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Lorentzian Darboux images of curves on spacelike surfaces
in Lorentz-Minkowski 3-space

Noriaki ITO and Shyuichi IZUMIYA

January 19, 2016

Abstract

For a regular curve on a spacelike surface in Lorentz-Minkowski 3-space, we have a
moving frame along the curve which is called a Lorentzian Darboux frame. We introduce
five special vector fields along the curve associated to the Lorentzian Darboux frame and
investigate their singularities.

1 Introduction

In this paper we consider a curve on a spacelike surface in the Lorentz-Minkowski 3-space and
some special vector fields along the curve. The study of geometry of the Lorentz-Minkowski
space is of interest in the special relativity theory. From the view point of mathematics, the
interesting problem is how geometric properties of the Lorentz-Minkowski space is different
from those of the Euclidean space. In the Euclidean 3-space, the notion of Darboux frames
along curves on surfaces is well-known. In [6] spherical duals (cf. [2, 9]) of basis of the Darboux
frame along a curve are introduced, which are called Darboux vector fields along the curve.
There are three Darboux vector fields along the curve. Singularities and geometric properties
of these three Darboux vectors were investigated in [6].

On the other hand, there also exists a Lorentzian version of Darboux frames along curves
on spacelike surfaces [10]. We consider (pseudo-spherical) Legendrian duals (cf. [5, 7]) of basis
of the Lorentzian Darboux frame along a curve, which are called Lorentzian Darboux vectors
along the curve. Since there are three kinds of pseudo-spheres in Lorentz-Minkowski space,
we have eight Lorentzian Darboux vectors along the curve. There are three Legendrian duals
of the unit tangent vector along the curve, which were essentially investigated in [10]. Those
vector fields are three of the Lorentzian Darboux vector fields along the curve. Therefore, we
consider remaining five Lorentzian Darboux vectors along the curve here. We investigate the
singularities of the pseudo-spherical image of Lorentzian Darboux vectors. As a consequence,
we obtain five new Lorentzian invariants which characterize the singularities of these Lorentzian
Darboux vectors. We also investigate the geometric meanings of these invariants.
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2 Basic concepts

d In this section we prepare some definitions and basic facts which we will use in this paper.
For basic concepts and details of properties, see [8, 10]. Let R3 be a three-dimensional vector
space. For any x = (x0, x1, x2),y = (y0, y1, y2) ∈ R3, the pseudo-scalar product of x and y is
defined by ⟨x,y⟩ = −x0y0 + x1y1 + x2y2. We call (R3, ⟨, ⟩) the Lorentz-Minkowski 3-space. We
write R3

1 instead of (R3, ⟨, ⟩). We say that a non-zero vector x ∈ R3
1 is spacelike, lightlike or

timelike if ⟨x,x⟩ > 0 , ⟨x,x⟩ = 0 or ⟨x,x⟩ < 0, respectively. The norm of the vector x ∈ R3
1 is

defined by ∥ x ∥=
√

|⟨x,x⟩|. For a non-zero vector v ∈ R3
1 and a real number c ∈ R, we define

a plane with a pseudo-normal v by

P (v, c) = {x ∈ R3
1 | ⟨x,v⟩ = c }.

We call P (v, c) a spacelike plane, a timelike plane or a lightlike plane if v is timelike, spacelike
or lightlike, respectively. We introduce three pseudo-spheres in R3

1 as follows: We define the
hyperbolic plane by

H2(−1) = {x ∈ R3
1 | ⟨x,x⟩ = −1},

de Sitter 2-space by
S2
1 = {x ∈ R3

1 | ⟨x,x⟩ = 1 }

and the (open) lightcone by

LC∗ = {x ∈ R3
1\{0} | ⟨x,x⟩ = 0 }.

We also define the following curves on the pseudo-spheres with constant curvatures: A curve
defined by the intersection of H2(−1) with a plane is called a hyperbolic line (respectively, a
horocycle) if the plane is a timelike plane through the origin (respectively, a lightlike plane).
We also say that a curve on the de Sitter 2-space S2

1 is a geodesic pseudo-circle (respectively,
a geodesic hyperbola) if it is defined by the intersection of S2

1 with a spacelike (respectively, a
timelike) plane through the origin. Moreover, a curve on S2

1 is said to be a de Sitter horocycle
if it is defined by the intersection of S2

1 with a lightlike plane away from the origin. Here we
define

a ∧ b =

∣∣∣∣∣∣
−e0 e1 e2

a0 a1 a2
b0 b1 b2

∣∣∣∣∣∣ ,
where a = (a0, a1, a2), b = (b0, b1, b2) and {e0, e1, e2} is the canonical basis of R3.

We now prepare some basic facts of curves on a spacelike surface. We consider a spacelike
embedding X : U −→ R3

1 from an open subset U ⊂ R2. We write M = X(U) and identify M
and U through the embedding X. Here, we say that X is a spacelike embedding if the tangent
space TpM consists of spacelike vectors at any p = X(u). Let γ̄ : I −→ U be a regular curve
and we have a curve γ : I −→ M ⊂ R3

1 defined by γ(s) = X(γ̄(s)). We say that γ is a curve on
the spacelike surface M. Since γ is a spacelike curve, we can reparametrize it by the arc-length
s. So we have the spacelike unit tangent vector t(s) = γ ′(s) of γ(s). Since X is a spacelike
embedding, we have a timelike unit normal vector field n along M = X(U) defined by

n(p) =
Xu1(u) ∧Xu2(u)

∥Xu1(u) ∧Xu2(u)∥
,
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for p = X(u). We say that n is future directed if ⟨n, e0⟩ < 0. We choose the orientation of M
such that n is future directed. We define nγ(s) = n ◦ γ(s), so that we have a timelike unit
normal vector field nγ along γ. Therefore we can construct a spacelike unit normal vetoer field
b(s) ∈ Np(M) defined by b(s) = t(s)∧nγ(s). It follows that we have ⟨nγ,nγ⟩ = −1, ⟨nγ, b⟩ =
0, ⟨b, b⟩ = 1. Then we have a pseudo-orthonormal frame {t(s),nγ(s), b(s)} along γ, which is
called the Lorentzian Darboux frame along γ. By standard arguments, we have the following
Frenet-Serret type formulae: 

t′(s) = κn(s)nγ(s) + κg(s)b(s),
n′

γ(s) = κn(s)t(s) + τg(s)b(s),
b′(s) = −κg(s)t(s) + τg(s)nγ(s),

where κn(s) = −⟨t′(s),nγ(s)⟩, κg(s) = ⟨t′(s), b(s)⟩ and τg(s) = −⟨b′(s),nγ(s)⟩. We have the
geometric characterizations of γ by the invariants κg, κn and τg. We say that γ is a geodesic
curve if the curvature vector t′(s) has only a pseudo-normal component of the surface, an
asymptotic curve if t′(s) has only a tangential component of the surface and a principal curve
if n′

γ(s) is equal to the tangent direction of γ, respectively. Then

γ is


a geodesic curve if and only if κg ≡ 0,
an asymptotic curve if and only if κn ≡ 0,
a principal curve if and only if τg ≡ 0.

Then we define the following five pseudo-spherical Lorentzian Darboux images along γ:

(A) D
T

r : I −→ H2(−1); D
T

r (s) =
τg(s)t(s)− κg(s)nγ(s)√

κg(s)2 − τg(s)2
if κg(s)

2 > τg(s)
2,

(B) D
S

r : I −→ S2
1 ; D

S

r (s) =
τg(s)t(s)− κg(s)nγ(s)√

τg(s)2 − κg(s)2
if τg(s)

2 > κg(s)
2,

(C) D
L

r : I −→ LC∗; D
L

r (s) =
τg(s)t(s)− κg(s)nγ(s)√

κg(s)2 − τg(s)2
+ b(s) if κg(s)

2 > τg(s)
2,

(D) D
S

o : I −→ S2
1 ; D

S

o (s) =
τg(s)t(s)− κn(s)b(s)√

κn(s)2 + τg(s)2
if (κn(s), τg(s)) ̸= (0, 0),

(E) D
L

o : I −→ LC∗; D
L

o (s) =
τg(s)t(s)− κn(s)b(s)√

κn(s)2 + τg(s)2
+ nγ(s) if (κn(s), τg(s)) ̸= (0, 0).

We call (A) the pseudo-spherical rectifying timelike Darboux image, (B) the pseudo-spherical
rectifying spacelike Darboux image, (C) the pseudo-spherical rectifying lightlike Darboux im-
age, (D) the pseudo-spherical osculating spacelike Darboux image and (E) the pseudo-spherical
osculating lightlike Darboux image along γ, respectively. We remark that we cannot define a
pseudo-spherical osculating timelike Darboux image.
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Remark 2.1 We can define extra three pseudo-spherical Lorentzian Darboux images along γ:

(F ) D
T

n : I −→ H2(−1); D
T

n (s) =
κgnγ(s) + κn(s)b(s)√

κg(s)2 − κn(s)2
if κg(s)

2 > κn(s)
2,

(G) D
S

n : I −→ S2
1 ; D

S

n(s) =
κgnγ(s) + κn(s)b(s)√

κn(s)2 − κg(s)2
if κn(s)

2 > κg(s)
2,

(H) D
L

n : I −→ LC∗; D
L

n(s) =
κgnγ(s) + κn(s)b(s)√

κg(s)2 − κn(s)2
+ t(s) if κg(s)

2 > κn(s)
2,

Singularities and geometric meanings of (F) and (G) were investigated [10]. Moreover, we can
easily obtain the similar results for (H), so that (H) was also essentially investigated in [10].
Therefore we omit the investigations on those three cases here.

3 Singularities of pseudo-spherical Lorentzian Darboux

images

In this section we present a classification result of the singularities of pseudo-spherical Lorentzian
Darboux images.

We now introduce five invariants of (M,γ) as follows:

(A) δTr (s) = κn(s)−
κg(s)τg(s)

′ − κg(s)
′τg(s)

κg(s)2 − τg(s)2
if κg(s)

2 > τg(s)
2,

(B) δSr (s) = κn(s) +
κg(s)τg(s)

′ − κg(s)
′τg(s)

τg(s)2 − κg(s)2
if τg(s)

2 > κg(s)
2,

(C) δLr (s) = κn(s)−
κg(s)τg(s)

′ − κg(s)
′τg(s)

κg(s)2 − τg(s)2
+
√

κg(s)2 − τg(s)2 κg(s)
2 > τg(s)

2,

(D) δSo (s) = κg(s) +
κn(s)τg(s)

′ − κn(s)
′τg(s)

κn(s)2 + τg(s)2
if (κn(s), τg(s)) ̸= (0, 0),

(E) δLo (s) = κg(s) +
κn(s)τg(s)

′ − κn(s)
′τg(s)

κn(s)2 + τg(s)2
+
√
κn(s)2 + τg(s)2 if (κn(s), τg(s)) ̸= (0, 0).

We can classify the singular points of pseudo-spherical Lorentzian Darboux images by using
the above invariants.

Theorem 3.1 Let γ : I −→ M be a unit speed curve on a spacelike surface M ⊂ R3
1 such that

∥t′(s)∥ ≠ 0 and ∥b′(s)∥ ̸= 0.

(A) Suppose that κ2
g(s0) > τ 2g (s0). Then we have the following assertions:

(1) D
T

r is non-singular at s0 if and only if δTr (s0) ̸= 0.

(2) The image of D
T

r is locally diffeomorphic to the ordinary cusp C at s0 if and only if
δTr (s0) = 0 and (δTr )

′(s0) ̸= 0

(B) Suppose that τ 2g (s0) > κ2
g(s0). Then we have the following assertions:

(1) D
S

r is non-singular at s0 if and only if δSr (s0) ̸= 0.
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(2) The image of D
S

r is locally diffeomorphic to the ordinary cusp C at s0 if and only if
δSr (s0) = 0 and (δSr )

′(s0) ̸= 0.

(C) Suppose that κ2
g(s0) > τ 2g (s0). Then we have the following assertions:

(1) D
L

r is non-singular at s0 if and only if δLr (s0) ̸= 0.

(2) The image of D
L

r is locally diffeomorphic to the ordinary cusp C at s0 if and only if
δLr (s0) = 0 and (δLr )

′(s0) ̸= 0.

(D) Suppose that (κn(s), τg(s)) ̸= (0, 0). Then we have the following assertions:

(1) D
S

o is non-singular at s0 if and only if δSo (s0) ̸= 0.

(2) The image of D
S

o is locally diffeomorphic to the ordinary cusp C at s0 if and only if
δSo (s0) = 0 and (δSo )

′(s0) ̸= 0.

(E) Suppose that (κn(s), τg(s)) ̸= (0, 0). Then we have the following assertions:

(1) D
L

o is non-singular at s0 if and only if δLo (s0) ̸= 0.

(2) The image of D
L

o is locally diffeomorphic to the ordinary cusp C at s0 if and only if
δLo (s0) = 0 and (δLo )

′(s0) ̸= 0.

Here, C = {(x1, x2) | x2
1 = x3

2} is the ordinary cusp (or, the semi-cubic parabola).

4 Legendrian dualities

We now review some properties of contact manifolds and Legendrian submanifolds. Let N be
a (2n + 1)-dimensional smooth manifold and K be a tangent hyperplane field on N . Locally
such a field is defined as the field of zeros of a 1-form α. The tangent hyperplane field K is non-
degenerate if α∧(dα)n ̸= 0 at any point of N. We say that (N,K) is a contact manifold if K is a
non-degenerate hyperplane field. In this case K is called a contact structure and α is a contact
form. Let ϕ : N −→ N ′ be a diffeomorphism between contact manifolds (N,K) and (N ′, K ′).
We say that ϕ is a contact diffeomorphism if dϕ(K) = K ′. Two contact manifolds (N,K) and
(N ′, K ′) are contact diffeomorphic if there exists a contact diffeomorphism ϕ : N −→ N ′. A
submanifold i : L ⊂ N of a contact manifold (N,K) is said to be Legendrian if dim L = n
and dix(TxL) ⊂ Ki(x) at any x ∈ L. We say that a smooth fiber bundle π : E −→ M is called
a Legendrian fibration if its total space E is furnished with a contact structure and its fibers
are Legendrian submanifolds. Let π : E −→ M be a Legendrian fibration. For a Legendrian
submanifold i : L ⊂ E, π◦i : L −→ M is called a Legendrian map. The image of the Legendrian
map π ◦ i is called a wavefront set of i which is denoted by W (L). For any z ∈ E, it is known
that there is a local coordinate system (x, p, y) = (x1, . . . , xm, p1, . . . , pm, y) around z such that
π(x, p, y) = (x, y) and the contact structure is given by the 1-form α = dy−

∑m
i=1 pidxi (cf. [1],

20.3).

In [7] we have shown the basic duality theorem which is the fundamental tool for the study
of spacelike hypersurfaces in Lorentz-Minkowski pseudo-spheres. We consider the following four
double fibrations:

(1) (a) H2(−1)× S2
1 ⊃ ∆1 = {(v,w) | ⟨v,w⟩ = 0 },

(b) π11 : ∆1 −→ H2(−1),π12 : ∆1 −→ S2
1 ,

(c) θ11 = ⟨dv,w⟩|∆1, θ12 = ⟨v, dw⟩|∆1.

(2) (a) H2(−1)× LC∗ ⊃ ∆2 = {(v,w) | ⟨v,w⟩ = −1 },
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(b) π21 : ∆2 −→ H2(−1),π22 : ∆2 −→ LC∗,

(c) θ21 = ⟨dv,w⟩|∆2, θ22 = ⟨v, dw⟩|∆2.

(3) (a) LC∗ × S2
1 ⊃ ∆3 = {(v,w) | ⟨v,w⟩ = 1 },

(b) π31 : ∆3 −→ LC∗,π32 : ∆3 −→ S2
1 ,

(c) θ31 = ⟨dv,w⟩|∆3, θ32 = ⟨v, dw⟩|∆3.

(4) (a) LC∗ × LC∗ ⊃ ∆4 = {(v,w) | ⟨v,w⟩ = −2 },
(b) π41 : ∆4 −→ LC∗,π42 : ∆4 −→ LC∗,

(c) θ41 = ⟨dv,w⟩|∆4, θ42 = ⟨v, dw⟩|∆4.

Here, πi1(v,w) = v, πi2(v,w) = w, ⟨dv,w⟩ = −w0dv0 +
∑2

i=1 widvi and ⟨v, dw⟩ =
−v0dw0 +

∑2
i=1 vidwi.

We remark that θ−1
i1 (0) and θ−1

i2 (0) define the same tangent hyperplane field over ∆i which
is denoted by Ki. The basic duality theorem is the following theorem [7]:

Theorem 4.1 With the same notations as the previous paragraph, each (∆i, Ki) (i = 1, 2, 3, 4)
is a contact manifold and both of πij (j = 1, 2) are Legendrian fibrations. Moreover those
contact manifolds are contact diffeomorphic each other.

Moreover, we have the following extra double fibration:

(5) (a) S2
1 × S2

1 ⊃ ∆5 = {(v,w) | ⟨v,w⟩ = 0},
(b) π51 : ∆5 −→ S2

1 , π52 : ∆1 −→ S2
1 ,

(c) θ51 = ⟨dv,w⟩|∆5, θ52 = ⟨v, dw⟩|∆5.

It is shown in [5] that (∆5, K5) is a contact manifold such that π5j : ∆5 −→ S2
1 , j = 1, 2, are

Legendrian fibrations which is not contact diffeomorphic to any other (∆i, Ki), i = 1, 2, 3, 4.
Given a Legendrian submanifold i : L → ∆i, i = 1, 2, 3, 4, 5, We say that πi1(i(L)) is the ∆i-dual
of πi2(i(L)) and vice-versa.

Then we have the following duality theorem.

Theorem 4.2 Let γ : I −→ M be a unit speed curve on a spacelike surface M ⊂ R3
1 such that

∥t′(s)∥ ≠ 0 and ∥b′(s)∥ ̸= 0.

(1) If (κn(s), τg(s)) ̸= (0, 0), then nγ is a ∆1-dual of D
S

o .

(2) If (κn(s), τg(s)) ̸= (0, 0), then nγ is a ∆2-dual of D
L

o .

(3) If κg(s)
2 > τg(s)

2, then b is a ∆1-dual of D
T

r .

(4) If κg(s)
2 > τg(s)

2, then b is a ∆3-dual of D
L

r .

(5) If τg(s)
2 > κg(s)

2, then b is a ∆5-dual of D
S

r .

Proof. We can show that (1) holds as follows:

(1) We define a mapping L1 : I −→ ∆1 by L1(s) = (nγ(s),D
S

o (s)). Then we have ⟨nγ(s),D
S

o (s)⟩ =
0 and L∗

1θ11 = ⟨n′
γ(s),D

S

o (s)⟩ = 0. Thus L1 is an isotropic mapping, so that nγ is a ∆1-

dual of D
S

o .
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Then we define mappings

L2 : I −→ ∆2 ; L2(s) = (nγ(s),D
L

o (s)),

L3 : I −→ ∆1 ; L3(s) = (b(s),D
T

r (s)),

L4 : I −→ ∆3 ; L3(s) = (b(s),D
L

r (s))),

L5 : I −→ ∆5 ; L5(s) = (b(s),D
S

r (s)).

Then we can show that Li (i = 2, 3, 4, 5) are isotropic mappings. This means that (2), (3), (4)
and (5) hold. 2

5 Height functions

We now introduce five families of functions on γ : I −→ M ⊂ R3
1 with ∥t′(s)∥ ̸= 0, ∥b′(s)∥ ̸= 0

as follows:

HT
r : I ×H2

+(−1) −→ R ; (s,v) 7−→ ⟨b(s),v⟩,
HS

r : I × S2
1 −→ R ; (s,v) 7−→ ⟨b(s),v⟩,

HL
r : I × LC∗ −→ R ; (s,v) 7−→ ⟨b(s),v⟩ − 1,

HS
o : I × S2

1 −→ R ; (s,v) 7−→ ⟨nγ(s),v⟩,
HL

o : I × LC∗ −→ R ; (s,v) 7−→ ⟨nγ(s),v⟩+ 1.

For any v, we define hT
r,v(s) = HT

r (s,v), h
S
r,v(s) = HS

r (s,v), h
L
r,v(s) = HL

r (s,v), h
S
o,v(s) =

HS
o (s,v), h

L
o,v(s) = HL

o (s,v) Then we have the following proposition.

Proposition 5.1 Let γ : I −→ M be a unit speed curve on a spacelike surface M ⊂ R3
1 such

that ∥t′(s)∥ ≠ 0, ∥b′(s)∥ ≠ 0. Then we have the following :

(A) For any (s,v) ∈ I ×H2(−1), we have the following :

(1) hT
r,v(s) = 0 if and only if there exist λ, µ ∈ R with −λ2 + µ2 = 1 such that

v = λt(s) + µnγ(s),

(2) hT
r,v(s) = (hT

r,v)
′(s) = 0 if and only if κg(s)

2 > τg(s)
2 and v = ±D

T

r (s),

(3) hT
r,v(s) = (hT

r,v)
′(s) = (hT

r,v)
′′(s) = 0 if and only if κg(s)

2 > τg(s)
2, δTr (s) = 0 and

v = ±D
T

r (s),

(4) hT
r,v(s) = (hT

r,v)
′(s) = (hT

r,v)
′′(s) = (hT

r,v)
′′′(s) = 0 if and only if κg(s)

2 > τg(s)
2,

δTr (s) = 0, (δTr )
′(s) = 0 and v = ±D

T

r (s).

(B) For any (s,v) ∈ I × S2
1 , we have the following :

(1) hS
r,v(s) = 0 if and only if there exist λ, µ ∈ R with −λ2 + µ2 = −1 such that

v = λt(s) + µnγ(s),
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(2) hS
r,v(s) = (hS

r,v)
′(s) = 0 if and only if τg(s)

2 > κg(s)
2 and v = ±D

S

r (s),

(3) hS
r,v(s) = (hS

r,v)
′(s) = (hS

r,v)
′′(s) = 0 if and only if τg(s)

2 > κg(s)
2, δSr (s) = 0 and

v = ±D
S

r (s),

(4) hS
r,v(s) = (hS

r,v)
′(s) = (hS

r,v)
′′(s) = (hS

r,v)
′′′(s) = 0 if and only if τg(s)

2 > κg(s)
2,

δSr (s) = 0, (δSr )
′(s) = 0 and v = ±D

S

r (s).

(C) For any (s,v) ∈ I × LC∗, we have the following :

(1) hL
r,v(s) = 0 if and only if there exist λ, µ ∈ R with λ2 − µ2 = −1 such that

v = λt(s) + µnγ(s) + b(s),

(2) hL
r,v(s) = (hL

r,v)
′(s) = 0 if and only if κg(s)

2 > τg(s)
2 and v = ±D

L

r (s),

(3) hL
r,v(s) = (hL

r,v)
′(s) = (hL

r,v)
′′(s) = 0 if and only if κg(s)

2 > τg(s)
2, δLr (s) = 0 and

v = ±D
L

r (s),

(4) hL
r,v(s) = (hL

r,v)
′(s) = (hL

r,v)
′′(s) = (hL

r,v)
′′′(s) = 0 if and only if κg(s)

2 > τg(s)
2,

δLr (s) = 0, (δLr )
′(s) = 0 and v = ±D

L

r (s).

(D) Suppose that (κn(s), τg(s)) ̸= (0, 0). For any (s,v) ∈ I × S2
1 , we have the following :

(1) hS
o,v(s) = 0 if and only if there exist λ, µ ∈ R with λ2 + µ2 = 1 such that

v = λt(s) + µb(s),

(2) hS
o,v(s) = (hS

o,v)
′(s) = 0 if and only if v = ±D

S

o (s),

(3) hS
o,v(s) = (hS

o,v)
′(s) = (hS

o,v)
′′(s) = 0 if and only if δSo (s) = 0 and v = ±D

S

o (s),

(4) hS
o,v(s) = (hS

o,v)
′(s) = (hS

o,v)
′′(s) = (hS

o,v)
′′′(s) = 0 if and only if δSo (s) = 0, (δSo )

′(s) =

0 and v = ±D
S

o (s).

(E) Suppose that (κn(s), τg(s)) ̸= (0, 0). For any (s,v) ∈ I × LC∗, we have the following :

(1) hL
o,v(s) = 0 if and only if there exist λ, µ ∈ R with λ2 + µ2 = 1 such that

v = λt(s) + µb(s) + nγ(s),

(2) hL
o,v(s) = (hL

o,v)
′(s) = 0 if and only if v = ±D

L

o (s),

(3) hL
o,v(s) = (hL

o,v)
′(s) = (hL

o,v)
′′(s) = 0 if and only if δLo (s) = 0 and v = ±D

L

o (s),

(4) hL
o,v(s) = (hL

o,v)
′(s) = (hL

o,v)
′′(s) = (hL

o,v)
′′′(s) = 0 if and only if δLo (s) = 0, (δLo )

′(s) =

0 and v = ±D
L

o (s).

Proof. We remark that ∥t′(s)∥ ̸= 0, ∥b′(s)∥ ≠ 0 if and only if −κn(s)
2 + κg(s)

2 ̸= 0, κg(s)
2 −

τg(s)
2 ̸= 0.
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(A) By straight forward calculations, we have the following :

hT
r,v =⟨b,v⟩,

(hT
r,v)

′ =⟨−κgt+ τgnγ ,v⟩,
(hT

r,v)
′′ =⟨(−κ′

g + κnτg)t− (κ2
g − τ 2g )b+ (τ ′g − κgκn)nγ ,v⟩,

(hT
r,v)

′′′ =⟨(−κ′′
g + κ′

nτg + 2κnτ
′
g + κ3

g − κgτ
2
g − κ2

nκg)t

+ (−3κgκ
′
g + 3τgτ

′
g)b+ (τ ′′g − κgκ

′
n − 2κnκ

′
g + τ 3g + κ2

nτg − κ2
gτg)nγ ,v⟩.

Since {t(s),nγ(s), b(s)} is a pseudo-orthonormal frame of R3
1 along γ, we have v = λt(s) +

µnγ(s) + ηb(s).

1. Since hT
r,v = 0, η = 0, so that we have v = λt(s) + µnγ(s). Here, v is timelike. Then we

have µ2 > λ2. Thus, µ ̸= 0. This completes the proof of assertion (A),(1).

2. Moreover, (hT
r,v)

′ = 0 implies −λκg−µτg = 0. Therefore, we have κgv = κgλt+κgµnγ =
−µ(τgt−κgnγ). Thus we have−κ2

g = µ2(τ 2g−κ2
g), so that τ

2
g ≤ κ2

g. Since κg(s)
2−τg(s)

2 ̸= 0,
we have τ 2g < κ2

g. It follows that

v = ±τgt− κgnγ√
κ2
g − τ 2g

= ±D
T

r .

3. If we add extra condition (hT
r,v)

′′ = 0, then we have

κn −
κgτ

′
g − κ′

gτg

κ2
g − τ 2g

= 0.

Thus we have δTr = 0.

4. Moreover, if we consider one more condition (hT
r,v)

′′′ = 0, then we have

κ′
n(κ

2
g − τ 2g ) + 2(κgκ

′
g − τgτ

′
g)(δ

T
r +

κgτ
′
g − κ′

gτg

κ2
g − τ 2g

)− (κgτ
′′
g − κ′′

gτg) = 0.

Since we have

(δTr )
′ = κ′

n +
2(κgκ

′
g − τgτ

′
g)(κgτ

′
g − κ′

gτg)

(κ2
g − τ 2g )

2
−

(κgτ
′′
g − κ′′

gτg)

(κ2
g − τ 2g )

,

(δTr )
′ = 0 with the condition δTr = 0.

For other cases (B), (C), (D) and (E), we have the similar calculations to case (A) for the
derivatives of hS

r,v, h
L
r,v, h

S
o,v and hL

o,v, respectively. We omit the details here. 2
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6 Proof of Theorem 3.1

In this section we give a proof of Theorem 3.1. In order to prove Theorem 3.1, we use some
general results on the singularity theory for families of function germs. Detailed descriptions
are found in the book[3]. Let F : (R × Rr, (s0, x0)) −→ R be a function germ. We call F
an r-parameter unfolding of f , where f(s) = Fx0(s, x0). We say that f has an Ak-singularity
at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k, and f (k+1)(s0) ̸= 0. We also say that f has an A≥k-
singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k. Let F be an unfolding of f and f(s) has
an Ak-singularity (k ≥ 1) at s0. We denote the (k − 1)-jet of the partial derivative ∂F

∂xi
at

s0 by j(k−1)( ∂F
∂xi

(s, x0))(s0) =
∑k−1

j=0 αji(s − s0)
j for i = 1, . . . , r. Then F is called an R-versal

unfolding if the k×r matrix of coefficients (αji)j=0,...,k−1;i=1,...,r has rank k (k ≤ r).We introduce
an important set concerning the unfoldings relative to the above notions. The discriminant set
of F is the set

DF = {x ∈ Rr|there exists s with F =
∂F

∂s
= 0 at (s, x)}.

Then we have the following classification (cf., [3]).

Theorem 6.1 Let F : (R× Rr, (s0, x0)) −→ R be an r-parameter unfolding of f(s) which has
the A2 singularity at s0. If F is an R-versal unfolding, then DF is locally diffeomorphic to
C × Rr−1.

Here, C = {(x1, x2) | x1 = t2, x2 = t3} is the ordinary cusp (i.e. the semi-cubic parabola).

We now consider thatHT
r , H

S
r , H

L
r , H

T
o , andHL

o are unfoldings of hT
r,v(s), h

S
r,v(s), h

L
r,v(s), h

T
o,v(s),

and hL
o,v(s) for any v, respectively.

Proposition 6.2 Let γ : I −→ M be a unit speed curve on a spacelike surface M ⊂ R3
1 such

that ∥t′(s)∥ ≠ 0, ∥b′(s)∥ ̸= 0. Then we have the following :

(A) if hT
r,v has the A2-singularity at s0, then HT

r is an R-versal unfolding of hT
r,v,

(B) if hS
r,v has the A2-singularity at s0, then HS

r is an R-versal unfolding of hS
r,v,

(C) if hL
r,v has the A2-singularity at s0, then HL

r is an R-versal unfolding of hL
r,v,

(D) if hS
o,v has the A2-singularity at s0, then HS

o is an R-versal unfolding of hS
o,v,

(E) if hL
o,v has the A2-singularity at s0, then HL

o is an R-versal unfolding of hL
o,v.

Proof. Here, we only give the proof for (A). Other cases are similar to case (A).

(A) We denote that v = (
√

x2
1 + x2

2 + 1, x1, x2) ∈ H2
+(−1), b = (b0(s), b1(s), b2(s)). Then we

have

HT
r (s,v) = −b0(s)

√
x2
1 + x2

2 + 1 + b1(s)x1 + b2(s)x2

and

∂HT
r

∂x1

(s,v) = −b0(s)
x1√

x2
1 + x2

2 + 1
+ b1(s) ,

∂HT
r

∂x1

(s,v) = −b0(s)
x2√

x2
1 + x2

2 + 1
+ b2(s).
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Therefore the 2-jet of HT
r (s,v) are

j2
∂HT

r

∂x1

(s0,v) =

(
−b0(s0)

x1√
x2
1 + x2

2 + 1
+ b1(s0)

)

+

(
−b′0(s0)

x1√
x2
1 + x2

2 + 1
+ b′1(s0)

)
(s− s0),

j2
∂HT

r

∂x2

(s0,v) =

(
−b0(s0)

x2√
x2
1 + x2

2 + 1
+ b2(s0)

)

+

(
−b′0(s0)

x2√
x2
1 + x2

2 + 1
+ b′2(s0)

)
(s− s0).

We consider the following matrix:

A =

−b0(s0)
x1√

x2
1+x2

2+1
+ b1(s0) −b0(s0)

x2√
x2
1+x2

2+1
+ b2(s0)

−b′0(s0)
x1√

x2
1+x2

2+1
+ b′1(s0) −b′0(s0)

x2√
x2
1+x2

2+1
+ b′2(s0)


The determinant of A is

detA =
1√

x2
1 + x2

2 + 1

(
x1(b

′
0b2 − b0b

′
2) + x2(b0b

′
1 − b′0b1) +

√
x2
1 + x2

2 + 1(b′2b1 − b2b
′
1)

)
=

1√
x2
1 + x2

2 + 1

⟨
(b2b

′
1 − b1b

′
2, b2b

′
0 − b′2b0, b0b

′
1 − b′0b1), (

√
x2
1 + x2

2 + 1, x1, x2)

⟩
=

1√
x2
1 + x2

2 + 1
⟨(b ∧ b′),v⟩

=
1√

x2
1 + x2

2 + 1
|b b′ v|

By Proposition 5.1, if hT
r,v has the A2-singularity at s0, then v = ±D

T

r (s) and b′(s) =
−κg(s)t(s) + τg(s)nγ(s), so that {b, b′,v} is linearly independent. Therefore, rankA = 2.
This means that HT

r is an R-versal unfolding of hT
r,v. 2

We define three vector fields respectively defined as normalizations of t′,n′
γ, b

′ as follows:

Tt(s) =
κn(s)nγ(s) + κg(s)b(s)√

κg(s)2 − κn(s)2
,Tnγ (s) =

κn(s)t(s) + τg(s)b(s)√
κg(s)2 + τg(s)2

,Tb(s) =
−κg(s)t(s) + τg(s)nγ(s)√

κg(s)2 − τg(s)2
.

We can prove Theorem 3.1.

Proof of Theorem 3.1. Here we only give the proof for (A) again.

(A) (1) By a straight forward calculation D
T

r (s), we have(
D

T

r (s)
)′

= δTr (s)Tb(s),

so that D
T

r (s) is non-singular at s = s0 if and only if δTr (s0) ̸= 0.
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(2) By Proposition 5.1, hT
r,v is an A2-singularity if and only if δTr (s0) = 0, (δTr )

′(s0) ̸= 0 and

v = D
T

r (s). By Proposition 6.2, HT
r is an R-versal unfolding of hT

r,v. By Proposition 5.1, the

image of D
T

r is the discriminant set of HT
r . By Theorem 6.1, the discriminant of HT

r is locally
diffeomorphic to the cusp C. 2

7 Invariants of curves on surfaces

In this section we consider geometric meanings of the invariants δTr , δ
S
r , δ

L
r , δ

S
o , δ

L
o . In particular

what can we say about the original curve on the surface when each invariant is vanishing. For
the purpose, we consider cylinders in Lorentz-Minkowski space. A (generalized) cylinder in R3

1

is a ruled surface with a constant director. It is parametrized by F (t, u) = σ(t) + uv, where σ
is a smooth curve and v is a non-zero vector. The vector v is called the director. We say that F
is a spacelike cylinder, a timelike cylinder and a lightlike cylinder if the director v is spacelike,
timelike and lightlike, respectively. Let M be a surface and N be a cylinder in R3

1. We say
that N is a pseudo-normal cylinder of M if M ∩ N ̸= ∅ and TpN contains the pseudo-normal
vector n(p) at any p ∈ M ∩N. In this case M and N transversally intersect, so that M ∩N is
a regular curve C. We call C a slice of M with a pseudo-normal cylinder of M. Moreover, we
call N a pseudo-normal spacelike cylinder if the director of N is spacelike and a pseudo-normal
timelike cylinder if the director of N is timelike, respectively. We remark that the director of
N is not lightlike. If N is locally parametrized by F (t, u) = σ(t) + uv, then we have

∂F

∂t
(t, u) = σ′(t) and

∂F

∂u
(t, u) = v,

so that the pseudo-normal to N is given by

∂F

∂t
(t, u)× ∂F

∂u
(t, u) = σ′(t)× v.

If C is parametrized by γ(s), where s is the arc-length parameter of γ, then N can be param-
eterized by F (s, u) = γ(s) + uv at least locally. Since N has been given an orientation by F,
the unit normal vector of N along C is b(s). In particular, ⟨b(s),v⟩ = 0.

On the other hand, N is called a osculating cylinder if the tangent planes of M and N
coincide at any point of M ∩ N. In this case C = M ∩ N is called a slice of M with an
osculating cylinder of M. We remark that the director of the osculating cylinder is always
spacelike. If N is locally parametrized by F (t, u) = σ(t) + uv, then the unit normal vector of
N along C is nγ and ⟨n,v⟩ = 0 for a parmetrization γ of C.

We call N a hyperbolic lightlike cylinder if M ∩ N ̸= ∅ and ⟨n(p),v⟩ = −1 at any point
p ∈ M ∩N, where v is the lightlike director of N. In this case, N is transversely intersect with
M , so that C = M ∩ N is a regular curve. We call C a slice of M with a hyperbolic lightlike
cylinder. We also call N a de Sitter lightlike cylinder if M ∩ N ̸= ∅ and ⟨b(p),v⟩ = 1 at any
point p ∈ M ∩N, where v is the lightlike director of N. In this case, N is transversely intersect
with M , so that C = M ∩N is a regular curve. We call C a slice of M with a de Sitter lightlike
cylinder. For the both cases in the above, v is lightlike.

Then we have the following theorem.

Theorem 7.1 Let γ : I −→ M be a unit speed curve on a spacelike surface M ⊂ R3
1 such that

∥t′(s)∥ ≠ 0, ∥b′(s)∥ ̸= 0.
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(A) Suppose that κg(s)
2 > τg(s)

2. Then the following conditions are equivalent :

(1) D
T

r (s) is a constant vector,

(2) δTr (s) ≡ 0,

(3) γ(I) is the slice of M with a timelike pseudo-normal cylinder,

(4) b(I) is a subset of a hyperbolic line in H2(−1).

(B) Suppose that τg(s)
2 > κg(s)

2. Then the following conditions are equivalent :

(1) D
S

r (s) is a constant vector,

(2) δSr (s) ≡ 0,

(3) γ(I) is the slice of M with a spacelike pseudo-normal cylinder,

(4) b(I) is a subset of a geodesic pseudo-circle in S2
1 .

(C) Suppose that κg(s)
2 > τg(s)

2. Then the following conditions are equivalent :

(1) D
L

r (s) is a constant vector,

(2) δLr (s) ≡ 0,

(3) γ(I) is the slice of M with a de Sitter lightlike cylinder,

(4) b(I) is a subset of de Sitter horocycle in S2
1 .

(D) Suppose that (κn(s), τg(s)) ̸= (0, 0). Then the following conditions are equivalent :

(1) D
S

o (s) is a constant vector,

(2) δSo (s) ≡ 0,

(3) γ(I) is the slice of M with a pseudo-osculating cylinder,

(4) nγ(I) is a subset of a geodesic hyperbola in S2
1 .

(E) Suppose that (κn(s), τg(s)) ̸= (0, 0). Then the following conditions are equivalent :

(1) D
L

o (s) is a constant vector,

(2) δLo (s) ≡ 0,

(3) γ(I) is the slice of M with a hyperbolic lightlike cylinder,

(4) nγ(I) is a subset of a horocycle in H2(−1).

Proof. The proof of (B) and (D) are similar to the proof of (A) Moreover, the proof of (E) is
similar to the proof of (C). Therefore, we only give the proof of (A) and (C).

(A) Since
(
D

T

r (s)
)′

= δTr (s)Tb(s), conditions (1) and (2) are equivalent. Suppose that (3)

holds. Then there exists v ∈ H2
+(−1) such that ⟨b(s),v⟩ ≡ 0. Thus, there exist λ, µ ∈ R

such that v = λt(s) + µnγ(s). Since ⟨b(s),v⟩ ≡ 0, we have ⟨b′(s),v⟩ ≡ 0. It follows

that −λκg(s) − µτg(s) = 0. Then v = D
T

r (s). This means that (1) holds. If (1) holds,

then D
T

r (s) is a constant vector v = D
T

r (s) ∈ H2
+(−1). Since we have ⟨b(s),v⟩ =
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⟨b(s), DT
r (s)⟩ = 0, (3) holds. Moreover, the above equality means that b(s) ∈ P (v, 0).

This means that the image of b is a subset of the hyperbolic line P (v, 0)∩H2(−1). Thus
(4) holds. For the converse, there exists v ∈ H2(−1) such that ⟨b(s),v⟩ = 0. Then there
exist λ, µ ∈ R such that v = λt(s) + µnγ(s). Since ⟨b(s),v⟩ = 0, ⟨b′(s),v⟩ = 0, so that

we have −λκg(s)− µτg(s) = 0. Therefore, v = D
T

r (s). Thus (1) holds.

(C) Since
(
DL

r (s)
)′

= δLr (s)Tb(s), (1) and (2) are equivalent. Suppose that (3) holds. Then

there exists v ∈ LC∗ such that ⟨b(s),v⟩ = 1. We put α = v − b(s). It follows that
⟨α,α⟩ = −1, so that α ∈ H2(−1). Moreover, we have ⟨b(s),α⟩ = 0, ⟨b′(s),α⟩ = 0. This
means that α is a ∆1-dual of b. By the similar arguments to (A), we have DT

r (s) =
v − b(s), so that v = DT

r (s) + b(s) = DL
r (s). Thus (1) holds. For the converse, if (1)

holds, then we have ⟨b(s),v⟩ = 1 for v = DL
r (s). Therefore, (3) holds. Moreover, if (1)

holds, then we have ⟨b(s), DL
r (s)⟩ = 1, so that the image of b is a subset of a de Sitter

horocycle. For the converse, suppose that (4) holds. Then there exists v ∈ LC∗ such that
⟨b(s),v⟩ = −1. There exist λ, µ ∈ R such that v = λt(s)+µnγ(s). Since ⟨b(s),v⟩ = −1,

we have ⟨b′(s),v⟩ = 0. This means that −λκg(s)−µτg(s) = 0, so that we have v = DL
r (s).

Thus (1) holds.

This completes the proof. 2

8 Examples

In this section we consider some examples.

8.1 Spacelike planes

We now consider that M = R2
0 = {x = (x0, x1, x2) ∈ R3

1 | x0 = 0}. Then we have a unit speed
curve γ : I −→ R2

0, which can be considered as a curve on the Euclidean plane. In this case we
have nγ(s) = e0, t(s) = γ ′(s), b(s) = e0 ∧ t(s). Since n′

γ = e′
0 ≡ 0, we have κn(s) ≡ τg(s) ≡ 0,

so that {
t′(s) = κ(s)b(s),

b′(s) = −κ(s)t(s),

where κ(s) = κg(s) = ⟨t′(s), b(s)⟩ is the curvature of γ as a Euclidean plane curve. In this

case the Lorentzian Darboux vectors are D
T

r (s) = ∓nγ(s) = ∓e0,D
L

r (s) = ∓nγ(s) + b(s) =

∓e0 + b(s), D
S

o (s) = ∓b(s) and D
L

o (s) = ∓b(s) + e0. Here, D
S

r (s) is not well-defined. Thus,

D
S

o , D
L

o andD
L

r correspond to the ordinary Gauss map of the curve as a Euclidean plane curve.
Moreover, we have δTr (s) ≡ 0, δLr (s) = ∓κg(s) = ∓κ(s) and δSo (s) = δLo (s) = κg(s) = κ(s).

8.2 The hyperbolic plane

We consider that M = H2(−1). For a unit speed curve γ : I −→ H2(−1), we can take
nγ(s) = γ(s), t(s) = γ ′(s). Then we have the Lorentzian Darboux frame {t,γ, b}, which is
called a Lorentzian Sabban frame. In this case we have κn(s) ≡ 1 and τg(s) ≡ 0. Thus the
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Therefore, we have 
t′(s) = γ(s) + κg(s)b(s),

γ ′(s) = t(s),

b′(s) = −κg(s)t(s).

In this case the Lorentzian Darboux vectors are D
T

r (s) = ∓γ(s), D
L

r (s) = ∓γ(s) + b(s),

D
S

o (s) = ∓b(s) and D
L

o (s) = γ(s) ∓ b(s). Here D
S

r (s) is not well-defined. It follows that

δTr (s) = 1, δLr (s) = 1±κg(s), δ
S
o (s) = κg(s), and δLo (s) = κg(s)±1. We remark that D

L

r = ∓D
L

o

are called hyperbolic Gauss indicatrices in [4].

8.3 Spacelike developable surfaces

We consider an spacelike embedding X(x, y) = (
√
x2 + 1, x, y) and M = X(R2). By straight

forward calculations, we have n(x, y) = (−
√
x2 + 1,−x, 0). We now consider a curve on M

defined by γ(s) = (
√
s2 + 1, s, f(s)). Then γ ′(s) =

(
s√
s2+1

, 1, f ′(s)
)
. Here s is an arc-length

parameter if and only if f ′(s)2(s2+1) = s2. With this condition, t(s) = γ ′(s) is the unit tangent
vector of γ. Then we have nγ(s) = (−

√
s2 + 1,−s, 0) and

b(s) =

(
−sf ′(s),−f ′(s)

√
s2 + 1,

1√
s2 + 1

)
.

It follows that

κg(s) =
sf ′(s) + f ′′(s)(s2 + 1)

(s2 + 1)3/2
, κn(s) =

−1

s2 + 1
, τg(s) =

f ′(s)√
s2 + 1

.

Then

(τgt− κgnγ)(s) =

(
2sf ′(s) + f ′′(s)(s2 + 1)

s2 + 1
,
f ′(s)(s2 + 1) + sf ′(s) + f ′′(s)(s2 + 1)

(s2 + 1)3/2
,

f ′′(s)√
s2 + 1

)
.

Moreover, we have

(τgt− κnb)(s) =

(
0, 0,

2f ′(s)(s2 + 1) + 1

(s2 + 1)3/2

)
.

If 2f ′(s)(s2+1)+1 ̸= 0, then D
S

o (s) = (0, 0, 1) and D
L

o (s) = (−
√
s2 + 1,−s, 1). We remark that

X(x, y) = (
√
x2 + 1, x, 0)+y(0, 0, 1) is a cylinder with the director (0, 0, 1). A cylinder is one of

the developable surfaces, so that we now consider general spacelike developable surfaces in R3
1.

A developable surface M is a ruled surface which is parameterized by F(c,ξ)(t, u) = c(t)+uξ(t),
where c(t) is a smooth curve called the base curve and ξ(t) is a smooth curve with ∥ξ(t)∥ = 1
which is called the director curve. By definition we have

∂F(c,ξ)

∂t
(t, u) = ċ(t) + uξ̇(t),

∂F(c,ξ)

∂u
(t, u) = ξ(t),

so that the unit pseudo-normal vector at a regular point (t, u) is

n(t, u) =
1

l

((
ċ+ uξ̇

)
∧ ξ
)
(t, u) =

1

l

((
ċ ∧ ξ

)
+ u
(
ξ̇ ∧ ξ

))
(t, u),
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where l(t, u) = ∥∂F(c,ξ)/∂t ∧ ∂F(c,ξ)/∂u∥ (t, u) . We say that F(c,ξ) is a developable surface if
n(t, u) is orthogonal to ċ(t) for any (t, u). Therefore, the above condition is equivalent to
det (c(t), ξ(t), ξ̇(t)) = 0. Moreover, F(c,ξ) is defined to be a spacelike developable surface if
n(t, u) is timelike. We remark that ξ(t) is a spacelike vector for a spacelike developable surface.
We now consider a curve on M parametrized by

γ(s) = c
(
t(s)
)
+ u(s)ξ

(
t(s)
)
,

where s is the arc-length parameter of γ. Then the unit normal vector along γ is

nγ =
1

l

((
ċ+ uξ̇

)
∧ ξ
)
=

1

l

((
ċ ∧ ξ

)
+ u
(
ξ̇ ∧ ξ

))
,

where l(s) = ∥∂F(c,ξ)/∂t ∧ ∂F(c,ξ)/∂u∥ (t(s), u(s)) . We also have

t = u′ξ + t′
(
ċ+ uξ̇

)
,

b =
1

l

({(
ċ+ uξ̇

)
∧ ξ
}
∧ t
)

=
1

l

(⟨
ċ+ uξ̇, t

⟩
ξ −

⟨
ξ, t
⟩(
ċ+ uξ̇

))
.

Moreover, we have

n′
γ =

t′

l

(
c̈× ξ + ċ ∧ ξ̇

)
+

(
1

l

)′

ċ ∧ ξ +
t′u

l
ξ̈ ∧ ξ +

(u
l

)′
ξ̇ ∧ ξ.

Therefore, we have

κn(s) = −t′2(s)d(s)

l(s)
, τg(s) =

t′(s)d(s)

l2(s)

⟨
ξ(t(s)), t(s)

⟩
,

where
d(s) = det

(
ċ(t(s)) + u(s)ξ̇(t(s)), c̈(t(s)) + u(s)ξ̈(t(s)), ξ(t(s))

)
.

Since (κn(s), τg(s)) ̸= (0, 0), d(s) ̸= 0 and t′(s) ̸= 0. It follows that

τgt− κnb =
t′d

l2

(
⟨ξ, t⟩

(
u′ξ + t′

(
ċ+ uξ̇

))
+ t′

(
⟨ċ+ uξ̇, t⟩ ξ − ⟨ξ, t⟩

(
ċ+ uξ̇

)))
=

t′d

l2
⟨
u′ξ + t′

(
ċ+ uξ̇

)
, t
⟩
ξ

=
t′d

l2
⟨t, t⟩ ξ =

t′d

l2
ξ,

so that (τgt− κnb)(s) is parallel to the director curve ξ(t(s)).

Proposition 8.1 Let M be a spacelike developable surface parametrized by F(c,ξ)(t, u) = c(t)+
uξ(t). For a curve γ(s) = c

(
t(s)
)
+u(s)ξ

(
t(s)
)
on M, the pseudo-spherical osculating spacelike

Darboux image along γ is D
S

o (s) = ±ξ(t(s)). Moreover, the pseudo-spherical osculating lightlike
Darboux image along γ is

D
L

o (s) =
1

l(s)

(
±ξ(t(s)) + ċ(t(s)) ∧ ξ(t(s)) + u(s)

(
ξ̇(t(s)) ∧ ξ(t(s))

))
.
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8.4 Curves on the graph of a function

In this subsection we consider examples similar to those given in [10]. We consider a surface
parametrized by X(x, y) = (f(x, y), x, y) with f(0, 0) = 0 and ∂f/∂x(0, 0) = ∂f/∂y(0, 0) = 0.
Here we denote fx = ∂f/∂x, fy = ∂f/∂y, Xx = ∂X/∂x = (fx, 1, 0) and Xy = ∂X/∂y =
(fy, 0, 1). SinceX is a spacelike embedding, we have ∥Xx∥ = −f2

x+1 > 0, ∥Xy∥ = −f 2
y +1 > 0,

and a unit timelike normal vector field n(p) = Xx(u)∧Xy(u)

∥Xx(u)∧Xy(u)∥
= − 1√

1−f2
x−f2

y

(1, fx, fy) with

−1 + f2
x + f 2

y < 0 where p = X(u) = X(x, y).

We now consider the curve γ(x) = X(x, 0) = (f(x, 0), x, 0), where f(x, y) is a smooth
function. Here we denote dγ

dx
= γ̇, fx = fx(x, 0), and fy(x, 0). Since γ̇(x) = (fx, 1, 0), we

have the unit tangent vector field t(x) = 1√
1−f2

x

(fx, 1, 0), and the two unit normal vector

fields nγ(x) =
−1√

1−f2
x−f2

y

(1, fx, fy), b(x) =
1√

1−f2
x−f2

y

√
1−f2

x

(fy, fxfy, 1− f2
x). By straightforward

calculations, we have

κg(x) =

⟨
dt

ds
(x), b(x)

⟩
=

−fyfxx

(1− f 2
x))

3
2 (1− f2

x − f2
y )

1
2

,

and

κn(x) =

⟨
dt

ds
(x),nγ(x)

⟩
=

fxx

(1− f 2
x)(1− f 2

x − f 2
y )

1
2

,

where s is the arc-length. Moreover, we have

τg(x) =

⟨
b(x),

dnγ

ds
(x)

⟩
=

1

(1− f 2
x)(1− f 2

x − f 2
y )

2
{f 2

y fyx − f2
xf

2
y fyx + fxfyfxx

+fxxfxf
3
y − f 3

xfyfxx − fyx + 2fyxf
2
x − fyxf

4
x}.

We now consider the special case

f(x, y) = a20x
2 + a11xy + a02y

2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3.

Then we have fyx(0, 0) = a11, fyxx(0, 0) = 2a21, fxx(0, 0) = 2a20, fxxx(0, 0) = 6a30. We can
show that

κg(0) = 0, κ′
g(0) = −2a11a20, κn(0) = a20, κ′

n(0) = 6a30, τg(0) = −a11 and τ ′g(0) = −a11.

Since κg(0) = 0, we can define D
S

r closed to 0 when τg(0) = −a11 ̸= 0. It follows that δSr (0) =

−a20 and (δSo )
′(0) = 6(a30 − 2a11a20a21). Therefore, D

S

r is locally diffeomorphic to the ordinary

cusp C at 0 if a20 = 0 and a30 ̸= 0. In this case D
T

r and D
L

s cannot be defined closed to 0 because

κg(0) = 0.We can construct examples forD
S

o andD
L

o . However, these are rather complicated, so
that we omit these. Of course, if we consider a general curve γ(s) = (f(x(s), y(s)), x(s), y(s)),
there might be many other examples.
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