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Lorentzian Darboux images of curves on spacelike surfaces
in Lorentz-Minkowski 3-space

Noriaki ITO and Shyuichi IZUMIYA

January 19, 2016

Abstract

For a regular curve on a spacelike surface in Lorentz-Minkowski 3-space, we have a
moving frame along the curve which is called a Lorentzian Darboux frame. We introduce
five special vector fields along the curve associated to the Lorentzian Darboux frame and
investigate their singularities.

1 Introduction

In this paper we consider a curve on a spacelike surface in the Lorentz-Minkowski 3-space and
some special vector fields along the curve. The study of geometry of the Lorentz-Minkowski
space is of interest in the special relativity theory. From the view point of mathematics, the
interesting problem is how geometric properties of the Lorentz-Minkowski space is different
from those of the Euclidean space. In the Euclidean 3-space, the notion of Darboux frames
along curves on surfaces is well-known. In [6] spherical duals (cf. [2, 9]) of basis of the Darboux
frame along a curve are introduced, which are called Darboux vector fields along the curve.
There are three Darboux vector fields along the curve. Singularities and geometric properties
of these three Darboux vectors were investigated in [6].

On the other hand, there also exists a Lorentzian version of Darboux frames along curves
on spacelike surfaces [10]. We consider (pseudo-spherical) Legendrian duals (cf. [5, 7]) of basis
of the Lorentzian Darboux frame along a curve, which are called Lorentzian Darboux vectors
along the curve. Since there are three kinds of pseudo-spheres in Lorentz-Minkowski space,
we have eight Lorentzian Darboux vectors along the curve. There are three Legendrian duals
of the unit tangent vector along the curve, which were essentially investigated in [10]. Those
vector fields are three of the Lorentzian Darboux vector fields along the curve. Therefore, we
consider remaining five Lorentzian Darboux vectors along the curve here. We investigate the
singularities of the pseudo-spherical image of Lorentzian Darboux vectors. As a consequence,
we obtain five new Lorentzian invariants which characterize the singularities of these Lorentzian
Darboux vectors. We also investigate the geometric meanings of these invariants.
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2 Basic concepts

d In this section we prepare some definitions and basic facts which we will use in this paper.
For basic concepts and details of properties, see [8, 10]. Let R? be a three-dimensional vector
space. For any & = (z9,71,72),y = (Y0,%1,%2) € R?, the pseudo-scalar product of & and y is
defined by (x,y) = —xoyo + T1y1 + T2ye. We call (R3, () the Lorentz-Minkowski 3-space. We
write R? instead of (R3,(,)). We say that a non-zero vector & € R? is spacelike, lightlike or
timelike if (x,x) >0, (x,x) = 0 or {(x, x) < 0, respectively. The norm of the vector x € R} is
defined by || = ||= +/|{x, x)|. For a non-zero vector v € R} and a real number ¢ € R, we define
a plane with a pseudo-normal v by

P(v,c) ={x e R} | (x,v) =c }.

We call P(v,c) a spacelike plane, a timelike plane or a lightlike plane if v is timelike, spacelike
or lightlike, respectively. We introduce three pseudo-spheres in R} as follows: We define the
hyperbolic plane by

H*(-1) = {z € R} | (x,z) = —1},

de Sitter 2-space by
Si={zeR}|(x.z)=1}

and the (open) lightcone by
LC* = {x € R3\{0} | (x,z) =0 }.

We also define the following curves on the pseudo-spheres with constant curvatures: A curve
defined by the intersection of H?(—1) with a plane is called a hyperbolic line (respectively, a
horocycle) if the plane is a timelike plane through the origin (respectively, a lightlike plane).
We also say that a curve on the de Sitter 2-space S? is a geodesic pseudo-circle (respectively,
a geodesic hyperbola) if it is defined by the intersection of S? with a spacelike (respectively, a
timelike) plane through the origin. Moreover, a curve on 57 is said to be a de Sitter horocycle
if it is defined by the intersection of S? with a lightlike plane away from the origin. Here we
define

—€y €1 €
a/Ab= aop a; as|,
bo b1 by

where a = (ag, ay, as),b = (by, b1,bs) and {ep, e, €5} is the canonical basis of R?.

We now prepare some basic facts of curves on a spacelike surface. We consider a spacelike
embedding X : U — R} from an open subset U C R% We write M = X (U) and identify M
and U through the embedding X . Here, we say that X is a spacelike embedding if the tangent
space T,,M consists of spacelike vectors at any p = X (u). Let 4 : I — U be a regular curve
and we have a curve v : I — M C R} defined by v(s) = X (J(s)). We say that v is a curve on
the spacelike surface M. Since ~ is a spacelike curve, we can reparametrize it by the arc-length
s. So we have the spacelike unit tangent vector t(s) = v/(s) of (s). Since X is a spacelike
embedding, we have a timelike unit normal vector field n along M = X (U) defined by

_ X, (u) N X, (u)
[ X 0 (1) A Xy ()|

n(p)



for p = X (u). We say that n is future directed if (n,eq) < 0. We choose the orientation of M
such that n is future directed. We define n,(s) = n o y(s), so that we have a timelike unit
normal vector field n, along ~. Therefore we can construct a spacelike unit normal vetoer field
b(s) € N,(M) defined by b(s) = t(s) An,(s). It follows that we have (n,,n,) = —1, (n,,b) =
0, (b,b) = 1. Then we have a pseudo-orthonormal frame {¢(s),n,(s),b(s)} along ~y, which is
called the Lorentzian Darbouz frame along . By standard arguments, we have the following
Frenet-Serret type formulae:

t'(s) = fin(s)1,(s) + g (5)b(s),
(5) = Ru()E(s) + 7()b().
5) = —ffg()()JrTg() +(8),

where r,(s) = —(t'(s),m4(s)), Ka(s) = (E'(s),b(s)) and 7,(s) = —(b'(s),n,(s)). We have the
geometric characterizations of « by the invariants kg4, x, and 7,. We say that v is a geodesic
curve if the curvature vector t'(s) has only a pseudo-normal component of the surface, an
asymptotic curve if t'(s) has only a tangential component of the surface and a principal curve
if n. (s) is equal to the tangent direction of ~y, respectively. Then

y
(

LS

a geodesic curve if and only if r; = 0,
v is an asymptotic curve if and only if x,, = 0,
a principal curve if and only if 7, = 0.

Then we define the following five pseudo-spherical Lorentzian Darbouz images along ~y:

(4 D 1 20 D) = PO i (o > o
(3) D1 — 8 D(s) = OIS T i o) > o)

(C) D! 1 — LC*; DX (s) = Tg(%(s()s; ’igj)(";‘*(s) +b(s) if y()2 > 7,(5)%,
S

1 8 D) = PR B i (5,5, () £ (0.0),

(E) D" :1 — LC*; D" (s) = Tg(;)lis) _ff);;gs) + 1y (5) i (kn(s),75(5)) % (0,0).

We call (A) the pseudo-spherical rectifying timelike Darbouz image, (B) the pseudo-spherical
rectifying spacelike Darbouz image, (C') the pseudo-spherical rectifying lightlike Darbouz im-
age, (D) the pseudo-spherical osculating spacelike Darboux image and (E) the pseudo-spherical
osculating lightlike Darboux image along -y, respectively. We remark that we cannot define a
pseudo-spherical osculating timelike Darboux image.




Remark 2.1 We can define extra three pseudo-spherical Lorentzian Darboux images along ~y:

=T 2 Yy KgTy(8) + Kn(5)b(s) . 2 2
F 1l — H°(-1); D, (s) = if ky(s Kn(S)7,
() D, (1) D(s) = ML T o) > )
G D’ I — Sf; ES s) = FigTy(5) + in(5)b(s) if k,(s)? Kg(s 2
@) D o) = e Ml > )
(H) D" : T — 1O D (s) = Fama8) FE() | yoipr ()2 > (o))

C VRg(8) = Fa(s)?

Singularities and geometric meanings of (F) and (G) were investigated [10]. Moreover, we can
easily obtain the similar results for (H), so that (H) was also essentially investigated in [10].
Therefore we omit the investigations on those three cases here.

3 Singularities of pseudo-spherical Lorentzian Darboux
images
In this section we present a classification result of the singularities of pseudo-spherical Lorentzian

Darboux images.
We now introduce five invariants of (M, =) as follows:

if £ig(s)* > 7(s)?,

if 75(s)* > Kg(s)?,

(€ 81(5) = () = P B (52 = o s>
(D) 65(s) = rig(s) + Tl ZRulT5(8) 5o () (0)) £ (0,0),

(5) + \//in(s)Q + Tg(3)2 if (“n(s)/rg(‘g)) 7# (0,0).

We can classify the singular points of pseudo-spherical Lorentzian Darboux images by using
the above invariants.

Theorem 3.1 Let v : 1 — M be a unit speed curve on a spacelike surface M C R3 such that
[E'(s)| # 0 and [|b'(s)[| # 0.
(A) Suppose that r7(s0) > 77(s0). Then we have the following assertions:

(1) Ez is non-singular at so if and only if 57 (sg) # 0.

(2) The image of Eip is locally diffeomorphic to the ordinary cusp C at sy if and only if
6L (s0) = 0 and (67) (s9) # 0
(B) Suppose that 7;(s0) > k7 (s0). Then we have the following assertions:

(1) D;

~is non-singular at sy if and only if 62 (sg) # 0.



(2) The image of ﬁf is locally diffeomorphic to the ordinary cusp C' at sq if and only if
63(s0) = 0 and (65) (so) # 0.
(C) Suppose that £2(so) > 77(s0). Then we have the following assertions:

(1) ETL is non-singular at sy if and only if 6%(sy) # 0.

(2) The image of Ef 18 locally diffeomorphic to the ordinary cusp C' at sq if and only if
6L (s0) = 0 and (6%)'(s) # 0.
(D) Suppose that (k,(s), 74(s)) # (0,0). Then we have the following assertions:

(1) 55 is non-singular at so if and only if 65 (sg) # 0.

(2) The image of ﬁf is locally diffeomorphic to the ordinary cusp C' at sq if and only if
69(s0) = 0 and (65) (so) # 0.
(E) Suppose that (k,(s),74(s)) # (0,0). Then we have the following assertions:

(1) EOL is non-singular at sy if and only if 6% (sy) # 0.
(2) The image of ﬁOL 1s locally diffeomorphic to the ordinary cusp C at sy if and only if
s

5% (s0) = 0 and (35 (s0) 7 0.

Here, C' = {(x,23) | 22 = 23} is the ordinary cusp (or, the semi-cubic parabola).

4 Legendrian dualities

We now review some properties of contact manifolds and Legendrian submanifolds. Let N be
a (2n + 1)-dimensional smooth manifold and K be a tangent hyperplane field on N. Locally
such a field is defined as the field of zeros of a 1-form «. The tangent hyperplane field K is non-
degenerate if a A (da))™ # 0 at any point of N. We say that (N, K) is a contact manifold if K is a
non-degenerate hyperplane field. In this case K is called a contact structure and « is a contact
form. Let ¢ : N — N’ be a diffeomorphism between contact manifolds (N, K) and (N', K').
We say that ¢ is a contact diffeomorphism if dp(K) = K'. Two contact manifolds (N, K') and
(N', K') are contact diffeomorphic if there exists a contact diffeomorphism ¢ : N — N’. A
submanifold ¢ : L C N of a contact manifold (N, K) is said to be Legendrian if dim L = n
and di,(T,L) C K@) at any x € L. We say that a smooth fiber bundle 7 : £ — M is called
a Legendrian fibration if its total space E is furnished with a contact structure and its fibers
are Legendrian submanifolds. Let 7 : B — M be a Legendrian fibration. For a Legendrian
submanifold ¢ : L C F, moi: L — M is called a Legendrian map. The image of the Legendrian
map 7 o7 is called a wavefront set of i which is denoted by W (L). For any z € E, it is known
that there is a local coordinate system (z,p,y) = (1, ..., Zm,P1,- - -, Pm,y) around z such that
m(x,p,y) = (z,y) and the contact structure is given by the 1-form o = dy — > """ | pida; (cf. [1],
20.3).

In [7] we have shown the basic duality theorem which is the fundamental tool for the study
of spacelike hypersurfaces in Lorentz-Minkowski pseudo-spheres. We consider the following four
double fibrations:

(1) (a) H*(=1) x Sf D Ay ={(v,w) | (v,w) =0},

(b) w11 : Ay — H*(—1),m12 : Ay — S%,

(C) QH = (dv,'w>|A1, 912 = ('v,dw)|A1.

(2) (a) H*(—1) x LC* D Ay ={(v,w) | (v,w) = —1 },



(b) o1 - Ag — H2(—1),7T22 : AQ — LC*,
(C) 921 = <dv,w>\A2, 922 = <’U,d’LU>|A2.

(3) (a) LC* x S 2 Az ={(v,w) | (v,w) =1},
(b) 731 - Ag — LC*,TF32 . Ag — S%,
(C) 931 = <dv,w>\A3, 932 = <’U,d’l.U>|A3.

(4) (a) LC* x LC* D Ay = {(v,w) | (v,w) = -2},

(b) w41 : Ay — LC* w9 : Ay — LC™,

(C) 641 = (dv,w>\A4, ‘942 = <’U,d’lU>|A4.

Here, my(v,w) = v, mp(v,w) = w, (dv,w) = —wedvy + Y5, widv; and (v, dw) =
—U()dwO + Z?:l vzdwz

We remark that 6;'(0) and 6,'(0) define the same tangent hyperplane field over A; which
is denoted by K;. The basic duality theorem is the following theorem [7]:

Theorem 4.1 With the same notations as the previous paragraph, each (A;, K;) (i = 1,2, 3,4)
is a contact manifold and both of m;; (j = 1,2) are Legendrian fibrations. Moreover those
contact manifolds are contact diffeomorphic each other.

Moreover, we have the following extra double fibration:

(5) (a) Sf x Sf D As ={(v,w) | (v,w) =0},

(b) 51 - A5 — S%,T('E,Q : Al — S%,

(C) 951 = (dv,w>]A5,952 = <v,dw>|A5.
It is shown in [5] that (As, K5) is a contact manifold such that ms; : Ay — S%, j = 1,2, are
Legendrian fibrations which is not contact diffeomorphic to any other (A;, K;), i = 1,2,3,4.
Given a Legendrian submanifold ¢ : L — A;, i = 1,2,3,4,5, We say that m;; (i(L)) is the A;-dual
of mia(i(L)) and vice-versa.

Then we have the following duality theorem.

Theorem 4.2 Let vy : [ — M be a unit speed curve on a spacelike surface M C R3 such that
[£'(s)I[ # O and [|b'(s)[| # 0.
(1) If (kn(s),74(5)) # (0,0), then n is a Ay-dual ofﬁf.
(2) If (kn(5), 7y(s)) # (0,0), then n is a Ag-dual of D. .
(3) If ky(s)* > 1,(s)?, then b is a Ar-dual ofﬁf.

(4) If ky(s)* > 1,(s)?, then b is a Az-dual of D*

(5) If 74(8)* > Ky(s)?, then b is a As-dual of D’

re

Proof. We can show that (1) holds as follows:

(1) We define a mapping £4 : I — Ay by £1(s) = (n4(s), Ef(s)) Then we have (n.(s), ﬁf(s»

0 and L7611 = (n;(s),ﬁf(s)) = 0. Thus £, is an isotropic mapping, so that n. is a A;-
dual of D



Then we define mappings

Lol — Do La(s) = (n4(s), D, (5)),
Ly:]— Ay ; Ls(s) = (b(s), D, (s)),
Lo:]— Ay 5 Ls(s) = (b(s), D (s))),
Ls:1—As ; Ls(s) = (b(s), D (s)).

Then we can show that £; (i = 2,3,4,5) are isotropic mappings. This means that (2), (3), (4)
and (5) hold. O

5 Height functions

We now introduce five families of functions on v : I — M C R? with ||[t/(s)|| # 0, [|[b/(s)|| # 0
as follows:

H':Ix H(—1) — R ; (s,v) —> (b(s),v),
HY : I xS —R; (s,v) — (b(s),v),

For any v, we define nl (s) = Hl(s,v),hZ (s) = H7(s,v),hl,(s) = HE(s,v),h,(s) =

)y Moo )y v » "Yov

H?3(s,v),hE, (s) = HE(s,v) Then we have the following proposition.

» "Yov

Proposition 5.1 Let v : [ — M be a unit speed curve on a spacelike surface M C R} such
that ||t'(s)]| # 0,||b'(s)|| # 0. Then we have the following:

(A) For any (s,v) € I x H*(—1), we have the following:
(1) Bl (s) =0 if and only if there exist A, i € R with —\* 4+ 1> = 1 such that
v = Xt(s) + imy (s).
(2) Bl (s) = (hl,) (s) = 0 if and only if rky(s)* > 7y4(s)* and v = :i:ETT(s),

(3) hf’v(s) = (hf,v)’(s) = (hzv)"(s) = 0 of and only if K,(s)* > 7,(s)%, 61 (s) = 0 and
v==+D,(s),

(4) nl,(s) = (L) (s) = (h],)"(s) = (Thzv)’”(s) = 0 if and only if rky(s)* > 1,(s)?,
§T(s) =0, (67)(s) =0 and v = £ D (s).

(B) For any (s,v) € I x S}, we have the following:
s) =0 if and only 1f there exist A\, u € R with —\* + p* = —1 such that
1 h;fv 01 d only if th St A R with —\? 2 1 h th

v = M(s) + pm (s),



(2) hly(s) = (h,) (s) = 0 if and only if 7y(s)* > Ky(s)* and v = iﬁf(s),
(3) hiy(s) = (hS )'(s) = (h£,)"(s) = 0 if and only if T4(s)*> > Ky(s)?, 62(s) = 0 and
v=+D5(s).

(4) hiy(s) = (h3,)(s) = (hiy)"(s) = (h7,)"(s) = 0 if and only if 74(s)* > ky(s)?,
55(s) = 0, (65)(s) = 0 and v — +D°(s).

(C) For any (s,v) € I x LC*, we have the following:
(1) hl,(s) =0 if and only if there exist A\, € R with \* — pi> = —1 such that
v = M(s) + un.(s) + b(s),
(2) hf’v(s) = (hfm)’(s) =0 if and only if ky(s)? > 7,(s)* and v = iﬁf(s),
(3) hl,(s) = (hL,)(s) = (hl,)"(s) = 0 if and only if ke(s)* > T4(s)?, 65 (s) = 0 and
v=+D,(s),

(4) hip(s) = (i)' (s) = (h,)"(s) = (h,)"(s) = 0 if and only if ky(s)* > 7y(s)%,
SL(s) = 0, (6LY(s) = 0 and v — +D*(s).

(D) Suppose that (k,(s),74(s)) # (0,0). For any (s,v) € I x 5%, we have the following:
1) . (s) = 0 if and only if there exist A, u € R with \> + u? = 1 such that
(1) Ay, I I

v = At(s) + ub(s),

(2) hf’v(s) (hfv)’(s) 0 if and only if v = +D° o (s),

(3) hiv(s) (hosv)’(s) (h3 )" (8) =0 if and only if 63(s) =0 and v = iﬁf(s),

(4) h3y(s) = (hS,) (s) = (h5,)"(s) = (h3,)"(s) = 0 if and only if 55 (s) = 0, (67)'(s) =
0 and v = :I:DOS(S)

(E) Suppose that (kn(s), 14(s)) # (0,0). For any (s,v) € I x LC*, we have the following:
(1) hl,(s) =0 if and only if there exist A, p € R with \* + 1* = 1 such that
v = At(s) + ub(s) + n,(s),
(2) hgy(s) = (hgo)'(s

ow) (8) =
(3) hi,(s) = (hl,) (s) = (hL,)"(s) = 0 if and only if 6% (s) = 0 and v = iﬁL( ),
ow) () =

(4) hoL,v( ) = (hg)'(s) = (hgy)"(s) = (hg,)" () = 0 if and only if 65(s) = 0, (67)'(s) =
0 and v = g(s)

0 if and only if v = +D" o (),

»

Proof. We remark that |[t/(s)]| # 0, ||b/(s)]| # 0 if and only if —k,(5)? 4+ k4(s)? # 0, Kry(s)? —
7y(s)” # 0.



(A) By straight forward calculations, we have the following :

:<b,1}>
( ) =(—Rgt + T N, V),
(hT )" =((—ky + knTg)t — (K2 = T2)b =+ (7) — Kghin)Ny, V),
(hT )" =((— I€ "+ K Tg—|—2/1n7 +/<e —5972 —HQHg)t

37—9)"% v).

+ (—3kgky + 31T Vb + (1) — Kkl — 26k, + T, + KTy — K
Since {t(s),n,(s),b(s)} is a pseudo-orthonormal frame of R? along =, we have v = M(s) +
piny (s) 4 1b(s).

1. Since hT =0, n =0, so that we have v = At(s) + un~(s). Here, v is timelike. Then we
have p? > A2. Thus, p # 0. This completes the proof of assertion (A),(1).

2. Moreover, (hl,,) = 0 implies — kg — 7y = 0. Therefore, we have kyv = KAt + Kgpun., =
—p(Tgt—kymy). Thus we have —r7 = p?(72—k7), so that 77 < k2. Since kg(s)>—74(s)* # 0,
we have 77 < k2. It follows that

T,t — Kk, —T
v:iM:iDr.
2 _ 12
g g

3. If we add extra condition (h],)” = 0, then we have

/ /
Iing - ngTg

= 0.
2 2
kg = T4

Kp —

Thus we have 6! = 0.

"

4. Moreover, if we consider one more condition (h,)” = 0, then we have

K. (mz -, 2+ 2(kighiy — Tng)(@,T - g — g ) — (kg7 — KyTg) =0
Ry =Ty
Since we have
(7Y = K. + 2(Kgky — TgTy)(KgTy — KyTy) B (KgTy — KyTy)
! " (K2 — 792)2 (k2 —172)

(6T) = 0 with the condition 6! =

For other cases (B), (C), (D) and (E), we have the similar calculations to case (A) for the
derivatives of h?, ht hS and hl , respectively. We omit the details here. O

v U0 0,v)



6 Proof of Theorem 3.1

In this section we give a proof of Theorem 3.1. In order to prove Theorem 3.1, we use some
general results on the singularity theory for families of function germs. Detailed descriptions
are found in the book[3]. Let F' : (R x R",(so,29)) —> R be a function germ. We call F’
an r-parameter unfolding of f, where f(s) = Fy,(s,x9). We say that f has an Ag-singularity
at so if fP)(sg) = 0 for all 1 < p < k, and f*+Y(sg) # 0. We also say that f has an Asy-
singularity at so if f®(sg) = 0 for all 1 < p < k. Let F be an unfolding of f and f(s) has
an Ag-singularity (kK > 1) at sop. We denote the (K — 1)-jet of the partial derivative g—i at
so by J*& (S5 (s, w0)) (s0) = Z;:é @ji(s — sp)? for i = 1,...,r. Then F is called an R-versal
unfolding if the kxr matrix of coefficients (cj;) =0, . k—1,i=1,..» has rank k& (k < r). We introduce
an important set concerning the unfoldings relative to the above notions. The discriminant set
of F'is the set
oF

Dr = {z € R"|there exists s with F' = 5 = 0 at (s,z)}.
s

Then we have the following classification (cf., [3]).

Theorem 6.1 Let F': (R x R", (s9,x9)) —> R be an r-parameter unfolding of f(s) which has
the As singularity at sg. If F' is an R-versal unfolding, then Dp is locally diffeomorphic to
C xR~

Here, C' = {(x,25) | 11 = t?, 15 = 3} is the ordinary cusp (i.e. the semi-cubic parabola).

We now consider that H!, H?, H", HY', and H} are unfoldings of b, (s), kS ,(s), bk, (s), bl ,(s),
and hl,(s) for any v, respectively.

Proposition 6.2 Let v : I — M be a unit speed curve on a spacelike surface M C R} such
that ||t'(s)]| # 0,]|b'(s)]| # 0. Then we have the following:

if hZ'v has the Ay-singularity at sq, then HT is an R-versal unfolding of th,U,

if h;ifv has the Ay-singularity at s, then HS is an R-versal unfolding of hfﬂ,,

(A)

(B)

(C) if hﬁv has the Ay-singularity at so, then HE is an R-versal unfolding of hrLﬂ,,
(D) if hf,'v has the Ay-singularity at sy, then HS is an R-versal unfolding of hifv,
(E)

if hly has the Ay-singularity at so, then HY is an R-versal unfolding of hl,,.

Proof. Here, we only give the proof for (A). Other cases are similar to case (A).
(A) We denote that v = (\/23 + 23+ 1,21,29) € H3(—1),b = (bo(s),b1(s),b2(s)). Then we

have
HY (s,v) = —bo(s)y/2? + 23+ 1+ by(s)21 + ba(s) 72
and
OHT x OHT x
a—’"(s,v) bo(s)—= - > (s), - (s,v) = —bo(s)—= - > + ba(s)
T xi+a5+1 Oy xi+a5+1
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Therefore the 2-jet of H (s, v) are

OHT T
2" (s0,v) = | —by(sp)—————=— + by (s
J @$1(0 ) ( o(s0) 24+ 23+ 1 1(s0)
| b (s0) e B, (s0) | (5 — s0)
Y el o
OHT T
2" (so,v) = | —bo(s 2 4 by(s
J axQ(O ) ( o(s0) 2+ 2+ 1 2(50)

+ (—b:)(sO)L + bg<sO>> (s — 50)-

i+ a3+ 1
We consider the following matrix:

A _b0<30>ﬁ + bl(So) —bO(SO)\/ﬁ + bQ(So)
b (s0) + by(s0)

/ _ N 9
e 1 als0) - —holso) Tt

The determinant of A is
1 / / / / 2 2 / /
detA = \/ﬁ I‘l(bobz — b0b2) + xz(bobl — bobl) + X9 + Xy + 1((?261 — bgbl)
1 2
1 /
= \/ﬁ <(bgb,1 — blb;, b2b6 - bébg, bobll - b6b1)7 ( .I'% + l‘g + ]., X1, l‘2)>
1 2

1
= —————((bAV),v)
i+ a3+ 1
1
S

Vi +as+1

By Proposition 5.1, if Al has the As-singularity at so, then v = :l:ETT(s) and b'(s)
—rKg(s)t(s) + 14(s)ny(s), so that {b,b’,v} is linearly independent. Therefore, rank A = 2.
This means that H is an R-versal unfolding of A,

O >

We define three vector fields respectively defined as normalizations of ¢/, ni/, b as follows:

Fin(8)Ty () + Fg(s)b(s)
Vkg(s)? = kin(s)?

We can prove Theorem 3.1.

Fin(8)t(s) + 74(5)b(s)

(s) = — g ($)E(s) + 7y(s5)14(5)
Vhg(s)? + 7y(s)

Tils) = Va5 = 7y(5)2

>Tny<3) =

Y

Proof of Theorem 3.1. Here we only give the proof for (A) again.
(A) (1) By a straight forward calculation ﬁf(s), we have

. /
(D (5)) = 67 (s)To(s),
so that ﬁf(s) is non-singular at s = sq if and only if §} (sq) # 0.

11



(2) By Proposition 5.1, hl,, is an Ap-singularity if and only if 6; (s9) = 0, (5,7)(s0) # 0 and
v = Ef(s) By Proposition 6.2, H! is an R-versal unfolding of hzv. By Proposition 5.1, the

image of ﬁf is the discriminant set of H. By Theorem 6.1, the discriminant of H! is locally
diffeomorphic to the cusp C. O

7 Invariants of curves on surfaces

In this section we consider geometric meanings of the invariants 67, 8, 6%, 6%, 5L, In particular
what can we say about the original curve on the surface when each invariant is vanishing. For
the purpose, we consider cylinders in Lorentz-Minkowski space. A (generalized) cylinder in R}
is a ruled surface with a constant director. It is parametrized by F(t,u) = o(t) + uv, where o
is a smooth curve and v is a non-zero vector. The vector v is called the director. We say that F
is a spacelike cylinder, a timelike cylinder and a lightlike cylinder if the director v is spacelike,
timelike and lightlike, respectively. Let M be a surface and N be a cylinder in R}. We say
that N is a pseudo-normal cylinder of M if M NN # () and T,N contains the pseudo-normal
vector n(p) at any p € M N N. In this case M and N transversally intersect, so that M N N is
a regular curve C. We call C' a slice of M with a pseudo-normal cylinder of M. Moreover, we
call N a pseudo-normal spacelike cylinder if the director of N is spacelike and a pseudo-normal
timelike cylinder if the director of IV is timelike, respectively. We remark that the director of
N is not lightlike. If N is locally parametrized by F(t,u) = o(t) + uv, then we have
oF

, OF
E(t,u) = o'(t) and %(t,u) =0,

so that the pseudo-normal to N is given by

%—]Z(t,u) X (Z—i(t,u) =o'(t) X v.
If C is parametrized by ~y(s), where s is the arc-length parameter of v, then N can be param-
eterized by F(s,u) = v(s) + uv at least locally. Since N has been given an orientation by F),
the unit normal vector of N along C'is b(s). In particular, (b(s),v) = 0.

On the other hand, N is called a osculating cylinder if the tangent planes of M and N
coincide at any point of M N N. In this case C = M N N is called a slice of M with an
osculating cylinder of M. We remark that the director of the osculating cylinder is always
spacelike. If N is locally parametrized by F(¢t,u) = o(t) + uv, then the unit normal vector of
N along C'is n., and (n,v) = 0 for a parmetrization ~ of C.

We call N a hyperbolic lightlike cylinder it M NN # () and (n(p),v) = —1 at any point
p € M N N, where v is the lightlike director of N. In this case, N is transversely intersect with
M, so that C' = M N N is a regular curve. We call C' a slice of M with a hyperbolic lightlike
cylinder. We also call N a de Sitter lightlike cylinder if M NN # () and (b(p),v) = 1 at any
point p € M N N, where v is the lightlike director of N. In this case, N is transversely intersect
with M, so that C'= M N N is a regular curve. We call C' a slice of M with a de Sitter lightlike
cylinder. For the both cases in the above, v is lightlike.

Then we have the following theorem.

Theorem 7.1 Let y: I — M be a unit speed curve on a spacelike surface M C R? such that

[£'(s)I[ # 0, [[6'(s)]] # 0.
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(A) Suppose that k,(s)* > 7,(s)*>. Then the following conditions are equivalent:

(1) E;‘.F(s) is a constant vector,
(2) 67 (s) =0,
(3) (1) is the slice of M with a timelike pseudo-normal cylinder,
(4) b(I) is a subset of a hyperbolic line in H*(—1).
(B) Suppose that 1,(s)* > k,(s)?. Then the following conditions are equivalent
(1) ﬁf(s) is a constant vector,
(2) 67(s) =0,
(3) v(I) s the slice of M with a spacelike pseudo-normal cylinder,
(4) b(I) is a subset of a geodesic pseudo-circle in S3.

o1
~(I) is the slice of M with a de Sitter lightlike cylinder,
b(I) is a subset of de Sitter horocycle in S3.

(s) =0,
~(I) is the slice of M with a pseudo-osculating cylinder,
n.(I) is a subset of a geodesic hyperbola in S}.

(E) Suppose that (k,(s), 14(s)) # (0,0). Then the following conditions are equivalent:

(1) D, (s) is a constant vector,

(2) 35(5) =0,

(3) v(I) is the slice of M with a hyperbolic lightlike cylinder,
(4) ny(I) is a subset of a horocycle in H?*(—1).

Proof. The proof of (B) and (D) are similar to the proof of (A) Moreover, the proof of (E) is
similar to the proof of (C). Therefore, we only give the proof of (A) and (C).

. /

(A) Since (Df(s)) = 61 (s)Tp(s), conditions (1) and (2) are equivalent. Suppose that (3)
holds. Then there exists v € H?(—1) such that (b(s), v) = 0. Thus, there exist A\, p € R
such that v = At(s) + pn-(s). Since (b(s),v) = 0, we have (b'(s),v) = 0. It follows

that —Ary(s) — p7y(s) = 0. Then v = Dz(s). This means that (1) holds. If (1) holds,
then ETT(S) is a constant vector v = BTT(S) € H(-1). Since we have (b(s),v) =

13



(b(s), DT(s)) = 0, (3) holds. Moreover, the above equality means that b(s) € P(v,0).
This means that the image of b is a subset of the hyperbolic line P(v,0) N H?*(—1). Thus
(4) holds. For the converse, there exists v € H?*(—1) such that (b(s),v) = 0. Then there
exist A, u € R such that v = M(s) + pn~(s). Since (b(s),v) =0, (b'(s),v) = 0, so that
we have —\k,4(s) — puty(s) = 0. Therefore, v = ﬁf(s) Thus (1) holds.

!/

(C) Since (D_TL(S)) = 0L (s)Tp(s), (1) and (2) are equivalent. Suppose that (3) holds. Then
there exists v € LC* such that (b(s),v) = 1. We put & = v — b(s). It follows that
(a, ) = —1, so that &« € H?*(—1). Moreover, we have (b(s), a) = 0, (b'(s), @) = 0. This
means that a is a Aj-dual of b. By the similar arguments to (A), we have DI'(s) =
v — b(s), so that v = DZ(s) + b(s) = DL(s). Thus (1) holds. For the converse, if (1)
holds, then we have (b(s),v) = 1 for v = Dk(s). Therefore, (3) holds. Moreover, if (1)
holds, then we have (b(s), DE(s)) = 1, so that the image of b is a subset of a de Sitter
horocycle. For the converse, suppose that (4) holds. Then there exists v € LC* such that
(b(s),v) = —1. There exist A, u € R such that v = At(s) + pun-(s). Since (b(s),v) = —1,
we have (b/(s),v) = 0. This means that —Ar,(s) —u7,(s) = 0, so that we have v = DI (s).
Thus (1) holds.

This completes the proof. a

8 Examples

In this section we consider some examples.

8.1 Spacelike planes

We now consider that M = R2 = {x = (2,21, 72) € R} | 2o = 0}. Then we have a unit speed
curve v : I — RZ, which can be considered as a curve on the Euclidean plane. In this case we
have n,(s) = eq, t(s) = ¥'(s), b(s) = eo A t(s). Since n/, = e; = 0, we have x,(s) = 7,(s) =0,

so that
t'(s) = r(s)b(s),
{b’(S) = —r(s)t(s),

where k(s) = ky(s) = (t'(s),b(s)) is the curvature of «v as a Euclidean plane curve. In this
case the Lorentzian Darboux vectors are ﬁf(s) = Fn,(s) = ¢eo,ﬁf(s) = Fn.,(s) + b(s) =
Feo + b(s), Ej(s) = Fb(s) and EOL(S) = Fb(s) + eg. Here, Ef(s) is not well-defined. Thus,
ﬁf, ﬁOL and ﬁf correspond to the ordinary Gauss map of the curve as a Euclidean plane curve.
Moreover, we have 87 (s) = 0, 67(s) = Fry(s) = Fr(s) and 05 (s) = 0L(s) = ry(s) = k(s).

8.2 The hyperbolic plane

We consider that M = H?*(—1). For a unit speed curve v : I — H?*(—1), we can take
n,(s) = v(s),t(s) = v'(s). Then we have the Lorentzian Darboux frame {t,~y, b}, which is
called a Lorentzian Sabban frame. In this case we have k,(s) = 1 and 7,(s) = 0. Thus the
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Therefore, we have

t'(s) =(s) + ry(s)b(s),
¥'(s) = t(s),

b(s) = —rg(s)t(s).

In this case the Lorentzian Darboux vectors are ﬁf(s) = Fv(s), ﬁf(s) = F(s) + b(s),
ﬁf(s) = Fb(s) and 55(3) = v(s) F b(s). Here Ef(s) is not well-defined. It follows that
6L (s) =1, 65 (s) = 14 ky(s), 05(s) = ky(s), and 6% (s) = ky(s) 1. We remark that Ef = iﬁf
are called hyperbolic Gauss indicatrices in [4].

8.3 Spacelike developable surfaces

We consider an spacelike embedding X (z,y) = (V22 + 1,2z,y) and M = X (R?). By straight
forward calculations, we have n(z,y) = (—vz?+ 1, —x,0). We now consider a curve on M
defined by v(s) = (Vs?+1,s, f(s)). Then 4/(s) = <ﬁ, 1,f’(s)> . Here s is an arc-length

parameter if and only if f'(s)?(s*+1) = s With this condition, £(s) = ~/(s) is the unit tangent
vector of . Then we have n,(s) = (—vs?+1,—s,0) and

b(s) = (=51 (6). VT L ).

It follows that

_sf'(s) + f"(s)(s* + 1) 1 _ ()
ha(s) = el = Gop () = e

Then

(7t — Fiymy)(5) = (2Sf’(8) + /()2 +1) f()(+ 1) +sf(s)+ f(s)(s>+ 1) f(s) ) |

s2+1 ’ (s24+1)3/2 YR

Moreover, we have

=t = (00 25

If2f'(s)(s*+1)+1 # 0, then Ef(s) =(0,0,1) and Ef(s) = (—vs?+1,—s,1). We remark that
X(z,y) = (Va2 +1,2,0)+y(0,0,1) is a cylinder with the director (0,0,1). A cylinder is one of
the developable surfaces, so that we now consider general spacelike developable surfaces in R3.
A developable surface M is a ruled surface which is parameterized by Fcg¢)(t, u) = c(t) +u€(t),
where ¢(t) is a smooth curve called the base curve and &€(t) is a smooth curve with [|£(t)|| = 1
which is called the director curve. By definition we have

OF(c¢)

100 (1) = eft) + u(t), T2 1,u) = £(),

ou

so that the unit pseudo-normal vector at a regular point (t,u) is

n(t,u) = % ((c+ué) A§> (t,u) = % ((c/\g) +u(€ /\E)) (t,u),
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where [(t,u) = ||0Fcg)/0t N OFcg)/0ul| (t,u). We say that F.¢) is a developable surface if
n(t,u) is orthogonal to ¢(t) for any (¢,u). Therefore, the above condition is equivalent to
det (c(t), &(t),£(t)) = 0. Moreover, Fleg) is defined to be a spacelike developable surface if
n(t,u) is timelike. We remark that &(¢) is a spacelike vector for a spacelike developable surface.
We now consider a curve on M parametrized by

Y(s) = e(t(s)) +u(s)&(t(s)),

where s is the arc-length parameter of 4. Then the unit normal vector along = is

n_y:%<(é+u€)/\£> :%((éAﬁ)JrU(é/\E)),

where [(s) = [|0F (c,e)/0t N OF(c¢)/0ul| (t(s), u(s)). We also have
t = wE+t(e+ub),
b = 5 ({(e+ué) e} At)
= (et t) e (et)(e+ud)).

Moreover, we have
n, = ] c c c ; ] .

Therefore, we have

where

d(s) = det (e(t(s)) + u()&(H(s)), e(t(s)) +u(=)é(t(s)), £(H(s)) ).
Since (kn(s), 74(s)) # (0,0), d(s) # 0 and #'(s) # 0. It follows that
Tt — b = i—f ((g, t)(we+t(e+ué)) + ((e+uét) €~ (€,8)(e+uf)) )
= Dl i (et u).t) €
t'd t'd
= l_2<t7t> £: l_2 E’
so that (7,t — k,b)(s) is parallel to the director curve &(¢(s)).

Proposition 8.1 Let M be a spacelike developable surface parametrized by Ficg) (t,u) = c(t) +
u€(t). For a curve v(s) = c(t(s)) +u(s)&(t(s)) on M, the pseudo-spherical osculating spacelike

Darbouz image along - is Ef(s) = +£(t(s)). Moreover, the pseudo-spherical osculating lightlike
Darbouz tmage along =y is

D7 (5) = 75 (£(1(5) + 2(1(5)) A1) +u(s) (E(1(5) 1 () )
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8.4 Curves on the graph of a function

In this subsection we consider examples similar to those given in [10]. We consider a surface
parametrized by X (z,y) = (f(x,y),z,y) with f(0,0) = 0 and 9f/0x(0,0) = df/0y(0,0) = 0.
Here we denote f, = 0f/0z, f, = 0f/0y, X, = 0X /0x = (f,,1,0) and X, = 0X /0y =
(fy,0,1). Since X is a spacelike embedding, we have || X || = —fZ+1 >0, [| X, || = = f;+1 > 0,

and a unit timelike normal vector field n(p) = % = ﬁ(l . fx, fy) with
z (U yu T y

—1+ f2 4 f2 <0 where p = X (u) = X (z,y).

We now consider the curve v(z) = X(z,0) = (f(x,0),z,0), where f(z,y) is a smooth
function. Here we denote d—z =4, f. = fx( ,0), and f,(z,0). Since ¥(z) = (fs,1,0), we
have the unit tangent vector field t(x) = ﬁ fz,1,0), and the two unit normal vector

ﬁelds nﬂy(x)Z\/Tffy( fxafy) ( ) 12— ﬁ(fyvfzfya

calculations, we have
f Sea
o) = Gl ble)) s
1 - f fx - fy)2

) = (o))

1 — f2). By straightforward

and

>: fx:r
(1— 21— f2—f2):

where s is the arc-length. Moreover, we have

d
na) = (bl). G0
1
- (1 _fg)(l _fg _fy2>2{f’3fy$ _fff;fyx"‘fxfyfx:v

+fmzfzf5 o fjfyfxw - fyw + 2fwa§ - fy:rf:?}

Y

We now consider the special case
f(z,y) = a02® + anzy + agy® + asex® + ana®y + apry® + agsy’.

Then we have f,,(0,0) = a11, fy22(0,0) = 2a91, f22(0,0) = 2a2, fr22(0,0) = 6azy. We can
show that

I€g<0> = 0, KJ/ (0) = —2a11a20, Iﬂ)n(O) = a9, IQ/TL(O) = 6@30, Tg(O) = —ai1 and 7';(0) = —a11.

Since ky4(0) = 0, we can define Ef closed to 0 when 7,(0) = —ay; # 0. It follows that §7(0) =
—ago and (65)(0) = 6(asp — 2a11a20az1). Therefore, ﬁf is locally diffeomorphic to the ordinary
cusp C at 0 if asg = 0 and agy # 0. In this case ETT and ﬁSL cannot be defined closed to 0 because

1y(0) = 0. We can construct examples for EOS and ECL,. However, these are rather complicated, so
that we omit these. Of course, if we consider a general curve y(s) = (f(z(s),y(s)), z(s), y(s)),
there might be many other examples.
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