)n is the same as (1.2) if n is odd, and the same as 
(1.2)0 if n is even. 

At this point it is instructive to consider the case that S1 is finite, since .the proof 
in the general case is to some extent modelled on this case. Then S1 is necessarily 
homeomorphic to ZN = 1£/ NZ in such a way that a is homeomorphic to the shift 

an = n + 1. 
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A simple computation shows that a must have the form 

an = M-n 

447 

for M = 0'0 E ZN, so if N is even a either has none or two fixed points whilst aa has 
two or none, and if N is odd a and aa have exactly one fixed point each. In this case 
an explicit computation shows that 

and 

ceQ) x '" Z XU Z2 ~ {A E M2N ® C(I), A(O)E = EA(O), A(1)E = EA(1)}, 

where E is an N-dimensional projection in M2N , [BEEKI], [BEl]. Alternatively 

ceQ) X", ZN ~ MN 

and 

Throughout the rest of the paper we shall assume that 

Q is infinite. 

We shall also identify a, a with the corresponding actions on C(Q) by 

af(w) = f(a-1w), af(w) = f(aw). 

(1.3) 

We shall follow the general notation of [Put2], but change the formalism a little. For 
example, we keep the convention that a partition of Q is a finite partition of Q into closed 
and open (clopen) subsets, and if P is a partition, then ceP) is the finite dimensional 
abelian C*-algebra of functions on Q which are constant over each set in P. 

The part of the following theorem which does not involve a is Theorem 2.1 of [Put2], 
and the new proof is executed by an extension of the techniques of [Put2], which again 
is based on what is called Berg's technique in [Vert], [Ver2]. 

THEOREM 1.1. Adopt the notation and assumptions above. It follows that for any finite 
partition P of Q (into clopen subsets) and any G > 0 there is a unital C*-subalgebra 
A £; ceQ) X ", Z of the form 

(1.4) 

for some integers 11, ... , 1 K such that C (P) £; A, and there is a unitary u' E A such that 
lIu - u'li < G, where u is the canonical unitary in C(Q) X", Z. Furthermore a(A) = A, 
and a acts on the canonical unitary z ~ z in 1 JI ® C (1I') by sending it into z ~ Z, and 
on a certain set of matrix units elj, i, j = 0, ... ,11 - 1 of MJI ® 1 by sending them into 

e}I-I-i,JI-I-j' respectively. On the remaining part 

Mh E9···E9Mh 

of A, a acts by interchanging summands MJ;, MJj with 1i = 1j or by globally fixing 

summands MJk, sending e~j into e~k -l-i , Jk -l-j ' (In our construction 11 is even.) 
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We first establish the following subsidiary result. 

PROPOSITION 1.2. Adopt the notation and assumptions before Theorem 1.1. Itfollows that 
for any finite partition P of Q into clopen subsets and any N E N there exists clopen sets 
Y1, Y2 , •• • , Y K in Q and integers J1, ••• , J K such that 
(1.5) It :::: 2N + 2 for k = 1, ... , K. 
(1.6) The sets ak(yi ), k = 0,1, ... , Ji -1, i = 1, ... , K are mutually disjoint with union 
Q, and thus constitute a partition Po of Q. 

(1.7) Po is a refinement ofP. 
(1.8) {a(Yl)' ... ' a (YK)} = {aJ,-I(y1), • •• , ah-1(yK)} (as unordered sets). Define 

Y = Y1 U Y2 U ... U YK. Then,furthermore 
(1.9) For k = 0,1, .. . , N there exists At, Bk E P such that 

ak(y) ~ Ak a(/(Y) = a-ka(y) ~ Bk. 

Remark 1.3. It follows immediately from (1.6) and (1.8) that the tower structure defined 
by Y1, Y2 , ••. , Y K is a-invariant, i.e. if 

(1.10) 

(One uses the involutory nature of the homeomorphisms aka = aa-k together with an 
induction argument, starting with the tower of greatest height Ji .) 

Other consequences of Proposition 1.2 are 

Po is a-invariant. (1.11) 

(In fact it follows from (1.8) and aak = a-ka that a applied to a tower, either reverses 
the tower or interchanges it with another tower, reversing both.) 

K 

Y = UaJk(Yk) (1.12) 
k=1 

(follows from (1.6)). 

aa(Y) = Y (1.13) 

(follows from (1.12) and (1.8)). 

As a preliminary to Proposition 1.2 again we prove: 

LEMMA 1.4. Let Y be a clopen set in Q with the property (1.13): 

aa(Y) = Y. 

Define 
A(W) = min{n > 0; an(w) E Y} 

for WE Y. Then A is continuous, and thus has a finite range 

A(y) = {fl, . .. , h}, 



Crossed products of totally disconnected spaces by 2:2*2:2 449 

where 11 < h < ... < 1K. Define 

Then 

{ak(y;); k = 0, ... , 1i - 1, i = 1, ... , K} 

is a partition of Q into clopen sets, and 

(1.14) 

for i = 1, ... , K. 

Proof. This lemma has already been established in §2 of [Put2] apart from the 
property (1.14). (Note that the continuity of ),. alternatively follows from the relation 
),. -1(1) = a-J (Y) nO<j<l(a- j (Q\Y)) n Y for 1 = 1,2, .... ) But as 

ali(Yi) ~ Y 

one has 

Now, assume 

i.e. there is awE Yi such that 

and thus 
aJi (p) = aa(w) E Y. 

It follows that 
),.(p) ~ 1;. 

Now, if 1i is the smallest of the J's, i.e. i = 1, then necessarily ),.(p) = 11 and p E YI. 

Thus 

But, conversely, as aa J1 - I is its own inverse 

and hence 

Repeating this argument for the successively higher values h < h < ... < 1 K one 
establishes by induction that 

fork=2,3, .. . ,K. 
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Proof of Proposition 1.2. We shall prove the proposition by making a careful choice of 
Y in Lemma 1.3, and then refine the partition. At this point, we must use the existence 

of a fixed point for aa, (1.2). So let Wo be a fixed point 

aaWij = WOo 

For N given, there exist sets At, Bk in P for k = 0, 1, ... , N such that 

Put 
N 

Z = n(a-k(Ak) n aak(Bk)). 
k=O 

Then Wo E Z , and a k(Z) £; At, aak(Z) £; Bk for k = 0,1, . . . , N. Now, as a is minimal 

and aaWij = Wij, it follows that all the points akWij, aakWij = a-kawo, k = 0, 1, ... are 
distinct. Hence, choosing Z even smaller, but still containing Wo, we may furthermore 

assume that the sets 

are disjoint. Put 

Y = Z n aa(Z). 

Then Y =f. 0 since Wo E Y , the sets 

are pairwise disjoint, and 

a k(Y) £; Ak 

aak(Y) £; Bk 
k=O, I, ... ,N. (1.9) 

Now, constructing Y1, ••• , Yk as in Lemma 1.3, all the conditions of Proposition 1.2 are 
fulfilled with the possible exception of (1.7), since P has not entered the construction 
yet. But by further cutting up the towers a i (Yk), i = 0, ... , Jk - 1 from bottom to 
top as in [Put2] , more precisely, partitioning each Yk into a aa'k-1-invariant family of 

subsets, one may also ensure that (1.7) is fulfilled as well as (1.8). This ends the proof 
of Proposition 1.2. 

At this point, equip Q with a probability measure J.L which is both a- and a-invariant. 
This is possible as Q is compact and Z XU Z2 is amenable. Let u(a), u(a) be the 
unitaries implementing a and a on L 2(Q , J.L), 

u(a)1{!(w) = 1{!(a-1w) , u(a)1{!(w) = 1{!(aw). (1.15) 

Represent C(Q) on L2(Q, J.L) in the standard way 

f1{!(w) = f(w)1{!(w). (1.16) 

If X is a cJopen subset of Q, Xx denotes the characteristic function of X. 
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LEMMA 1.5. Adopt the assumptions of Proposition 1.2, and let Ao be the C*-algebra 

on L2(0., J-L) generated by C(Po) and the operator u(a)Xn\<T(Y)' It follows that Ao is 
finite-dimensional, and the operators 

(1.17) 

for i, j = 0, 1, ... , lk - 1, k = 1,2, ... , K constitute a complete set of matrix units for 

Ao. Furthermore, Ao is invariant under Ad(u(a» and 

u(a)e~.u(a) = ell I . 1 I " 1J k- -I, k- -J (1.18) 

where k = l, or k =1= l with h = h 

Proof It is easily verified from Proposition 1.2 that {et} constitute a complete set of 
matrix units, and (Ll8) follows from (LlO) in Remark 1.3. One has 

e~; = Xai (Yk) , i = 0, ... , h - 1, k = 1, ... , K (1.19) 

and 
K ~-2 K ~-2 

L L e~+I,; = L L u(a)Xai(Yk) = u(a)Xn\<T(Y) , (1.20) 
k=1 ;=0 k=1 ;=0 

where we used that the roof of the tower is a(f) = uf=1 aJk-l(fk ). These relations 
imply that Ao = C*(C(Po), u(a)Xn-<T(Y» is exactly the C*-algebra defined by the matrix 
units. 

Still following [Put2], we next modify u(a) to a unitary operator Vo in Ao, i.e. 

K Jk-2 K 

Vo = L L e7+I,; + L eLk-I 
k=1 ;=0 k=1 

K 

= u(a)Xn\<T(Y) + L u(a)*Jk-1 XaJk-1(Yk) 
k=1 

K 

= u(a)Xn\<T(Y) + L XYku(a)*Jk- l . 
k=1 

(1.21) 

Thus Vo is a sum of cyclic unitaries, one for each tower. The unitary Vo lifts each floor 
of each tower one floor up except for the top floor which is mapped onto the bottom 
one. We also introduce another unitary operator Uo measuring how far Vo is from u(a), 

i.e. 
u(a) ",;, UoVo. (1.22) 

Thus 
K 

Uo = u(a)v~ = Xn\y + L u(a)Jt XYk' (1.23) 
k=1 

To proceed, we need even more structure in Proposition 1.2, i.e. 

PROPOSITION 1.6. The clopen subsets fl' f2, ... , fK in Proposition 1.2 may be chosen 

so that they have the following further properties in addition to (/.5)-(1.9): 

fknaa(fk)=0 fork=l, ... ,K. (1.24) 
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Proof Note that if the set Y in Lemma 1.4 is replaced by an aa-invariant clopen subset, 
the tower over each point becomes higher. Thus we take the Y used in the proof of 
Proposition 1.2 and throwaway a clopen neighbourhood of the aa-fixed points in Y. 
Since aa anticommutes with a, each a-orbit contains at most one fixed point for aa, 

and since a is minimal, it follows that the set of aa-fixed points contains no open set. 
Hence the complement of the set of aa -fixed points is open and dense, and hence we 
may arrange that Y is still non-empty after throwing away the clopen neighbourhood of 
the aa-fixed points. Since the new set Y contains no aa-fixed points, aa(Y) contains 
no aa-fixed point, so replacing Y by aa(Y) U Y, we may assume that the new Y still 
satisfies 

aa(Y) = Y. 

Since Y does not contain any aa-fixed point we can find a partition PI of Y such 
that PI is aa-invariant, and aa(A) n A = 0 for any A E PI . Now repeat the proof of 
Proposition 1.2 from Lemma 1.3, but replace the old partition P by the joint refinement 
of P and PI . This ensures the property (1.24), and since each of the new Yk' s are 
contained in one of the old ones we do keep property (1.9). 

We next explore some consequences of Propositions 1.2 and 1.6. 

LEMMA 1.7. Assume that Y = YI U ... U YK satisfy the conclusions of Propositions 1.2 

and 1.6. It follows that there exist some Yb YI say, such that 

There is awE YI such that aall-I(w) = w, 

aall-I(YI) = YI, 

JI is even. 

(1.25) 

(1.26) 

(1.27) 

Moreover, YI can be taken to be any Yk such that an aa-jixed point Wo lies in the tower 

over YI. 

Proof Since (1.24) implies that Y contains no aa-fixed point, it is clear that the aa-fixed 
point must lie in the tower over some Yb say YI , and not in the bottom floor YI of the 
tower. Since a(awo) = wo, it follows that awo also lies in the YI tower in the floor 
below woo Hence there is some k < JI - 1 and aWE YI such that 

akw = a(wo) · 

But then, as aak is its own inverse, 

Hence 

and then 
(1.28) 

Since a reverses the towers by (1.18), and the two points Wo and awo are mapped into 
each other by 0', it follows that these two points lie in the middle of the tower over YI • 

It follows from (1.28) and (1.8) that J I = 2k+2, a(YI) = all-l(yl) and aall-Iw = w . 
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LEMMA 1.8. Assume that Y = YI U .. . UYK satisfy the conclusions of Propositions 1.2 and 
1.6, and choose YI as in Lemma 1.7. It follows that YI contains three mutually disjoint 
clopen subsets A, B, C such that 

a'I-I(A) = a(A), 

a'I-I(B) = a(C), 

a'I-1 (C) = a(B), 

and if k is the smallest positive integer such that aka (A) n YI =f 0, then 

B = aka(A), An a j (A) = 0 if0::5 j < k. 

(1.29) 

(1.30) 

(1.31) 

(1.32) 

Proof By Lemma 1.7, aa'I-1 is a homeomorphism of YI of order 2 with a fixed point w, 
and hence w has a neighbourhood basis of clopen sets which is invariant under aa'l- I. 

Thus, if A is one of the sets in the basis, then 

Since a'I-l w = aw and a is free, it follows that akaw =f w for k = 1,2, .... Hence, 
choosing A small enough, we may ensure that if k is the smallest positive k such that 

aka(A) n YI =f 0, then aka (A) n A = 0, and choosing A even smaller we may ensure 
that aka (A) C YI for this k. By choosing I. even smaller we may also ensure that 

aa'I-laka(A) n aka (A) = 0. 

This is possible since 
a-'I+I-kW =f akaw 

for all k = 1,2, ... , because a'I-l w = aw. Now put 

B = aka(A), C = aa'I-1 B, 

and use (aa'I-I)2 = L to verify (1.30) and (1.31). Finally, choosing A as an even smaller 

clopen neighbourhood of w, one may ensure that 

aj(A) n A = 0 

for j = 0,1, .. . , k - 1, since a is free . 
Next we shall repeat the tower construction with Y replaced by 

x = A U aa(A), (1.33) 

where A is defined in Lemma 1.8. Define VI, U I, A I for the new tower construction as 
Va, uo, Ao were defined for the old, but such that the role of P is replaced by Po, i.e. the 

new tower partition PI is a refinement of Po. 

LEMMA 1.9. One has 
(1.34) 

and 
(1.35) 
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Proof Since PI is a refinement of Po, one sees from (1.17) that Ao ~ AI, and hence 
VIVO E AI. Next, from (1.18) and (1.21) 

K '*-2 K 

u(a)vou(a) = L L e~k-;-I,Jk-; + L e~k-I . O = Va (1.36) 
k=1 ;=0 k=1 

and similarly 
(1.37) 

Thus 

Ad(vou(a»(vl vo) = vou(a)vlu(a)u(a)vou(a)vo = vov;VOVo = Vov; = (VI vo)*· 

To understand the significance of the next lemma, we have to analyse the action of VI Vo 

on the towers corresponding to X. Each of the towers are left globally invariant but the 
floors are shuffled as follows displayed in Figure 1, in a typical tower. 

Vo Vi 
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i 
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( 
( i 

i 
i 
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i 
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i 
i 

i 
i 

i 
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t 
i 

( 
( 

i 
i 
i 

i 
i 

~ 
t 
i 
i 
i 

FIGURE 1. 

Here the marked subtowers are parts of the Y -towers. Hence inside each minimal 
projection of the center of AI, VI va is a direct sum of the identity and a cyclic unitary, 
and the order of the cyclic unitary is equal to the number of floors which intersect Y 

(and then are contained in Y) . 

LEMMA 1.10. If X = XI U X 2 U ... U XK' is the partition of X defined by the tower 

construction, then for any k such that a maps the tower over Xk into itself (i.e. 

a';-I Xk = a(Xk») the number of floors in this tower contained in Y is odd, and hence 

the restriction of VI Vo to the corresponding central projection in A I has odd order. 

Proof If a maps the tower over Xk into itself, then a reverses the floorplan, by (1.18). 
Since aa(Y) = Y, it follows that if D is a floor in the tower and D is contained in Y, 
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then a(D) is a floor in the tower and hence, unless D is the ground floor Xk (and thus 
a(D) is the top fivor), aa(D) is another floor in the tower and aa(D) is contained in 
Y . Furthermore aa(D) is distinct from D since D is contained in some Yi> and Yi is 
disjoint from aa(Yi ) by Proposition 1.6. Thus, excluding the ground floor, the floors 
contained in Y occur in distinct pairs Daa(D) . Therefore, counting also the ground 
floor, the number of floors in the tower which are contained in Y is odd. 

LEMMA 1.11. There exists a unitary operator wEAl such that 

WXn\y = Xn\y 

w
2N = VIV~ 

Ad(vou{a))(w) = w* 

111 - wll :::: rrj2N. 

Proof. Let 

VI v~ = L )..e()..) 
!.. 

be the spectral decomposition of VI vo. It follows from (1.34) that 

Ad(vou(a))(e()..)) = e(X). 

Thus, if -1 is not in the spectrum of VI v~, we may define 

w = L)..I/2Ne()..), 
!.. 

(1.38) 

(1.39) 

(l.40) 

(1.41) 

where ZI/2N is the branch of the holomorphic function with 11/2N = 1 and cut along 
the negative real axis. The properties (1.38)-(1.41) are then immediate. However, if 
e( -1) =1= 0, we must find a decomposition 

e(-I) = e+ + e_ 

of e(-I) such that Ad(vou (a)) (e+) = e_ and Ad(vou(a))(e-) = e+, and then define 

w = L )..1/2N e()..) + e7ri / 2N e+ + e-7ri / 2N e_. 
!..#-I 

The existence of such a decomposition follows from Lemma 1.10. Given the central 
projection PXk corresponding to the tower over Xb there are two possibilities: if this 
tower is mapped into itself by a, then VI Vo px• has odd order, hence -1 is not an 
eigenvalue of VI Vo px• and there is no problem. If on the other hand the tower is 
interchanged with the tower over Xt by a, then a(PXk) = PXl and a(Px1 ) = px •. If 
all such pairs are ordered, and P + is the sum of the PXk' s corresponding to the first 
member of the pair, and P_ the sum over the second members, then P+, P- are central 
projections in AI such that a(P+) = P_, a(P_) = P+ and P+P_ = o. Now put 
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We have already computed that 

Ad(vou(a"»)(e(-l» = e(-l) 

and as Vo commutes with the central projections P + and P _ in A I, we have 

This establishes the desired properties 

We also have to construct another unitary operator u: 

LEMMA 1.12. There exists a unitary operator u E Al such that 

UXn\y = Xn\y 

Ad(vo(vou(a))(u) = u 

111 - ull :::: 7r/N. 

(1.42) 

(1.43) 

(1.44) 

(l.45) 

Proof It suffices to construct a unitary operator uN in the finite-dimensional algebra 
A I with the properties 

N 
U Xn\y = Xn\y (1.46) 

(1.43) 

(1.47) 

and then define u by spectral theory. 
First note that as X = AU aa(A), one of the towers in the X-tower construction is 

A, a(A), a2(A), ... , all-I(A) = a(A), and thus 

But this is also part of the tower over YI in the Y -tower construction, and thus 

Hence 

or 
(1.48) 

In particular, this means that all the spectral projections e()..) of VI Vo commute with XA, 
and since XA E Al also the central projections P+ and P_ constructed in the proof of 
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Lemma 1.11 commutes with XA. Hence, inspecting the proof of Lemma 1.11, all the 
spectral projections of W commute with XA, and thus 

WXA = XAW. 

Let k be the positive integer defined by (1.32) in Lemma 1.8, put 

.e = k - 1, 

and define an operator V by 

V -N -l + () -N -l () * = W VI XB Vou a W VI XBU avo· 

As vou(a)w-N = wNvou(a) by (1.40) and 

XBu(a)vO = u(a)XU(B)u(a)2vo 

= u(a)Xu(B)VO 

= U(C1)V~XC, 

where the last equality follows from (1.31), we have 

V -N -l + N () -l ( ) * = W VI XB W Vou a VI u a VoXc. 

(1.49) 

(1.50) 

(1.51) 

(1.52) 

Since B and C are disjoint, we thus obtain, using the expression in (1.51) for the last 
term, 

(1.53) 

But 
(1.54) 

To prove this, we must verify that the iterates ajaa(A) for j = 0, ... , k do not hit 
X = AU aa (A) before hitting B for j = k. The iterates do not hit A (or even YI) before 
they hit B by (1.32). But if 

a j aa(A) n aa(A) "1= 0 

for some j = 0, . .. , k - 1, then, one has 

but this is impossible by the last statement of Lemma 1.8. This proves (1.54). 
Inserting (1.54) into (1.53), using aaa = a-I, we obtain 

V V* -N N + N * -N = W Xau(A)W W vOXa-I(A)vow . (1.55) 

Now, as W2N = VI Vo we have 

and inserting this in the last expression of (1.55) we obtain 

V V* -N N + -N * N = W Xau(A)W W VIXa-I(A)VI W . (1.56) 
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By construction, VI maps a(X) into X. But 

a(X) = a(A U aa(A)) = a(A) U aaa(A) = a(A) U a-I (A), 

where the union is disjoint. But a(A) is part of the roof of the X-towers and is mapped 
onto A by VI. Thus a(X)\a(A) = a-I(A) is mapped onto X\A = aa(A) by VI. i.e. 

Inserting (1.57) into (1.56) we see that 

VV* 2 -N N = W Xa<1(A)W 

so V V* is . twice a projection. Thus 

is a partial isometry with 
V V* -N N 

I I = W Xa<1(A)W. 

On the other hand, by (1.52), 

VtVI :s XBUC 

and by (1.51), as vou (a) has order two, 

Now, extend VI to another partial isometry V2 in A, by setting 

Since VI = VIXBUC and B U C is disjoint from A, 

V2 V2* = XA + VI vt = XA + w-
N 

Xa<1(A) w
N 

• 

(1.57) 

But XA commutes with w by (1.49), and X = A U aa(A) where the union is disjoint 
and hence 

V V* -N N -N N 
2 2 = w XAUa<1(A)W = w Xxw. (1.58) 

Thus V2 is indeed a partial isometry, and 

(1.59) 

Also, as 

we have 
(1.60) 

Since V2 is contained in the finite-dimensional fixed-point subalgebra of A I under the 
automorphism Ad(vou(a)), it follows that V2 can be extended to a unitary uN in this 
algebra, and then from (1.58)-(1.59) 
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which is (1.43), while (1.47) follows from the construction. Since V2 lives on 
AU B U C ~ YI ~ Y and V2 V2* = w-N XXWN where X ~ Y and wXn\y = Xn\y 

it is clear that we can construct the extension uN of V2 such that 

N 
u Xn\y = Xn\y· 

(We use that Ad(vou(a»(xy) = Ad(vo)(Xu(y) = Xy to first construct uN inside Xy, and 
then extend it by setting it equal to 1 on the orthogonal complement of Xy.) 

Next we use wand u to define still another unitary operator z in AI, with the following 
properties: 

LEMMA 1.13. There exists a unitary operator Z in AI with the following properties: 

Proof. Define 

zu(a) = u(a)z 

zvoz*v~IL2(Y) = vlv~IL2(Y) 

Ilzvoz* - viii :s 3rr/2N. 

N N 
'" k N-k N-k -k + '" ( ) k N-k N-k -k ( ) Z = ~ vow u Vo Xak(y) ~u a vow u Vo u a Xa-ku(Y) 
k=O k=O 

(1.61) 

(1.62) 

(1.63) 

(1.64) 

(1.65) 

Since vok maps ak(Y) onto Y, and voku(a) maps a-ka(Y) via ak(Y) onto Y for 
Os k S N by (1.21), (1.18) and (1.5), and both u and w restrict to unitary operators on 
L 2(y) by (1.38) and (1.42), it is clear that z is unitary and leave each of the subspaces 
L2(ak(y» and L2(a-ka(Y» invariant for k = 0, 1, ... , N. Also as AI is a-invariant, 
zEAl. As u(a)Xa-ku(Y) = Xak(Y)u(a) it is clear that z is the mean of an operator in AI 

and its conjugate under a, and hence a(z) = z, which is (1.62). To prove (1.61) note 
that when z hits XY, only the first term in the first sum defining z survives, and 

ZXy,z* = wNuNXy,u-Nw-N ~ wNw-NXxwNw-N = Xx, 

where the inequality follows from (1.43). As for (1.63) note that v~ maps L2(Y) onto 
L2(a(Y», and on L2(a(Y» the unitary z* acts like u(a)u-Nw-Nu(a). Since 

vou(a)u-N w-Nu(a)v~ = u-N w N 

by (l.40) and (1.44), ZVoz*vo acts on L2(Y) as 

where the last equality is (1.39). This proves (1.63). 
To prove (1.64), we first study the restriction of ZVoz*vo to each of the subspaces 

L2(ak(y» and L2(a-ka(Y» for k = 0,1, ... , N. We have, for k 1= 0, 

zvoz*vo I L2(ak(Y)) = v~wN-kUN-kvOkvov~-1 u-(N-(k-I))W-(N-(k-I)) vo(k-l)voIIU(ak(y)) 

k N-k -I -N+k-I -kl = vow u w Vo L2(ak(y)). 
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Thus 

( * * 1)1 k N-k( -I -I 1) -N+k -kl ZVoZ Vo - L2(at (y)) = vow u w - w Vo L2(at (Y» 

and hence 

rc rc 3rc 
< lIu - 111 + IIw - 111 :s: N + 2N = 2N 

by (1.45) and (1.41). But as 

(1.66) 

(see, e.g., the figure before the statement of Lemma 1.10), it follows that 

* * * 3rc lI(zvoz Vo -vlvo)IL2(ak (y»II:s: 2N (1.67) 

for k = 1, 2, ... , N. But in the special case that k = 0 we have already established that 

in (1.63), so (1.67) holds also for k = 0 (with the right-hand side replaced by 0). 

Similarly, for 0 :s: k :s: N - 1 

ZVOZ* Vo IL2(a-to"(Y» = u(O')v~wN-kuN-k VOku(O')vou(0' )V~+I u-(N-(k+I» 

x w-(N-(k+I)VOk- 1 u(0')voIIL2(a-to"(Y)). 

As u(O')vou(O') = Vo = vOl by (1.36), we get further 

* *1 ( ) k N-k -N+k+1 -k ( )1 ZVoZ Vo L2(a-t o"(Y» = U 0' vow UW Vo U 0' L2(a-kO"(y» 

and as before this implies 

* * * 3rc lI(z voz Vo - VI Vo IL2(a-kO"(y» II :s: 2N 

for 0 :s: k :s: N - 1. But if k = N one computes 

Zvoz* voIU(a-NO"(Y» = zVovoIL2(a-NO"(y» = zIL2(a-NO"(y» 

= u(a)v~ vON u(a)IL2(a-NcY(Y» = lIL2(a-Na(Y» 

and hence (1.68) holds, with right side zero, for k = N. 

(1.68) 

Next, one uses the fact that Z acts as the identity outside uf=o ak (Y) U uf=o a-k 0' (Y) 

to compute that ZVoz* vo = vovo = 1 on the L2-space on the complement of this set. 
Since both zVoz* vo and VIVO leave all the spaces L2(ak(y)), L2(a-ka(Y)) invariant for 

k = 0, 1, . . . , N, as well as the orthogonal complement of these spaces, it follows finally 
from (1.67) and (1.68) that 

which is (1.64) . 
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Proof of Theo rem 1.1. Recall that U I = U (a) vi, and define 

A = C* (zAoZ* , UI). 

461 

(1.69) 

We shall show that A is the subalgebra of the form (1.4) alluded to in Theorem 1.1. 
First we show that 

C (P) £; zAoz* £; A. (1.70) 

We have already noticed in Lemma 1.5 that 

C(P) £; Ao· 

Further, note that z leaves each of the spaces L2(ak(Y», L 2(a-ka(y», k = 0,1, .. . , N 

invariant and acts as the identity L2(Q\(Uf=oak(y) U Uf=oa-ka(y»). Since each of 
the sets ak(y), a-ka(y) is contained in a single element of P by (1.9), it follows that 
z commutes with C(P), and hence (1.70) is clear. 

Next, as U I E A and Vo E Ao, we have 

U' = UIZVOZ* E A. 

As u(a) = UIVI we have 

lIu' - u(a)11 = IIzvoz* - vIII::: 3rrj2N (1.71) 

by (1.64). Thus, if N is chosen so large that 3rrj2N < e, the canonical unitary in the 
crossed product C(Q) Xa Z is contained within e in A. 

To prove the remaining properties of A we introduce the element 

JI-I JI-I 

V = L (ZV~XYI Z*)UI (zXYI vOkz*) = L (zeloz*)ul (ze~kZ*)' (1.72) 
k=O k=O 

where we used the matrix units introduced in Lemma 1.5. (V should not be confused 
with the V used in the proof of Lemma 1.12.) The last expression for V shows that V 

commutes with zAoz* . Furthermore, as 

I * * zeooZ = ZXYI Z ::: Xx (1.73) 

by (1.61), and UI acts as the identity on L2(Q\X) by (1.23), it follows that UI is contained 
in the algebra generated by zAoz* and V, i.e. 

A = C*(zAoz* , V). (1.74) 

Since zefjZ*, where efi are defined by Lemma 1.5, constitute a full set of matrix units 

for zAoz*. and V is a unitary on Z(L(~OI el)z* L2(Q) commuting with zAoz*, in order 
to prove that A has the form (1.4) it suffices to show that V has full spectrum, i.e. 

Sp(V) = T. (1.75) 

But by the K -theoretic reasoning at the end of §2 in [Put2] , [ud is the generator of 
KI (C(Q) Xa Z) which is Z, and hence UI has full spectrum. Since, as we already 
remarked, UI 'lives' on ze~z*, it follows from (1.72) that V has full spectrum, and 
hence A has the form (1.4). 
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Finally, we have to prove the statements of Theorem 1.1 pertaining to a. As 
zu(a) = u(a)z by (1.62), the statements concerning . the action of a on zAoz* are 
immediate from (1.18) in Lemma 1.5. It only remains to show that 

u(a) Vu(a) = V*. (1.76) 

But u(a)zu(a) = z and u(a)ekou(a) = e}t-k-t,Jt-l> and as Ut = u(a)v; we have 

u(a)utu(a) = u(a)*vt = v;UrVt. 

We conclude that 

Jt-t 

u(a)Vu(a) = L zeLt_tz*v;UrvtZe}t_t,kZ*. 
k=O 

(1.77) 

But e}t-t,Jt-1 = X<1(Yt) ::s X<1(y), and z carries L2(a(Y)) into itself by the definition 
(1.65), and 

by (1.63). Hence, from (1.77), 

and as vOe}t_I,k = e6,k by (1.21), we get 

JI-t 

u(a)Vu(a) = L zek,oz*urze6,kZ* = V*, 
k=O 

which is (1.76). This ends the proof of Theorem 1.1, apart from the last parenthetical 
remark, which is (1.27). 

2. Inductive limits 

The main result of this section is the following Theorem 2.1, as well as Corollary 2.4. 

THEOREM 2.1. Let A be a unital separable C* -algebra, and let a be an automorphism of 
order 2 of A. Assume that for any £ > 0, and any finite number Xt , •.• , Xn of elements in 
A there exist a C* -subalgebra B of A, with the same unit as A, such that 

(2.1) 

for suitable natural numbers 11, }Z, ... , 1K, with the following properties: 
(2.2) There exists elements Yt , ... , Yn in B with 

for k = 1, . .. , n. 
(2.3) a(B) = B, and, moreover, a leaves the two subalgebras corresponding to 
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and 

invariant. 
(2.4) a maps the canonical generator z ~ zfor IJI ®C(1l') into z ~ Z, and this generator 
is in a nontrivial K I -class, in A. 

It follows that there exists an increasing sequence AI ~ A2 ~ ... of unital C*­
subalgebras of A such that each Ak has the form (2.1), each Ak is G-invariant and the 
action a/At has the properties (2.3) and (2.4), and, finally, 

(2.5) 

where the bar denotes norm closure. 

Before going to the proof we remark that a similar theorem, but without the extra 
structure given by a, and without injectivity of the embedding, Ak <-+ A, is Theorem 
4.3 in [Ell] . 

First, for completeness, we state a known lemma. 

LEMMA 2.2 ([GIi, BraD. For any e > 0 and any natural number n there exists a 
8(e, n) > 0 with the following property: if A is a C*-algebra, and B is afinite-dimensional 
*-subalgebra with (linear) dimension not exceeding n, and C is another C*-subalgebra 
of A such that any element in the unit sphere of B has distance at most 8(e, n) to C, then 
there exists an injective morphism 

(2.6) 

such that 

IIcp(x) - xII ~ ellxll (2.7) 

for all x E B. 

Proof This is essentially [GU, Lemma 1.10] or [Bra, Lemma 2.1]. 

LEMMA 2.3. If A is a unital C*-algebra with an automorphism a of order 2, and B is 
a globally a-invariant C*-subalgebra of A with the same unit as A such that B has the 
form (2.1), and the restriction of a to B has the form (2.3) and (2.4), and XI, ... , Xm 
are elements in B, then for any c > 0 there exists a 8 > 0 (depending on XI, ... , Xn 
and B) such that if C is another globally a -invariant C* -subalgebra of A such that the 
generators ef;, i, j = 0, ... , Jk -1, k = 1, . . . , K and z ~ z of B all can be approximated 

J 

by elements of C within 8, then there exists an injective morphism 

(2.8) 

such. that 

IICP(Xi) - XiII ~ cllxd/ (2.9) 

for i = 1, . .. , m, and 
cpa x = acpx (2.10) 

for all x E B. 
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Proof If B has the form (2.1), define Bo as the subalgebra corresponding to 

(2.11) 

and u as the unitary operator corresponding to 

[1 ® (z ~ z)] EB 1 EB ... EB 1. (2.12) 

Then Bo is finite-dimensional, a(Bo) = Bo, a(u) = u*, u commutes with Bo and B is 
generated as C*-algebra by u and Bo. Moreover, B can be characterized abstractly as the 
C*-algebra generated by a finite-dimensional C*-algebra Bo of the form (2.11) together 
with a unitary u with spectrum 1l' commuting with Bo such that 

(2.13) 

where PJI is the central projection in Bo corresponding to the first summand in (2.11). 
As a have order two, for a given k = 1, 2, ... , K there are two possibilities. Either 

a maps MJk onto itself or a interchanges MJk with some MJl with lk = le. (Here and 
later we identify Bo with (2.11), to save notation.) When k = 1 only the first alternative 
occurs. When the first alternative occurs, the restriction of a to M Jk is implemented by 
a self-adjoint unitary since a has order two, and hence we may choose matrix units e~j 
such that a(e~j) is either +e~j or -e~j for each pair (i, j). In particular a(e~i) = e~i for 
all i. When the second alternative occurs, we may use the choice 

efj = a(e~) 

for matrix units for M Jl once the matrix units et for M Jk are chosen, and then 

et = a(ef)· 

Now, the elements XI, ..• ,Xn can be approximated arbitrary close by polynomials 
in et's, u and u*. Thus if we can find an injective morphism q; : B ~ C such that 
11q;(et) - etll and 1Iq;(u) - ull all are sufficiently small, then (2.9) will be fulfilled 
since q; is contractive. We shall argue that we can find such a q; provided e~j and u 
all are sufficiently close to C. First it follows from Lemma 2.2 that we can find a 
set of matrix units !;~ in C such that fi~ is close to e~j for each i, j, k. We now use 
techniques from [Gli] and [Bra] to modify the !;~. In fact we may first apply Lemma 2.2 
to the pair Bg, c a of fixed-point algebras under a instead of Bo, C to find a morphism 
q;a : Bg ~ Ca such that q;a is close to 1. (Note that if X E Bg and y E C with 
IIx - yll ~ 8, then IIx - t(a(y) + y)11 ~ 8 and t(a(y) + y) E ca.) To extend q;a 
to Bo we operate as follows. If M Jk is a summand invariant under a, and e~j is a 
matrix element, there are two possibilities: either a(et) = e~j' then simply replace fi~ 
by gt == ((Ja(et), or a(et) = -e~j. In the latter case, as a(e~) = e~i and a(ej) = ejj , 
we have 

If one now introduces 



Crossed products of totally disconnected spaces by Z2*Z2 465 

then 
a(y) = -y and y ~ efj. 

Since y* y ~ eJj one computes that the spectrum of y* y is concentrated near ° and 1. If 
gfj is the partial isometry corresponding to that part of the partial isometry in the polar 
decomposition of y which lives on the part of y*y near 1, then 

a (gf) = - gfj 

and 

and 
h k k 

gij gij = gjj' 

In this way one constructs gfj unless gfj can be defined from already constructed gfj' s 
by using 

or 
k k k 

gij = gilglj' 

(The most systematic way is to construct gtJo, g~I' ... ,g~Jk-1 as above, and then define 
the other l/s by matrix relations.) 

The other main case is that M Jk and M J/ are interchanged by a. Then 

form a complete set of matrix units for (MJk + MJ/)'I. Put 

gij = <fJa (eij)' 

Let f E C be a self-adjoint approximant to etJo-e&. We may assume goof = fgoo = f 
by cutting down with goo. Then 

a(f) ~-f 

and 
f2 ~ goo. 

Replacing f by t (1 - a), we may assume a (f) = - f. Then if h is the partial isometry 
of the polar decomposition of f, then h is self-adjoint, 

a(h) = -h, h2 = goo. 

Now define 

and verify 

gtJog& = 0, gtJo + g& = goo, a(gtJo) = g&, 

a(g&) = gtJo, gtJo ~ etJo, g& ~ e&. 
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Next, define 

and verify 

etc. 
We now extend CPu to a morphism Bo -+ C by setting 

cp(ef) = g~ 

and then cp is close to l on Bo and acp = cpa on Bo. 

We next have to extend cp to u, i.e. we have to construct a unitary operator U E C 
such that 

ucp(1 - P't) = cp(1 - P't)' 

U E cp(Bo>', 

Sp(u) = T, 

a(u) = u* 

u ~u. 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

So let x be an approximant to P'tUP't in C. We may assume cp(P't)xcp(P't) = x, 

and by integrating vxv* over v in the unitary group of cp(Bo) we may assume that 
x E cp(BoY n C == C\, since it already approximately lies there. But as a(u)* ~ u we 
have a(x)* ~ x, so replacing x by t(x + a(x)*) we may assume 

a(x) = x*. 

Now, let v be the partial isometry of the polar decomposition of x inside 
cp(P't)C\cp(P't). The partial isometry is actually unitary and contained in 
cp(P't)C\cp(P't) since x is approximately unitary there. As Ixl2 = x*x we have 

a(lxI2) = a(x*)a(x) = xx* = Ix*12 

and hence 

a(lxl) = Ix*l . 

Now, applying a to both sides of 

x = vlxl 

we get 

x* = a(v)lx*l. 

But as Ix*1 = vlxlv* we obtain 

Ixlv* = a(v)vlxlv* 

and hence 
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and 

a(v) = v*. 

Hence 

u = v + <p(1 - Pit) 

has the properties (2.14), (2.15), (2.17) and (2.18). But just because u is close to u, it is 
in the same K I -class, and as this is nontrivial it follows that it has full spectrum, which 
is (2.16). This ends the proof of Lemma 2.3. 

Proof of Theorem 2.1. Let XI, X2, .•. be a dense sequence in A. We inductively 
construct a sequence Bn of subalgebras of A of the form (2.1)-(2.4), as well as 
elements Yn,l, Yn,2, .. . ,Yn,k(n) in Bn and a dense sequence (Zn,i)~1 in Bn and injective 
morphisms <Pn : Bn -+ Bn+l , as follows. Let BI = Cl, and when B I, . .. , Bn 

have been constructed, choose Bn+1 as follows: apply Lemma 2.3 with e = 2-n and 
{XI, ... ,xm} = {Yn,l, ... , Yn,k(n)} to find a 8 with the properties cited there. Then use 
Theorem 1.1 to find a subalgebra Bn+1 of the apposite form such that the distances of 
the generators et, u of Bn to Bn+1 are less than 8 and the distances of the elements 
XI, ... , Xn+1 to Bn+1 are less than 2-n• Construct <P = <Pn as in Lemma 2.3, and let the 
new set of y's be the union of the following three sets: 

(1) The images of the previous y' sunder <Pn. 

(2) The images of Zm,I, ..• , Zm,n under <Pn<Pn-1 ... <Pm for m = 1, ... , n. 
(3) A set of n + 1 new y's approximating XI, ... , Xn+1 to within 2-n. 

Then, let (Zn+I,i)~1 be any countable dense sequence in Bn+1 containing the new y's 
and such that the set of elements in the sequence is closed under addition, multiplication, 
involution and scalar multiplication by rational complex numbers. (If any dense 
sequence is given, we obtain the latter property by considering all * -polynomials in 
the sequence with rational complex coefficients.) In particular, we have constructed 
injective morphisms 

(2.19) 

. such that 

(2.20) 

for k = 1, ... , ken), and 
(2.21) 

Now let B be the inductive limit of the system 

'P. 
... -+ Bn -+ Bn+1 -+ ... (2.22) 

and let a' be the automorphism of order 2 of B which is defined by a. The automorphism 
a' is well defined because of (2.21). For each n, let <P be the canonical injection of Bn 

into B. Then <p(Bn) is an increasing sequence of subalgebras of B with dense union in 
B. Since each <p(Bn) has the form (2.1), Theorem 2.1 will be proved once we can show 
that B is isomorphic to A by an isomorphism intertwining a and a'. We shall define 
such an isomorphism 1/ explicitly as follows: 
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First we define rJ on ({J(Bn), i.e. we define an injection rJn : Bn -+ A as follows: if 
x E Bn and x = Zn,k for a suitable k, then for m ~ max:{n , k} we have 

({Jm({Jm-l .. . ({In(x) E y-set of Bm+l . 

It follows that 

for m > max:{n, k}. Thus m -+ ({Jm({Jm-l .. • ((In(x) is a Cauchy sequence in A. Let rJn(x) 
be its limit. As II({Jm ... ({In (x) II = Ilx II for all n, we have that rJn is an isometry of the 
*-algebra {Zn,d~l over the rational complex numbers, and it is clear by limiting that rJn 
is a * -morphism. We now extend rJn to Bn by continuity. 

It is clear from the definition that 

rJn+l ({In = rJn (2.23) 

and hence we may consistently define an isometric *-morphism 

by 

rJ 0 ({JIB. = rJn· (2.24) 

Then rJ extends by continuity to an injection of B into A, and 

rJer' = er rJ . 

Furthermore, rJ is surjective by the following reasoning. If x E A, then x lies in the 
closure of the set {Xn}~l. Hence, for any 8 > 0 there is a natural number n such that 

IIx - xnll < 8/3. 

Now choose m > n so that 2-m+1 < 8/3. There exists a Y in the y-set of Bm such that 

But as 

etc, we have 

IIxn - yll < 8/3. 

lI({Jm(Y) - yll ::: 2-mllyll 

lI({Jm+l({Jm(y) - ({Jm(Y) II ::: Tm-111yll 

IlrJm(Y) - yll ::: 2-m+11Iyll ::: t8 11yll. 

But rJm(Y) = rJ«({J(Y)) and hence 

Ilx - rJ«({J(y))11 < ~8 + t8 11YII. 

Since Ilx - yll < ~8, and 8 was arbitrary, it follows that x is contained in the closure of 
the range of rJ. But this range is closed, so rJ is surjective. 

We have proved that the C*-dynamical systems (A, er) and (B, er') are isomorphic, 
and this ends the proof of Theorem 2.1. 
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COROLLARY 2.4. Let Q be a totally disconnected compact metrizable space, and let a be 
a minimal homeomorphism on Q. Let a be a homeomorphism of order 2 on Q such that 

(2.25) 

and assume that a or aa has a fixed point. It follows that C (Q) Xa Z Xa ~ contains 
an increasing sequence of unital subalgebras Bn with dense union, such that each Bn has 
the form 

(2.26) 

where 

Bo = {x E C(I, M 4no ) : Ex(-I) = x(-I)E and Ex(1) = x(I)E}. (2.27) 

Here I = [-1, 1] is the unit interval, E is a projection in M4no of dimension 2no, and 
C(I, M 4no ) denotes the C*-algebra of continuous functions from I into M4no' 

Proof. As mentioned after (1.2) we may for the purposes of this corollary assume that aa 
has a fixed point, and hence, by Theorems 1.1 and 2.1, it suffices to prove that the crossed 
product of an algebra of the form (1.4) by an automorphism a of order 2 satisfying the 
conditions in Theorem 1.1 has the form (2.26). But if a is an automorphism of order 2 
of any C* -algebra B then 

(2.28) 

where 
BU = {x E B : a(x) = x} (2.29) 

and 
BU(-I) = {x E B : a(x) = -x} (2.30) 

see e.g. [BEEK2,(4.3)]. From this it is easy to see that if a flips two summands Mit 

and Mil' with ik = ii, this gives rise to a summand M2Jt in the crossed product, and 
if a leaves a summand Mit invariant, this gives rise to a summand Mit (B Mit in the 
crossed product. Finally, the crossed product of Mil ® COl') by a has the form (2.27) 
with 2no = il> see e.g. [BEEKI], [BEl] . 

3. The AF-algebra 
In this section we shall prove that C(Q) Xa Z Xa Z2 is an AF-algebra. We start with: 

LEMMA 3.1 ([Ell]). The algebra C(Q) Xa Z has real rank zero. 

Proof. This is referred to before the statement of Theorem 4.3 in [Ell]. By [Putt, 
Corollary 5, p 345] there is a canonical one-one correspondence between tracial states 
on C(Q) xaZ and a-invariant probability measures on Q. Since Q is totally disconnected, 
the projections in CeQ) separate all probability measures on Q, and hence projections in 
CeQ) Xa Z separate the trace states on C(Q) Xa Z. Hence, by Theorem 1.3 of [BBEK], 
or Theorem 2 of [BDR], together with Theorem 2.1, C(Q) Xa Z has real rank zero. 
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Now, let 

(3.1) 

be a definite increasing sequence of unital C*-subalgebras of C(Q) Xa Z such that Uk Bk 

is dense, and such that the restriction of a to Bk has the form indicated in Theorem 2.1. 
Let 

ih ~ ih,o E9 Mnl(k) E9 ... E9 MnNk(k) (3.2) 

be the corresponding sequence growing to C(Q) Xa Z Xa Z2, Corollary 2.4. 
For k < l given, if Z E 11', then Z defines an irreducible representation of 

by evaluation. The restriction of this representation to the first summand Bk,O ~ M JI (k) ® 
C(1I') of Bk decomposes into a certain number [l : k] of irreducible representations of 
Bk,O, given by evaluation at [.e : k] points ZI (z), .. . ,Z[l:k](Z), where the number [l : k] 

is independent of z, and the mapping ¢k.l : 'JI' -+ S[l:k]'JI', which to Z assigns the image 
of (ZI (z), ... , Z[l:k](Z» in the [l : k]-fold symmetric product S[l:k]1I' of 'JI', is continuous, 
[DNNP] , [BE2]. Here S[l:k]'JI' = 1I'[t:k]j L[e:k] where the symmetric group on [l : k] 
elements acts on 1I'[l:k] permuting the coordinates. 

Note that as a acts on 1 ® C(1I') by flipping the circle, whether in Bk or Be, and the 

morphism of M11(k) ® C('JI') into MI1(l) ® C('JI') intertwines a, we have 

(3.3) 

where the conjugation in 1I'[l:k] j L[l:k] is coordinatewise. 
Note that as Bk and Bl are finite-dimensional apart from the first summand and the 

embedding of Bk and Be is injective, the embedding of Bk.O into Bl,o is non-zero, and 
hence [l : k] ~ 1 and the embedding is injective. 

Now, by [BBEK, Theorem 1.3], the algebra C(Q) xaZ has small eigenvalue-variation 
since it has real rank zero. By the characterization of small eigenvalue variation given 
in [BE2], this means that C(Q) Xa Z has small metric variation, i.e. 

LEMMA 3.2. For any k and any E there exists an L such that if l ~ L, then the 

diameter of the range of ¢k,e in S[l:k]'JI' is less than E. (The metric on sn'JI' is defined 

by d(z, y) = infreLsuPI::;k::;nd(Zb Yr(k» for Z = (ZI, . .. , Zn), Y = (YI, ... , Yn).) 

We now embed each Bk into ih . By (2.88) 

B ~ ( Bf 
k - Bf(-l) 

Bf(-l) ) 
BlI 

k 

and by [BEEK2;(4.1)] the concrete embedding of Bk into Bk is given by 

where P± = !(1 ± a) . 

(3.4) 
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The embeddings () of Bk,O into ih,o can be described analogously, For our purposes, 
it is convenient to describe the embedding more concretely as follows. An element 
f E Bk,O is then mapped into the function 

tE[_1,1]--*(f(t+i,J01-t
2

) 0) (3.5) 
f(t - i.Jf=t2) 

while all of Bk,O can be characterised as the set of functions 

t E [-1, 1] --* (g11(t) gdt») 
g21 (t) g22(t) 

(3.6) 

which commute with the self-adjoint unitary (~ ~) at the points -1 and 1. This is 

consistent with Corollary 2.4 which states that the spectrum i of Bk,O consists of the 
open interval (-1, 1) together with two limit points at -1 and two limit points at + 1. 
We may define a set-valued map e : i --* '][' dual to () (analogously to ¢k,l dual to ¢k,l) 

by requiring that the point t E (-1, 1) is mapped into the two points t ± i.Jf=t2 E '][', 

and the two points at -1 are both mapped into -1, and the two at + 1 into + 1. For our 
purposes it is better to view e as a map from I into '][' by e(t) = t ± i.Jf=t2. 

lf Vrk ,l denotes the embedding Bk,o "-+ B1,o, then the dual .(fk,l maps i into subsets 
of i. But since the diagram 

a- li 
BkO Bk,o --* Bk,O "-+ 

+ "'t.l + "'t.l + 1/Iu (3.7) 
a- li 

B1,o B1,o --* B1,o "-+ 

commutes, the diagram 

'][' 
z-+z 

'][' 
8 i +- +-

t ~t.l t ~t.l t q,t.l (3,8) 

'][' 
z-+z 

'][' 
8 i +- +-

properly interpreted, commutes. A little consideration of the four particular subcases 
that {jrk ,l maps some endpoint, respectively interior point of i into some end-point, 
respectively interior point of i, show that {jrk,l can be lifted to a map I --* I by merging 
the two points at -1, resp.+1, whenever they occur, and then {jrk,l maps any point of I 
into a set of cardinality [.e : k] in I. The set (jrk,l (x) is then nothing but the spectrum 
of the image of the function z --* Re z in Bk,O over the point x in the spectrum Be,o 
(when the end-points are merged). Hence, by Lemma 3.2, or directly by small eigenvalue 
variation of this element, we obtain 

LEMMA 3.3. For any k and any e there exists an L such that if.e 2: L, then the diameter 
of the range of (jrk,l in S[l:kj I is less than e. 

lf we order the points Al (t), A2(t), ' .. ,A[l:kj(t) in (jrk,e(t) in increasing order, then 
the condition in Lemma 3.3 can be expressed as 
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for k = 1, . . . , [i: k] and all pairs t, s E [-1,1], see [eEl The functions t ~ Ak(t) are 
continuous, and if x E Bk,O is arbitrary its image 1/!k,e(X) in Be,o, evaluated at t E [-1, 1], 
is unitarily equivalent to the matrix 

X(A2(t)) 
{J(x)(t) = 

(

X(AI (t)) 

(3.9) 

More precisely, this matrix should also have some more zeros on the diagonal coming 
from the embedding of the other matrix summands of Bk into Be,o, but we leave the 
minor extra complications due to this to the reader. 

Note that the unitary u(t) such that 

(1/!k,lX)(t) = u(t){J(x)(t)u(t)* (3.10) 

can be taken to be independent of x, but it cannot in general be taken to depend 
continuously on t at points where some of the eigenvalues AI (x), ... ,A[e:k)(X) coincide. 
However, if Bk,o and Bl,o had been the full homogeneous algebras CU, M 2J1 (k») and 
CU, M2J,(l») it was proved in [Tho, Theorem 3.1] that there exists a sequence Un of 
continuous unitary-valued maps such that 

(1/!k,tX)(t) = lim un(t){J(x)(t)un(t)*, 
n .... oo 

(3.11) 

uniformly in t for each x E CU, M2J, (k»). In our case, we have the extra complication 
with the two end-points of I. For example, 1/!k,l is not necessarily extendable to 
a morphism of CU, M2J,(k») into CU, M 2J, (l»)' For example, if Bk,O = {x E 

CU, M2)lx12(-I) = x21(-I) = xn(l) = X21(1) = OJ, Be,o = Bk,o and 

1/!k,t(X)(t) = (XII(t) 
<P(t)X21 

where <p is a continuous function from (-I, 1) into T, then 1/!k,l is a morphism, but 1/!k,l 
is non-extendable if <p is not extendable to a continuous function on [-1, 1]. However, 
1/!k,t can be approximated strongly by extendable morphisms by replacing <p by, say, <Pn 
where 

{

<p(-I+n-1) if-l~t~-I+n-1 

<Pn(t) = <p(t) ~f -1 + n-I ~ t ~ 1 ~ n-I 

<p(1 - n-I ) If 1 - n-1 ~ t ~ 1. 

Employing this device systematically, and using Thomsen's theorem, we can also prove 
(3.11) in our case. Moreover, since U(211 (i)) is a compact group, we may assume that 
un(-I) and un(+I) converge as n ~ 00, and then, modifying un(t) near ±1, we may 
assume that un(-l) and un(+l) are independent of It. This is a plausibility argument 
of: 

LEMMA 3.4. There exists a sequence Un of continuous U(211 (i))-valued maps such that 

1/!k,t(X)(t) = lim un(t){J(x)(t)un(t)* (3.12) 
n .... oo 
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for all x E ih,o, where the convergence is uniform in t for each x, and such that 

un(-I) = u(-I), un(+I) = u(+I) (3.13) 

are both independent of n. 

Proof We write Bk,O = MJI(k) ® Ao where 

Ao = {f E C(l) ® M2 : f(±I) E D2} (3.14) 

and where D2 are the diagonal matrices of M2. The relative commutant of the image 

of MJI(k) in C(l) ® MJI(t ) ® M2 is again of this form. This allows us to reduce to 
the case J 1 (k) = 1; we assume that Wk,t = rp where rp is a unital embedding of Ao in 
C(l) ® Mm ® M2, and that dimrp(1 ® ejj)(t) = m for any tEl . In other words we 
assume that 7rt 0 rp has c2.1 and c:'1 (respectively cl and cD with the same multiplicity, 

where 7rt : C(l) ® Mm ® M2 ~ Mm ® M2 is the evaluation at tEl , and c~1 : Ao ~ C 
is defined by c~I(f) = f(±I)jj. 

First of all there is a unitary u E C(l) ® Mm ® M2 such that 

Ad u 0 rp(1 ® ejj) = 1 ® 1 ® ejj . (3.15) 

There is a maximal Abelian subalgebra Cj of C(l) ® Mm such that 

Ad u 0 rp(C(l) ® ejj) C Cj ® ejj . (3.16) 

Hence there is a unitary v E C(l) ® Mm ® D2 such that 

Ad vu 0 (C(l) ® eii) C C(l) ® Dk ® ejj, (3.17) 

where Dm are the diagonal matrices of Mm. Now take Ad vu 0 rp for rp. 
Let Aj (t), i = 1, ... , m be continuous functions on I such that Aj (t) ~ Aj+1 (t) and 

7rt rp ::::: ®jc).;(t) where c). is the evaluation map of Ao at A. Note that U;fA E I/{t E 

I : IAj (t) I = A}O =1= 0} is countable. We choose a sufficiently small 0 > 0 such that 
{tEl: IAj(t)1 = 1 - oj has no interior points for any i. 

Define 
u(t) = 7rt 0 rp(XI-1+J,I-o] ® e\2) = u(t) ® el2 

E_I (t) = 7rt 0 rp(XI-I,-IH] ® e22) = E_I (t) ® e22 

Eo(t) = 7rt 0 rp(XI-IH,I - o] ® e22) = Eo(t) ® e22 

EI (t) = 7rt 0 rp(Xll-o,l] ® e22) = EI (t) ® e22 

(3.18) 

and similarly define F_I' Fo , FI like E, with e11 in place of e22 . (The definition makes 
sense by approximating the characteristic functions by continuous functions.) Here u(t) 
is a partial isometry of Mk such that u(t)*u(t) = Eo(t), u(t)u(t)* = Fo(t) and E, Fare 
projections of Mk such that E_I (t) + Eo(t) + EI (t) = 1, etc. 

Note that u(t), E*(t)F*(t) are continuous on n{t E IIAj(t)1 =1= 1 - 8J, which is 
a dense open subset of I. For any to E I such that u(t) is not continuous at to, we 
may choose 0 < 8' < 0 and construct u' = u, f' etc, as above such that u'(t) etc, are 
continuous at to. Then u'(t) is an extension of u(t), i.e. u'(t)Eo(t) = u(t) . Thus it 
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easily follows that for each S E I, there is an interval (s - 8s , S + 8s ) such that there is 

a continuous function Us on (s - 8s , S + 8s ) n I into the unitaries of Mk such that 

us(t)Eo(t) = u(t) 

us(t)E_1 (t)us(t)* = F_I (t) 

us(t)EI (t)us (t)* = FI (t). 

(3.19) 

Since I is compact, there is a finite number of points SI < ... < Sn such that 

Ui (Si - 8s" Si + 8s,) ::> I and each Si has a us, as above. To find a unitary v in 
C(l) ® Mk such that 

v(t)Eo(t) = u(t), v(t)E_1 (t)v(t)* = F_I (t), v(t)EI (t)v(t)* = FI (t) (3 .20) 

we have to connect u(l) = us, on (ai, bl) = (Si - 8s" Si + 8s,) and U(2) = Usj+1 on 

(a2, b2) = (Si+1 - 8s,+I, Si+1 - 8s,+I) into one v on (ai, b2), keeping the condition 
(3.20). Since u, E, F are continuous on a dense open subset of I, there is an interval 
[e, d] C (a2, bd such that they are continuous on [e, d] . Then it is easy to find a 
continuous w on [e, d] such that 

wee) = u(l)(e), wed) = u(2)(d) 

w(t)Eo(t) = u(t) (3.21) 

Ad w(t)(E±I)(t) = F±I (t). 

Thus we obtain a v combining u(l), w, u(2) as desired. 

By using v satisfying (3.20), we define a map cp~ of C(l) ® M2 into C(l) ® Mk ® M2 

by 

cp~(l ®eu) = 1 ® 1 ®eu 

CP8(1 ® ed = v ® el2 (3.22) 

cp~(f ® 1) = cp(f ® ell) + v* ® e21CP(f ® ell)v ® el2' 

Since CP&(c.(l) ® 1) commutes with cp~(1 ® eij), the map cp" actually defines a 
homeomorphism. It is injective since cp is injective. We claim that if x E Ao is constant 
on an open neighbourhood of [-1, -1 + 8] U [1 - 8,1], it follows that CP8(X) = cp(x) . 

First for x = f ® eij with supp f C [-1 + 8, 1 - 8], the equality follows. For example, 

if cp(f ® 1) = a ® ell + b ® e22 with a, bE C(l) ® Dm, then 

cp(f ® el2) = cp(f ® ell)cp(X[-IH . I-~l ® el2) 

= au ® el2 

ub ® el2. 

Thus b = u*au and so' 

cp~(f ® e22) = v* ® e21 cp(f ® ell)v ® el2 

= v*av®e22=b®e22 

(3.23) 

(3.24) 
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(u is not in C(l) ® Mm but it behaves as a mUltiplier for a, b.) Next let x = f ® e22 
be such that f(t) = f(-I) for t E [-1, -1 +8'] with 8' > 8 and suppf C [-1, 1-8]. 
(We should also consider f ® ell, for this f, and similar elements concentrated at +1.) 

For each to E I, we find 8" E (8,8') such that IAi (to) I =1= 1 - 8", and the u", E", F" 
constructed for 8" in place of 8 are continuous at to . Then it easily follows that 

:TrIo 0 ({l(f ® e22) = r:' l (to) ® e22 + :TrIo 0 q;(g ® e22) 

:TrIo 0 ({l(f ® ell) = E~l (to) ® ell + :TrIo 0 q;(g ® ell), 
(3 .25) 

where g E C (I) satisfies supp g C [-1 + 8, 1 - 8]. (Express f as the sum of (f - g) 
and g such that f - g behaves like the characteristic function of [-1, -1 + 8"].) Then 

:TrIo 0 ({l~(f ® e22) = (v* ® e2l . q;(f ® ell)v ® e12)(tO) 

= v(to)* F!!.l (to) v (to) ® e22 + :TrIo 0 ({l(g ® e22) 

= E~l (to) ® e22 + :TrIo 0 ({l(g ® e22) 

= :TrIo 0 q;(g ® e22) , 

where v(tO)F!!.1 (to)v(to) = E~l (to) since 8" > 8. 

(3.26) 

The other cases can be treated similarly. This implies that ({l~(x) --+ ((l(x) for x E Ao 
as 8 ..t. o. This ends the proof of Lemma 3.4. 

We are now ready to prove 

THEOREM 3.5. Let n be a totally disconnected compact metrizable space, and let et be a 
minimal homeomorphism of n. Let a be a homeomorphism of order 2 on n such that 

(3.27) 

and assume that a or eta has a fixed point. 
Itfollows that C(n) Xa Z XU Z2 is an AF algebra. 

Proof By [Bra, Theorem 2.2] and Corollary 2.4 it suffices to show that if £ > 0 and 

Xl, . .. ,Xm E ih,o, then there exists a l 2: k and a finite-dimensional subalgebra Fo of 
Be,o such that the distance between each of the elements 1/!k,e(Xi), i = 1, ... , m, and Fo 
is less than £. 

For this we first use Lemma 3.3 to choose l so large that 

(3.28) 

for i = 1, .' . . , m, t, s E [-1,1], where {3 is defined by (3.9). Next we use Lemma 3.4 

to choose n so large that 

IIUn(t){3(Xi)(t)Un(t)* -1/!k,f(xi)(t)II :::: £/3 

for i = 1, .. . ,m, t E [-1,1] . Now let 

i.e. the elements in A are continuous functions from I into M2J, (l) of the form 

t --+ un(t)*x(t)un(t), 

(3.29) 

(3.30) 

(3.31) 
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where x E Be,o. Thus 

A = {xEC(I,M2J1(l»;[X(-l),u(-I)*Eu(-I)]=0 

and[x(+I), u(+l)* Eu(+I)] = OJ, (3.32) 

where E is the projection defined in Corollary 2.4 (for n = .e). In particular, since 

un(-l) = u(-l) and un(+l) = u(+I) are independent of n, we have 

(3.33) 

Let D_I , resp. D+I , be the finite-dimensional (actually 2-dimensional) abelian subalgebra 
of M2J1 (k) generated by the projection E of Corollary 2.4 for n = k. (Of course, 
D_I = D+t. but we view D±I as 'sitting over' the points ±I in I, respectively.) 
Let C-t. respectively C+I, be the Abelian algebra generated by u( -1)* Eu( -1), resp. 
u(1)* Eu(I), where E now is the E for n =.e. Thus 

A = {x E C(l, M2J1(l»; x( -I) E C~I' x(+I) E C~I} ' (3.34) 

AI(-I) = A2(-I) = ... = A"-(-I) = -1 < An_+I(-I) ~ ... 

and 

and 

Let 

< A[l:kl-n+-I(-I) < 1 = A[l:kl-n+(-I) = A[l:kl-n++I(-I) = ... = A[l:kl(-I) 

(3.35) 

AI(1) = A2(1) = ... = Am_(1) = -I < Am_+I(1) ~ .. . 

< Arl:kl-mrl (1) < 1 = A[l:kl-m+ (1) = A[l:kl-m++1 (I) = ... = Arl:kl(1), 

(3.36) 

(3.37) 

B_1 = f3(Bk•o)(-I)' n M2J1 (l)' 

Then, from (3.33) and (3 .34), 

(3.38) 

C_ I 5; B_1 

and from the definition of f3 on Bk,O, B_1 has the form 

D_I D_I 

scalars or 
scalar matrices 

down diagonal 

(3.39) 

(3.40) 
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where the matrix elements are in M 2JI (k). Thus 

scalars 
along 

diagonal 

D+I 

477 

(3.41) 

is a maximal abelian algebra in B_1, and we can find a unitary V_I E B_1 such that 

(3.42) 

Now, repeat all this at + 1 instead of ':""1, and find a unitary V+I E B+I = ,B(Bk,O)(+ 1)' n 
M 2JI (t) such that 

V+lC+1 V~I ~ F+I. 

Finally, define the finite-dimensional subalgebra F of M2JI(l) by 

D'-I 

F= 

D' -I 

N 
'-,.--' 

(3.43) 

(3.44) 

Then F commutes with both F_I and F+I, in fact F = F~I nF~I. Let Vet), -1 ::: t ::: 1, 
be a continuous family of unitaries such that 

For any of the Xi'S, define 

Zi = 

Vet) E B_1 for -1 ::: t ::: 0 

V (0) = 1 

Vet) E B+I for 0 ::: t ::: 1 

V(-I) = LI 

V(+I) = V+ I . 

(3.45) 
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Xj(-I) 

Xj(-I) 

Xj(A.[t:k]-M-l (0)) 
Xj(1) 

Xj(l) 
M 

"-,,-' 

(3.46) 

Then the Zj' s all lie in the finite-dimensional C* -algebra F. Defining 

(V*Zj V)(t) = V*(t)Zj Vet) 

then V* Zj V all li~ in the finite-dimensional algebra V* F V, and the latter algebra is 
contained in A by (3.42) and (3.43). 

We now argue that 

1I,B(Xj) - V*Zi VII ::s 2e/3 (3.47) 

i.e. that 

IJV(t),B(Xi)(t)V(t)* - zdl ::s 2e/3 (3.48) 

for all t. But ,B(xi)(-I) E B~1 and Vet) E B-1 for -1 ::s t < 0, hence by (3.28), 

11,B(xi)(-I) - V(t),B(xi)(t)V(t)*11 = IJV(t),B(xj)(-I)V(t)* - V(t),B(xi)(t)V(t)*1I 

= 11,B(xi)(-l) - ,B(Xj)(t)!! < e/3 (3.49) 

for -1 ::s t ::s O. Similarly 

IIV(t),B(Xi)(t)V(t)* - ,B(xi)(+l)l1 ::s e/3 (3.50) 

for 0 ::s t ::s 1. But 

,B(xi)(-I) = 

:rj( -1) 

Xi (-1) 

Xrt:k] ( -1) 

X[t:k](-I) 

(3.51) 
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Comparing this with (3.46), and using (3.28) (which implies that the variation of Xj (Ak(t)) 

with t is at most 6/3), it follows that 

11,B(Xj)(-I) - z;ll < 6/3, (3.52) 

and similarly 
11,B(Xj)(+I) - z;ll < 6/3. (3.53) 

Combining this with (3.49) and (3.50), we obtain (3.48) and hence (3.47). 
Finally 

where the last equality follows from (3.30). Combining (3.47) with (3.29) we have 

I I Vrk ,e(Xj) - Un V*Zj Vu:1I :s 26/3 + 6/3 = 6. 

Thus Vrk,e(Xj) all lie within 6 of the finite-dimensional subalgebra Un V* FVu: of Bl,o. 
Thus, by the first remark of the proof, C(Q) Xa Z XU Z2 is AF. 

4. K-theory 
In this section we shall compute Ko(C(Q) Xa Z XU Z2) (as an abelian group) in the case 
that a and aO' have at most a finite number of fixed points. (The computation is valid 
even when a and aO' have no fixed points, i.e. outside the range of validity of Theorem 
3.5.) 

The starting point is that 
Ko(C(Q)) ;;:; C(Q, Z) (4.1) 

since Q is totally disconnected. The actions a*, 0'* defined by a, a on Ko(C(Q)) are 
given by 

(a* f)(w) = f(a - 1w), (a.j)(w) = f(O'w) (4.2) 

for f E C(Q, Z), w E Q. Now, by the Pimsner-Voiculescu exact sequence, [PV, Bla], 
the following sequence is exact 

where i maps Z into the constant functions and j : C(Q) --+ C(Q) Xa Z is the natural 
embedding. It follows that 

Ko(C(Q) Xa Z) ;;:; C(Q, Z)/(1- a*)(C(Q, Z)) 

and cr* acts naturally on the latter group. 
(Note that (1 - a*)(C(Q, Z)) = 0'* ((1- a*)(C(Q, Z») since 

0'* «1 - a*)(C(Q, Z») = (1 - a;l)(O'*(C(Q, Z))) 

= (a* - 1)(a;lO'*(C(Q, Z») = (1 - a*)(C(Q, Z)).) 

(4.4) 

We first state a general theorem, and later, in Corollary 4.4, consider the special case 
that Q = ']['0, where e is irrational and ']['9 is the circle cut up at all the points of the orbit 
ze. 
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THEOREM 4.1. Let Q be a totally disconnected compact metrizable space and let et be a 
minimal homeomorphism of Q. Let a be a homeomorphism of order 2 on Q such that 

eta = aet- I, and assume that a and eta has at most a finite number nq and naq of fixed 

points. 

Itfollows that Ko(C(Q) Xa Z Xq Z2) is isomorphic to 

(4.5) 

Let ~ * Z2 be the free group product, with generators hO and 0* 1. Define an action 

Y of Z2 * Z2 on C(Q) by YI*O = a and YO*I = eta. Then it follows from [Kum2] that 
C(Q) Xa Z Xq Z2 is naturally isomorphic to C(Q) Xy Z2 * Z2. 

LEMMA 4.2. The following sequence is exact: 

h.+ h. «n) 'l1 'l1 ) 0 ~ Ko C~, Xa IL.J Xq 1L.J2 ~ , (4.6) 

wherei l : C(Q) ~ ceQ)xqZ2, jl : C(Q)XqZ2 ~ ceQ)XyZ2*Z2 ~ ceQ)xaZXq~, 
etc, are natural embeddings. 

Proof See [Nat] and [Kum2]. The injectivity of ih - i2* follows from minimality of Ct. 

We now identify Ko(C(Q)) with C(Q; Z). Let XI, X2, .. . ,xn~ be the fixed points of 
a. Then C(Q) Xq Z2 is isomorphic to 

{f E ceQ; M2)lf 0 a = Adu 0 f} (4.7) 

where u=(~ ~). Thus it follows that Ko(C(Q) Xq Z) is identified with 

C q = {(f, a, b) E C(Q, Z) ED Zn. ED zn. : a(f) = f, f(xi) = ai + bi, i = 1, ... , nq } 

(4.8) 
and under this identification, the map i h : C(Q, Z) ~ C q is given by 

(4.9) 

Similarly, using the fixed points YI, ... , Yna• of eta, we define Caq and describe 
i 2* : C(Q, Z) ~ Caq. 

From now, identify Ko(ceQ) Xa Z) with ceQ, Z)/(I-et*)(C(Q, Z)) as in (4.4). We 
define a map fJ : C q ED Caq ~ Ko(C(Q) Xa Z) ED zn. ED zna• as follows: 

fJ«(f, a, b) ED (g, c, d)) ~ (j*(f) + j*(g)) ED (a - b) ED (c - d). (4.10) 

It is obvious that j*(f) + j*(g) are a*-invariant. We assert: 

LEMMA 4.3. The sequence 

ceQ, Z) i lsj.2' C q ED Caq ~ Ko(C(Q) Xa Z) ED Zn. ED zna• (4.11) 

is exact at C fT ED C afT . 
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Proof It is obvious that f3 0 (il* - i2*) = 0. We only have to show that 1m 

(i h -i2*) ~ Ker f3. Suppose that f3«(f, a, b)E9(g, c, d)) = 0. Then j*(f +g) = 0, a = b, 
c = d and /(Xj) = 2aj and g(Yj) = 2cj are even. By (4.3) there exists cp E C(O, Z) 

such that 

Note that 

and that 

/ + g = (jJ - a«(jJ). 

/ + a(g) = a(cp) - aa«(jJ) , a(f) + g = aa(cp) - a«(jJ) 

/ - a(f) = (jJ - a«(jJ) - aa«(jJ) + a«(jJ) 

g - a(g) = (jJ - a«(jJ) - a«(jJ) + aa«(jJ). 

By computation it follows that 

/ - a«(jJ) - (jJ - a(f - a«(jJ) - (jJ) = 0, 

g + a«(jJ) + a(cp) - a-I (g + a«(jJ) +a(cp)) = g + a(cp) + a«(jJ) - a(g + a(cp) + a «(jJ)) :::::: ° 
since a-I = a 2a-1 = a 0 aa and g + a«(jJ) + a«(jJ) is aa-invariant. Thus 

/ - a(cp) - (jJ = AI, g + a«(jJ) + a«(jJ) = fLl 

for some constants A, fL. Since 

/ + g - (jJ + a«(jJ) = (A + fL)1 

it follows that A + fL = 0. Since /(Xj) is even, A = /(Xj) - 2cp(xj) is even. Let 

h = a«(jJ) + ~A. Then hE C(O, Z) and 

/ = h + a(h), -g = h + aa(h). 

Thus it follows that (ih - i2*)(h) = (f, a, b) E9 (g, c, d). 

To conclude the proof of Theorem 4.1 it suffices to show that 

Let {Ed be a mutually disjoint family of a-invariant clopen sets of 0 such that Ej :3 Xj, 

and {Fj } a mutually disjoint family of aa -invariant clopen sets of 0 such that Fj :3 Yj. 

We assert that the image of f3 is generated by 

j*XEj E9 OJ E9 0, i = 1, ... , n(f 

j *Xfj E9 ° E9 Yj, j = 1, ... , na(f, 

where {od (resp. (Yj)) is a canonical basis for Znn (respectively znaa ). It is obvious that 
they are contained in 1m f3 and that the latter n(f + na(f elements generate the subgroup 
H, which is isomorphic to zna E9 znaa • It is also obvious that H n K = {OJ. We now 

conclude the proof by showing that H + K :::J 1m f3. 
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Let (f, a, b) E G" and (g, c, d) EGa,,' Let 

x = j* ('f)bi - ai)XE;) E9 (b - a) E9 0 E G" 
.=1 

Then f3(x E9 Y) E H and 

where 

Let 

f3«(f, a, b) E9 (g, c, d) + x E9 y) = j*(q;1 + <fI2) E9 0 E9 0, 

q;1 = f + L(bi - ai)XE; 

q;z = f + L(dj - Cj)xFj' 

Vrl = q;1 - L2biXEi' Vrz = q;2 - L2djXFj. 

Since Vrl (Xi) = 0 and a(Vrd = Vrl (respectively Vr2(Yj) = 0 and aa(Vr2) = Vr2), it easily 
follows that there is an element Vrf (resp. Vr~) in C(n, Z) such that 

Vrl = Vrf + a(VrD (respectively Vr2 = Vr~ + aa(Vr~))· 

Letting 

q;~ = Vrl + I)iXE; (respectively q;~ = Vr2 + "E,djXFj) 

one obtains that q;1 = q;; + a (q;D, and <fI2 = q;~ + acr(q;~) for q;;, q;~ E C(n, Z). Hence 

j*(q;1 + <fI2) = j*(q;; + q;~) + a*(j*(q;; + q;~)) 

which imples that j*(q;1 + <fI2) E9 0 E9 0 E K. This completes the proof of Theorem 4.1. 

We next consider a special case of Theorem 4.1. Let () be an irrational number between 

o and ~ and let 11'0 be the totally disconnected space obtained from 11' = IRjZ ~ [0, 1) 
by replacing each Xn = n() + Z by two points x;i, x;; for nEZ, with topology induced 
from the total order on 11'0, inheriting the order on 11', satisfying x;; < x;i, n E Z. Define 
a homeomorphism a of 11'0 by 

a(x)=x+e(modZ), x¥()Z+Z 

and a a by 

a(x) = 1 - x (mod Z), 

n E Z. 

Note that aa has a fixed point, i.e. a(!e) = !e and that a is minimal. From the 
previous sections it follows that C(lI'o) Xa Z X.,. Z2 is AF. 
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COROLLARY 4.4. For ']['0, a, a as above, 
(i) Ko(C(']['o) Xa Z) ~ Z2 
(ii) Ko(C(']['o) Xa Z XU Z2) ~ Z5. 

Proof. By Theorem 2.1 of [Putt], (i) follows since a-I defines an interval exchange 
transformation on [0,1), exchanging [0, e) and [e, 1). Since a has one fixed point and 
aa has two, (ii) follows since a. is the identity on Ko(C(Q) Xa Z). 
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