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A TWO DIMENSIONAL RANDOM CRYSTALLINE ALGORITHM

FOR GAUSS CURVATURE FLOW

H. ISHII,§ Waseda University

T. MIKAMI,§§ Hokkaido University

Abstract

We propose and study a random crystalline algorithm (a discrete approxima-

tion) of the Gauss curvature flow of smooth simple closed convex curves in

R2 as a stepping stone to the full understanding of such a phenomenon as the

wearing process of stones on beaches.

Keywords: random crystalline algorithm; Gauss curvature flow; closed curve
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Secondary 60J75

1. Introduction.

The Gauss curvature flow of closed surfaces in R3 is a mathematical model of the

wearing process of stones on beaches (see [3] and also [1], [6] and [11]).

We introduce the definition of the Gauss curvature flow of smooth closed convex

hypersurfaces in Rd+1. Let Γ be a smooth closed convex hypersurface in Rd+1 and

F : Sd 7→ Rd+1 be a parametric representation of Γ. Then a collection of F (·, t) : Sd 7→
Rd+1 of smooth closed convex hypersurfaces with parameter t ∈ [0, T ) for some T > 0

is called Gauss curvature flow with initial state Γ if the following holds:

@F (s, t)
@t

= −K(s, t)n(s, t) (s ∈ Sd, 0 < t < T ), (1.1)

F (s, 0) = F (s) (s ∈ Sd), (1.2)
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Figure 1

Figure 1: Motion of F (·, t) at F (s, t) in R2

where K(s, t) and n(s, t) denote the Gauss curvature and the unit outward normal

vector, respectively, at a point F (s, t) on the hypersurface {F (s0, t)|s0 ∈ Sd}. In this

paper we assume that the convex set with boundary {F (s, t)|s ∈ Sd} is non-increasing

in t (see Figure 1).

Suppose that Γ is strictly convex. Then there exists the maximum T § of T for which

(1.1)-(1.2) has a unique smooth strictly convex solution and {F (s, t)|s ∈ Sd} converges

to a point as t ↑ T § (see [1], [6] and [11]).

In [8], H. Ishii proposed a discrete time approximation scheme for the Gauss

curvature flow. We briefly introduce it. Suppose that we are given the strictly convex

set D with smooth boundary @D in Rd+1 at time t = 0. Take h > 0 and a function

V : [0,1) 7→ [0,1). For every s ∈ Sd, let Ds,h denote the set which can be obtained

by cutting off the volume V (h) from the set D in the direction −s (see Figure 2). Put

D0,h ≡ D and D1,h ≡ ∩s∈SdDs,h. Define Dn,h inductively in n until nh ≡ max{k ≥ 1|
the volume of Dk,h is greater than V (h)}+1. Let V (h) → 0 as h → 0 in an appropriate

rate. Then limh→0 nhh = Tmax, and the flow of @D[t/h],h (0 ∑ t ∑ nhh) converges to

the Gauss curvature flow in Hausdorff metric uniformly in t on every compact subset

of [0, T §), where [t/h] denotes the integer part of [t/h]. Notice that the time variable

t is discretized but the space variable s is not in this approximation scheme.

Remark 1. Hausdorff metric of compact sets A and B ∈ Rd is given by the following:
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Figure 2

Figure 2: D and Ds,h in R2

dH(A,B) ≡ max(max
p∈A

dist(p,B),max
q∈B

dist(q,A)). (1.3)

A crystalline (or a polyhedral) approximation of the curvature flow of convex curves

was studied by P. M. Girão and is useful in numerical analysis (see Theorem 1 given

below, [4] and also [5] and the references therein). In [4], the space variable s is

discretized but the time variable t is not. In case when the initial curve is not convex,

the results of [4] have been generalized by K. Ishii and M. H. Soner (see [9] and the

references therein for further information on this problem). The results of [4] have not

been generalized to a class of closed convex hypersurfaces in Rd+1 for d ≥ 2. This is a

well-known open problem.

Remark 2. Let Γ be a smooth simple closed convex curve on R2. Fix a point x0 on

Γ. For any x ∈ Γ, let s(x) be the length of the curve which connects x0 and x on Γ

clockwise. Then one can parametrize x ∈ Γ by s(x). Let p1(s(x)) and p2(s(x)) denote,

respectively, the clockwise unit tangent vector and the unit outward normal vector at

x on Γ. Then the Gauss curvature K(s(x))(∈ R) at x on Γ satisfies the following:

dp1(s(x))
ds

= −K(s(x))p2(s(x)),

dp2(s(x))
ds

= K(s(x))p1(s(x)).
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Figure 3

Figure 3: Γ and Γ6

We refer to [4] since it plays a crucial role in this paper. First of all we introduce

one of the conventions in this paper. Every convex polygon with n sides (n-polygon

for short) has outward normals Nn,i ≡ (cos(2πi/n), sin(2πi/n)) (i = 0, · · · , n− 1). By

the i th side of the n-polygon we denote the side with the outward normal Nn,i.

Take a smooth simple closed convex curve Γ on R2. For n ≥ 5, let Γn denote the

n-polygon of which the i th side is tangent to Γ (see Figure 3). Let {Γn(t)}0∑t<T§n be

the flow of n-polygons which can be defined as follows, where T §n denotes the extinction

time of Γn(·).

Γn(0) = Γn,

and for t ∈ [0, T §n), the inward normal velocity Vn,i(t) of the i th side of Γn(t) is given

by the following:

Vn,i(t) = 2
tan(π/n)
`n,i(t)

, (1.4)

where `n,i(t) denotes the length of the i th side of Γn(t) (see Figure 4). It is known that

there exists the Gauss curvature flow {Γ(t)}0∑t<T§ on R2, with Γ(0) = Γ, where T §

denotes the extinction time of Γ(t) (see [4]). Let ≠`,n(t) and ≠(t)(Ω R2) be the closed

convex sets such that @≠`,n(t) = Γn(t) and @≠(t) = Γ(t), and such that ≠`,n(t) Ω
≠`,n(s) and ≠(t) Ω ≠(s) if 0 ∑ s ∑ t.

Then the following holds.
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Figure 4

Figure 4: Motion of the i th side of Γn(t)

Theorem 1. (see [4]). As t ↑ T §, ≠(t) converges in Hausdorff metric to a point or a

segment. limn→1 T §n = T §, and for any t ∈ [0, T §),

lim
n→1 sup

0∑s∑t
dH(≠`,n(s),≠(s)) = 0. (1.5)

Since the wearing process of stones on beaches is random, we would like to construct

a stochastic model instead of a deterministic one such as Theorem 1.

In this paper we introduce the flow of random n-polygons with outward normals Nn,i

(i = 0, · · · , n−1) and show that it converges in probability to the Gauss curvature flow

of smooth simple closed convex curves on R2 as n →1 in Hausdorff metric uniformly

in t on every compact subset of [0, T §) (see Theorem 2 in section 2).

In the proof we approximate the random n-polygon by Γn(t) at time t and use

Theorem 1.

We use the word “Gauss” even for the curvature flow in R2 since a part of our idea

that the volume is cut off from the stone is originally from the deterministic model of

the Gauss curvature flow (see [8]).

In section 2 we introduce our random model and state our result which will be

proved in section 4. Technical lemmas will be stated and proved in section 3.

2. Main result.

We first introduce our random model.
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Figure 5

Figure 5: The isogonal trapezoid with the height hn(x)

Let {T (n)}n≥1 be an increasing sequence of positive real numbers and put

θn =
2π

n
. (2.1)

For x > 0 and n ≥ 1, put

hn(x) =
tan θn{−x + (x2 + 4(cot θn)θn/T (n))1/2}

2
. (2.2)

Remark 3. hn(x) is the height of the isogonal trapezoid, with the area θn/T (n), of

which the lengths of upper and lower sides are x and x + 2(cot θn)hn(x) respectively

(see Figure 5). In particular,

(x + (cot θn)hn(x))hn(x) =
θn

T (n)
. (2.3)

For n ≥ 5, we consider the Markov process {(Xn,i(t))n−1
i=0 }t≥0 on Rn such that

(Xn,i(0))n−1
i=0 = (`n,i(0))n−1

i=0 (see (1.4)) and of which the generator is given by the

following: for a bounded Borel measurable function f : Rn 7→ R and x = (xi)n−1
i=0 ∈

Rn,

Lf(x) =
T (n) tan(θn/2)

θn/2

n−1X
i=0

I{y|min(yi−1,yi+1) sin θn>hn(yi)}(x) (2.4)

×[f(x + 2(cot θn)hn(xi)en,i − hn(xi)
sin θn

(en,i−1 + en,i+1))− f(x)]



Random crystalline algorithm for curvature flow 7

(see [2, Chap. 4, section 2]). Here IA(x) and {en,k}n−1
k=0 denote the indicator function of

the set A and the standard normal base in Rn respectively, and we put en,n+k = en,k

and yn+k = yk (k = −1, 0).

It is easy to see that one can construct the flow of random closed convex sets

{≠X,n(t)}t≥0 in R2, surrounded by n-polygons, such that ≠X,n(0) = ≠`,n(0), and that

≠X,n(t) Ω ≠X,n(s) if s ∑ t, and that the length of the i th side of @≠X,n(t) is equal to

Xn,i(t).

We discuss the meaning of our model.

For n ≥ 5, put

σn,i ≡
8<: 0 if i = 0,

inf{t > σn,i−1|
Pn−1

k=0 |Xn,k(t)−Xn,k(t−)| > 0} if i ≥ 1,

where Xn,k(t−) ≡ lims↑t Xn,k(s), and where we consider the right hand side as infinity

if the set over which the infimum is taken is empty. Then

P (σn,i < σn,i+1 for all i for which σn,i < 1) = 1.

Put

An ≡ {j ∈ {0, · · · , n− 1}|min(Xn,j−1(0), Xn,j+1(0)) sin θn > hn(Xn,j(0))}.

If the set An is not empty, then σn,1 is exponentially distributed with parameter

[#An ·T (n) tan(θn/2)]/(θn/2) (see [2, p. 163]), where we put j = n+ j for j = −1 and

0, and where #An denotes the cardinal number of the set An. For any k ∈ An, the

probability that the isogonal trapezoid with the area θn/T (n) is cut off from ≠X,n(0)

in the direction −Nn,k = (− cos(2πk/n),− sin(2πk/n)) at time t = σn,1 is equal to

(#An)−1 (see Figure 6).

If the set An is empty, then σn,1 = 1 and Xn,k(0) = Xn,k(t) for all k = 0, · · · , n−1

and all t ≥ 0 a.s..

The following also holds a.s.: {≠X,n(t)} continues to change the shape in a similar

manner to above at times t = σn,i which is finite; σn,i is infinite if i is greater than

(the area of ≠X,n(0))/(T (n)−1θn); ≠X,n(t) is an n-polygon for all t ≥ 0.

The following is our main result.
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Figure 6

Figure 6: The change of the k th side of ≠X,n(0)

Theorem 2. Suppose that Γ is a smooth simple closed convex curve on R2 and that

the following holds:

lim
n→1T (n)n−5 = 1. (2.5)

Then for any t ∈ [0, T §) and any η > 0,

lim
n→1P ( sup

0∑s∑t
dH(≠X,n(s),≠(s)) < η) = 1. (2.6)

Remark 4. (2.5) implies that θn/T (n) ª o(n−6) (as n → 1), where θn/T (n) is the

area of the isogonal trapezoid which is cut off from an n-polygon in our model.

Consider a convex stone which rotates randomly on a beach where waves are even.

Our result suggests that the time evolution of the surface of such a stone can be

considered as Gauss curvature flow.

3. Lemmas.

In this section we state and prove lemmas which will be used in the next section.

For n ≥ 1 and i = 0, · · · , n− 1, put
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Dn,i(t) =
X

0<s∑t

hn(Xn,i(s−))I(Xn,i(s−),1)(Xn,i(s)) (t ≥ 0), (3.1)

dn,i(t) =
Z t

0

2 tan(θn/2)
`n,i(s)

ds (0 ∑ t < T §n). (3.2)

Remark 5. Dn,i(t) is the distance between the straight line which includes the i th

side of ≠X,n(t) and that which includes the i th side of ≠X,n(0). dn,i(t) is also the

distance between the straight line which includes the i th side of ≠`,n(t) and that which

includes the i th side of ≠`,n(0).

Put the intersection point of the 0 th and the first sides of ≠`,n(0) at the origin.

Then the coordinate of the intersection point of the i th and the (i+1) th sides of

≠X,n(t) and ≠`,n(t) can be written as follows, respectively: for t ≥ 0,

Yn,0(t) = (−Dn,0(t), Dn,0(t) cot θn −Dn,1(t)/ sin θn) if i = 0, (3.3)

Yn,i(t) = Yn,0(t) +
iX

k=1

Xn,k(t)(− sin(kθn), cos(kθn)) if i = 1, · · · , n− 1,(3.4)

and for t ∈ [0, T §n)

yn,0(t) = (−dn,0(t), dn,0(t) cot θn − dn,1(t)/ sin θn) if i = 0, (3.5)

yn,i(t) = yn,0(t) +
iX

k=1

`n,k(t)(− sin(kθn), cos(kθn)) if i = 1, · · · , n− 1. (3.6)

Remark 6. Xn,i(t) = |Yn,i(t) − Yn,i−1(t)| for t ≥ 0 and `n,i(t) = |yn,i(t) − yn,i−1(t)|
for t ∈ [0, T §n), where we put (Yn,i(t), yn,i(t)) = (Yn,n+i(t), yn,n+i(t)) for i = −1, 0.

The time evolution of {yn,i(t)}0∑t<T§n (n ≥ 5, i = 0, · · · , n− 1) can be given by the

following.

Lemma 1. For n ≥ 5, i = 0, · · · , n− 1, and s ∈ (0, T §n),

dyn,i(s)
ds

=
(sin(iθn),− cos(iθn))
`n,i+1(s) cos2(θn/2)

− (sin((i + 1)θn),− cos((i + 1)θn))
`n,i(s) cos2(θn/2)

, (3.7)

where we put `n,n(s) = `n,0(s).
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Proof. It is known that {`n,i(t)}n−1
i=0 satisfies the following (see [4]):

d`n,i(t)
dt

=
µ

2 cos θn

`n,i(t)
− 1

`n,i+1(t)
− 1

`n,i−1(t)

∂
1

cos2(θn/2)
. (3.8)

where we put `n,n+k(t) = `n,k(t) (k = −1, 0).

(3.7) can be proved inductively in i, by (3.2), (3.5)-(3.6) and by the following:

sin((i− 1)θn) + sin((i + 1)θn) = 2 cos θn sin(iθn), (3.9)

cos((i− 1)θn) + cos((i + 1)θn) = 2 cos θn cos(iθn). (3.10)

Before we state and prove the following lemma, we give some notation. Put for

δ ∈ (0, T §n),

Cn(δ) = n min{`n,k(s)|0 ∑ k ∑ n− 1, 0 ∑ s ∑ T §n − δ}, (3.11)

τn,δ = inf{t > 0|Cn(δ)/(2n) ≥ min{Xn,k(t); 0 ∑ k ∑ n− 1}}. (3.12)

For any f ∈ C2
o (R2n;R) and y = (yi)2n−1

i=0 ∈ R2n, put

L̃f(y) =
T (n) tan(θn/2)

θn/2

n−1X
i=0

{f(y +
hn({|y2i − y2(i−1)|2 + |y2i+1 − y2i−1|2}1/2)

sin θn

×([sin((i− 1)θn)]e2n,2(i−1) − [cos((i− 1)θn)]e2n,2i−1

−[sin((i + 1)θn)]e2n,2i + [cos((i + 1)θn)]e2n,2i+1))− f(y)}

(see (2.4) for the convention of the notation).

Remark 7. For (y2i, y2i+1) ∈ R2 (i = 0, · · · , n− 1), put

xi ≡ {(y2i − y2(i−1))2 + (y2i+1 − y2i−1)2}1/2,

where we put (y2i, y2i+1) = (y2(n+i), y2(n+i)+1) for i = −1, 0. If

min(xi+1, xi−1) sin θn > hn(xi),

(y2i, y2i+1)− (y2(i−1), y2i−1) = xi(− sin(iθn), cos(iθn))
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for all i = 0, · · · , n− 1, then for any g ∈ C2
o (Rn;R),

L̃g(({(y2i − y2(i−1))2 + (y2i+1 − y2i−1)2}1/2)n−1
i=0 ) = Lg((xi)n−1

i=0 ).

Put also Yn(t) = (Yn,k(t))n−1
k=0 . Then the time evolution of {Yn(t)}0∑t for suffi-

ciently large n can be given by the following.

Lemma 2. Suppose that (2.5) holds. Then for any δ ∈ (0, T §), there exists n1 ∈ N

such that for any n ≥ n1 and any f ∈ C2
o (R2n;R), δ is less than T §n and

f(Yn(min(t, τn,δ))) = f(Yn(0)) +
Z min(t,τn,δ)

0
L̃f(Yn(s))ds + M [f(Yn)](min(t, τn,δ))

for t ≥ 0, P-a.s., where M [f(Yn)](t) denotes a purely discontinuous martingale part of

f(Yn(t)).

Proof. Take n0 ∈ N such that δ < T §n for any n ≥ n0, which is possible from

Theorem 1. First we show that there exists n1 ≥ n0 such that for any n ≥ n1 and

k = 0, · · · , n− 1

min(Xn,k−1(t), Xn,k+1(t)) sin θn > hn(Xn,k(t)) for t ∈ [0, τn,δ) P-a.s., (3.13)

where we put Xn,i(t) = Xn,n+i(t) for i = −1, 0.

By (14) of [4], {Ck(δ)−1}1k=n0
defined in (3.11) is bounded. Therefore there exists

n1 ≥ n0 such that for any n ≥ n1

Cn(δ)
2n

sin θn >
2n

Cn(δ)
θn

T (n)

by (2.5). Hence, for k, i = 0, · · · , n− 1 and t ∈ [0, τn,δ)

Xn,k(t) sin θn >
Cn(δ)

2n
sin θn >

2n

Cn(δ)
θn

T (n)
>

1
Xn,i(t)

θn

T (n)
> hn(Xn,i(t)) a.s.

by (2.3), which implies (3.13).

By (3.3)-(3.4), we have the following:
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Yn(s) = −x1

n−1X
k=0

e2n,2k + (x1 cot θn − x3/ sin θn)
n−1X
k=0

e2n,2k+1

+
n−1X
i=1

x2i[−(sin(iθn))
n−1X
k=i

e2n,2k + (cos(iθn))
n−1X
k=i

e2n,2k+1],

with x2i = Xn,i(s) and x2i+1 = Dn,i(s) (i = 0, · · · , n−1). Therefore, from (2.4), (3.1),

(3.9)-(3.10) and (3.13), by the Itô formula (see [9]), the proof is over (see Remark 5).

The following lemma plays a crucial role when we approximate ≠`,n by ≠X,n.

Lemma 3. Suppose that (2.5) holds. Then for any δ ∈ (0, T §),

lim
n→1n2E[ sup

0∑t∑min(T§n−δ,τn,δ)

n−1X
i=0

|Yn,i(t)− yn,i(t)|2] = 0. (3.14)

Proof. For n1 ∈ N in Lemma 2, there exists a positive constant C such that the

following which will be proved later holds: for any n ≥ n1 and t ∈ [0, T §n − δ],

E[ sup
0∑s∑min(t,τn,δ)

n−1X
k=0

|yn,k(s)− Yn,k(s)|2] (3.15)

∑ CT (n)−1n3 + C

Z t

0
E[ sup

0∑u∑min(s,τn,δ)

n−1X
k=0

|yn,k(u)− Yn,k(u)|2]ds.

This implies (3.14), by Gronwall’s inequality, from (2.5).

We prove (3.15) to complete the proof. For any n ≥ n1, by Lemmas 1 and 2, the

following holds: for t ∈ [0,min(T §n − δ, τn,δ)],
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n−1X
k=0

|yn,k(t)− Yn,k(t)|2

=
2

cos2(θn/2)

n−1X
k=0

Z t

0
< yn,k(s)− Yn,k(s),µ

1
`n,k+1(s)

− 1
Xn,k+1(s)

∂
(sin(kθn),− cos(kθn))

+
µ

1
`n,k(s)

− 1
Xn,k(s)

∂
(− sin((k + 1)θn), cos((k + 1)θn)) > ds

+
2

cos2(θn/2)

n−1X
k=0

Z t

0
< yn,k(t)− Yn,k(s),∑

−T (n)
θn

hn(Xn,k+1(s)) +
1

Xn,k+1(s)

∏
(sin(kθn),− cos(kθn))

+
∑
T (n)
θn

hn(Xn,k(s))− 1
Xn,k(s)

∏
(sin((k + 1)θn),− cos((k + 1)θn)) > ds

+2
T (n) tan(θn/2)

θn/2

n−1X
k=0

Z t

0

ØØØØhn(Xn,k(s))
sin θn

ØØØØ2 ds + M(t),

where M(t) denotes a purely discontinuous martingale part of
Pn−1

k=0 |yn,k(t)−Yn,k(t)|2.

Since {C−1
k (δ)}k≥n1 is bounded by (14) of [4], we only have to show the following

(3.16)-(3.19) to complete the proof: for t ∈ [0,min(T §n − δ, τn,δ)],

2
cos2(θn/2)

n−1X
k=0

Z t

0
< yn,k(s)− Yn,k(s), (3.16)µ

1
`n,k+1(s)

− 1
Xn,k+1(s)

∂
(sin(kθn),− cos(kθn))

+
µ

1
`n,k(s)

− 1
Xn,k(s)

∂
(− sin((k + 1)θn), cos((k + 1)θn)) > ds

∑ 4n2 sin2 θn

Cn(δ)2 cos θn cos2(θn/2)

Z t

0
sup

0∑u∑min(s,τn,δ)

n−1X
k=0

|yn,k(u)− Yn,k(u)|2ds,
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2
cos2(θn/2)

n−1X
k=0

Z t

0
< yn,k(t)− Yn,k(s), (3.17)∑

−T (n)
θn

hn(Xn,k+1(s)) +
1

Xn,k+1(s)

∏
(sin(kθn),− cos(kθn))

+
∑
T (n)
θn

hn(Xn,k(s))− 1
Xn,k(s)

∏
(sin((k + 1)θn),− cos((k + 1)θn)) > ds

∑ 2
Z t

0
sup

0∑u∑min(s,τn,δ)

n−1X
k=0

|yn,k(u)− Yn,k(u)|2ds + 2nt

ØØØØ 8n3θn

T (n)Cn(δ)3 sin θn

ØØØØ2 ,

2
T (n) tan(θn/2)

θn/2

n−1X
k=0

Z t

0

ØØØØhn(Xn,k(s))
sin θn

ØØØØ2 ds ∑ 8n3tθn

T (n)Cn(δ)2 cos2(θn/2) sin θn
, (3.18)

and for t ∈ [0, T §n − δ],

{E[ sup
0∑s∑min(t,τn,δ)

|M(s)|2]}1/2 (3.19)

∑ 32n2θn

T (n)Cn(δ)2 sin θn cos2(θn/2)
+

6n3tθ2
n

(T (n)Cn(δ) sin θn)2

+3
Z t

0
E[ sup

0∑u∑min(s,τn,δ)

n−1X
k=0

|yn,k(u)− Yn,k(u)|2]ds.

We first prove (3.16). By (3.4) and (3.6), for k = 0, · · · , n− 1 and s ∈ [0, T §n),

yn,k+1(s)− Yn,k+1(s) (3.20)

= yn,k(s)− Yn,k(s) + (`n,k+1(s)−Xn,k+1(s))(− sin((k + 1)θn), cos((k + 1)θn)).

Hence for s ∈ [0, T §n),
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n−1X
k=0

< yn,k(s)− Yn,k(s),
µ

1
`n,k+1(s)

− 1
Xn,k+1(s)

∂
(sin(kθn),− cos(kθn))

+
µ

1
`n,k(s)

− 1
Xn,k(s)

∂
(− sin((k + 1)θn), cos((k + 1)θn)) >

=
n−1X
k=0

< yn,k(s)− Yn,k(s),−2(sin θn)(cos((k + 1)θn), sin((k + 1)θn)) >

×
µ

1
`n,k+1(s)

− 1
Xn,k+1(s)

∂
+

n−1X
k=0

(cos θn)(`n,k(s)−Xn,k(s))
µ

1
`n,k(s)

− 1
Xn,k(s)

∂
.

This together with (3.11)-(3.12) and the following implies (3.16) : for s ∈ [0, T §n),

< yn,k(s)− Yn,k(s),−2(sin θn)(cos((k + 1)θn), sin((k + 1)θn)) >

×
µ

1
`n,k+1(s)

− 1
Xn,k+1(s)

∂
∑ |yn,k(s)− Yn,k(s)|2 sin2 θn

`n,k+1(s)Xn,k+1(s) cos θn
+

(`n,k+1(s)−Xn,k+1(s))2 cos θn

`n,k+1(s)Xn,k+1(s)
.

(3.17) can be proved by (3.12) and by the following: for x > 0,

1
x
− T (n)

θn
hn(x) =

θn cot θn

T (n)x3

µ
2

1 + (1 + 4x−2T (n)−1θn cot θn)1/2

∂2

,

since cos θn < cos2(θn/2).

(3.18) is true, since hn(x) < θn(T (n)x)−1 by (2.3).

Finally we prove (3.19). For t ∈ [0, T §n − δ],

E[ sup
0∑s∑min(t,τn,δ)

|M(s)|2]

∑ 4E[|M(min(t, τn,δ))|2] (by Doob’s inequality)

= 4
T (n) tan(θn/2)

θn/2

n−1X
i=0

E[
Z min(t,τn,δ)

0
(−2

hn(Xn,i(s))
sin θn

×[< yn,i−1(s)− Yn,i−1(s), (sin((i− 1)θn),− cos((i− 1)θn)) >

+ < yn,i(s)− Yn,i(s), (− sin((i + 1)θn), cos((i + 1)θn)) >]

+2
ØØØØhn(Xn,i(s))

sin θn

ØØØØ2)2ds].
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For s ∈ [0,min(t, τn,δ)) and i = 0, · · · , n− 1, by (3.12),

(−2
hn(Xn,i(s))

sin θn
[< yn,i−1(s)− Yn,i−1(s), (sin((i− 1)θn),− cos((i− 1)θn)) >

+ < yn,i(s)− Yn,i(s), (− sin((i + 1)θn), cos((i + 1)θn)) >] + 2
ØØØØhn(Xn,i(s))

sin θn

ØØØØ2)2
∑ 4

ØØØØ 2nθn

T (n)Cn(δ) sin θn

ØØØØ2 (|yn,i−1(s)− Yn,i−1(s)| + |yn,i(s)− Yn,i(s)|

+
ØØØØ 2nθn

T (n)Cn(δ) sin θn

ØØØØ)2
since hn(x) < θn(T (n)x)−1 by (2.3).

Use the inequality (xy)1/2 ∑ (x + y)/2 (x, y > 0) for

x = 4
T (n) tan(θn/2)

θn/2
× 4

ØØØØ 2nθn

T (n)Cn(δ) sin θn

ØØØØ2 ,

y =
n−1X
i=0

E[
Z min(t,τn,δ)

0
(|yn,i−1(s)−Yn,i−1(s)|+|yn,i(s)−Yn,i(s)|+

ØØØØ 2nθn

T (n)Cn(δ) sin θn

ØØØØ)2ds].

Use also the inequality (x + y + z)2 ∑ 3(x2 + y2 + z2) for x = |yn,i−1(s) − Yn,i−1(s)|,
y = |yn,i(s)− Yn,i(s)| and z = |(2nθn)/(T (n)Cn(δ) sin θn)|. Then we obtain (3.19).

4. Proof of Main Result.

In this section we prove Theorem 2 by making use of lemmas given in section 3.

Proof of Theorem 2. For any t ∈ (0, T §) and any η > 0, take n2 ∈ N such that for

any n ≥ n2

t < T §n − (T § − t)/2,

sup
0∑s∑t

dH(≠`,n(s),≠(s)) < η/2,

which is possible Theorem 1. Put δ = (T § − t)/2. Then for any n ≥ n2,
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P ( sup
0∑s∑t

dH(≠X,n(s),≠(s)) ≥ η) (4.1)

∑ P ( sup
0∑s∑t

dH(≠X,n(s),≠`,n(s)) ≥ η/2)

∑ P ( sup
0∑s∑T§n−δ

dH(≠X,n(s),≠`,n(s)) ≥ η/2)

∑ P (τn,δ < T §n − δ) + P ( sup
0∑s∑min(T§n−δ,τn,δ)

dH(≠X,n(s),≠`,n(s)) ≥ η/2).

The first probability on the last part of (4.1) can be shown to converge to zero as

n →1 as follows: by Chebychev’s inequality,

P (τn,δ < T §n − δ)

∑ P ( sup
0∑s∑min(T§n−δ,τn,δ)

n−1max
k=0

|Xn,k(s)− `n,k(s)| ≥ Cn(δ)/(2n))

∑ P ( sup
0∑s∑min(T§n−δ,τn,δ)

n−1max
k=0

|Yn,k(s)− yn,k(s)| ≥ Cn(δ)/(4n))

∑ (4nCn(δ)−1)2E[ sup
0∑s∑min(T§n−δ,τn,δ)

n−1X
k=0

|Yn,k(s)− yn,k(s)|2]

→ 0, as n →1 by Lemma 3,

since

|Xn,k(s)− `n,k(s)| ∑ |Yn,k(s)− yn,k(s)| + |Yn,k−1(s)− yn,k−1(s)|

by (3.20) and since lim supk→1 Ck(δ)−1 is finite by (14) of [4].

The second probability on the last part of (4.1) can be shown to converge to zero

as n →1 as follows: by Chebychev’s inequality,

P ( sup
0∑s∑min(T§n−δ,τn,δ)

dH(≠X,n(s),≠`,n(s)) ≥ η/2)

∑ P ( sup
0∑s∑min(T§n−δ,τn,δ)

n−1max
k=0

|Yn,k(s)− yn,k(s)| ≥ η/2)

∑ (η/2)−2E[ sup
0∑s∑min(T§n−δ,τn,δ)

n−1X
k=0

|Yn,k(s)− yn,k(s)|2]

→ 0, as n →1 by Lemma 3,
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since

dH(≠X,n(s),≠`,n(s)) ∑ n−1max
k=0

|Yn,k(s)− yn,k(s)|.
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