
 

Instructions for use

Title An effect of the Gilbert damping constant on the skyrmion Hall effect

Author(s) Ishida, Yuichi; Kondo, Kenji

Citation Journal of Magnetism and Magnetic Materials, 493, 165687
https://doi.org/10.1016/j.jmmm.2019.165687

Issue Date 2020-01-01

Doc URL http://hdl.handle.net/2115/83755

Rights © 2020, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/

Rights(URL) https://creativecommons.org/licenses/by-nc-nd/4.0/

Type article (author version)

File Information main_revised.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


An Effect of the Gilbert Damping Constant on the Skyrmion Hall effect

Yuichi Ishida, Kenji Kondo∗

Research Institute for Electronic Science, Hokkaido University, Kita-20, Nishi-10, Sapporo, Hokkaido, Japan

Abstract

We investigate the skyrmion Hall effect using the Landau-Lifshitz-Gilbert (LLG) equation and the Thiele equation,
respectively. Then, we find that these methods give different values for the ratio of in-plane skyrmion velocity components
when the Gilbert damping constant is relatively small. Since the Thiele equation is derived from the LLG equation by
assuming that the skyrmion structure does not change and behaves like a rigid body, the above result suggests that this
assumption does not hold when the Gilbert damping constant is relatively small. Therefore, we conclude that the Thiele
equation can not describe the systems precisely under the relatively small Gilbert damping constant due to the distortion
of the skyrmion structure and that it is mandatory to solve the LLG equation numerically in order to investigate the
skyrmion Hall effect accurately. This result is very important since the Gilbert damping constants of metal materials
are generally very small.

Keywords: Skyrmion Hall effect, Micromagnetic simulation, LLG equation
PACS: M 75.60.Ch, 75.70.Cn, N 75.78.-n, N 75.78.Cd, N 75.78.Fg

1. Introduction

Magnetic skyrmions are chiral spin structures which
has particle-like properties [1]. Recently, skyrmions are
considered to be candidates for spintronics devices such as
high-density memories and logic devices. This is because
skyrmions are small and can be driven by a low current
density in comparison with the critical current density for
domain wall motion [2]. Moreover, it is difficult to destroy
their structures and deform them to other magnetic struc-
tures since their structures are topologically protected.
This is another advantage to utilizing skyrmions for spin-
tronics devices.

In heterostructures of insulator/ultrathin ferromagnet/
heavy metal multilayers, magnetic skyrmions can be moved
by the spin orbit torque induced from a pure spin current
which is generated by the spin Hall effect [3, 4]. The spin
Hall effect occurs in the heavy metal layer when we apply
the charge current along the x-direction as shown in Fig. 1.
Then, skyrmions move perpendicularly to the above cur-
rent flow, which is called the skyrmion Hall effect [5]. The
skyrmion Hall effect is considered to be caused by the effec-
tive Magnus force acting on the skyrmion. A skyrmion has
a topological invariant which is called skyrmion charge Q.
The skyrmion charge Q has integer number and skyrmions
deflect to the right or the left direction depending on the
sign of the skyrmion charge.

The skyrmion Hall effect can be investigated by the
Thiele equation. However, this equation is derived as-
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Figure 1: An illustration of the skyrmion Hall effect. A skyrmion in
the ferromagnet layer is deflected by the spin orbit torque from the
spin current generated in the heavy metal layer.

suming that the skyrmion structure does not change and
behaves like a rigid body. Therefore, when the above as-
sumption does not hold, it is considered that the Thiele
equation becomes invalid.

In this study, we investigate the skyrmion Hall effect
using both micromagnetic simulations and the Thiele equa-
tion and compare the results obtained by the two different
methods. Moreover, the time evolution of the skyrmion
with skyrmion charge of ±1 is demonstrated in detail.

2. Theory

The magnetization of an isolated skyrmion can be de-
scribed by the spherical coordinates as follows:

m = (cosΦ(ϕ) sin θ(r), sinΦ(ϕ) sin θ(r), cos θ(r)), (1)
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where m is the magnetization unit vector and Φ(ϕ) =nϕ+
γ. Here, ϕ is the azimuth angle, n is the vorticity, and γ is
the helicity. We consider the case of n = 1 and γ = 0 or π
in this study. A skyrmion structure is obtained by calcu-
lating the lowest energy state of the magnetization given
by Eq. (1) by utilizing the variational principle [6–9]. In
our study, the total energy consists the exchange energy,
the uniaxial perpendicular anisotropy energy, the interfa-
cial Dzyaloshinskii-Moriya interaction (DMI) energy, and
the demagnetization energy. As a result, the total energy
density is given by
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where A is the exchange stiffness, K is the perpendicular
anisotropy constant, DDMI is the DMI constant, µ0 is the
vacuum permeability, Ms is the saturation magnetization,
andHd is the demagnetization field. For the demagnetiza-
tion energy, we utilize the local approximation that the de-
magnetization field Hd is determined by Hd = −Msmz ẑ.
When we calculate the skyrmion structure, it is imposed
that the boundary condition θ(0) = π and θ(∞) = 0, or
θ(0) = 0 and θ(∞) = π. Under this boundary condition,
we obtain Φ(ϕ) = ϕ or Φ(ϕ) = ϕ+π to minimize the total
energy, respectively. Then, we obtain the Euler-Lagrange
equation of the angle of θ which is as follows:

d2θ

dr̃2
+
1

r̃

dθ

dr̃
− sin θ cos θ

r̃
±DDMI√

AK

sin2 θ

r̃
−sin θ cos θ = 0, (3)

where r̃ = r
√

K/A. The plus or minus sign of the fourth
term corresponds to the boundary condition of θ(0) =
π and θ(∞) = 0, or θ(0) = π and θ(∞) = 0, respec-
tively. The skyrmion structure obtained from Eq. (3) is
distinguished by the topological invariant called skyrmion
charge which is defined by

Q =
1

4π

∫
m ·

(
∂m

∂x
× ∂m

∂x

)
dxdy. (4)

This corresponds to how many times the magnetization
wraps the S2 sphere. Inserting the Eq. (1) to the above,
the skyrmion charge is explicitly given by

Q =
n

2
(mz(0)−mz(∞)) . (5)

Therefore, the skyrmion charge becomes Q = ±n = ±1
under the above conditions.

When the spin torque works on magnetization, the
magnetization dynamics is governed by the modified Landau-
Lifshitz-Gilbert (LLG) equation which is written by [10,
11]

dm

dt
= −γµ0m×Heff + αm× dm

dt
+

τ

Ms
, (6)

where γ is the gyromagnetic ratio, α is the Gilbert damp-
ing constant, Heff is the effective magnetic field, and τ
is the spin torque working on the magnetization. The ef-
fective magnetic field represents all the effects working on
magnetic moments and can be obtained using functional
derivative as follows:

Heff = − 1

µ0

δE[M ]

δM
, (7)

where E is the total energy of all the effects working on
magnetic moments and M is the magnetization vector.
When we calculate the effective magnetic field numerically,
we employ a finite element method (FEM) for the space
discretization. Specifically, after transforming the Eq. (7)
to the next equation, we utilize the Rayleigh-Ritz method
to solve the equation.

δ

δM
(E[M ] + µ0M ·Heff) = 0. (8)

When the effective magnetic field is calculated by this
method, it is not necessary to take into consideration the
following boundary condition explicitly [12].

dm

dn
=

DDMI

2A
(ẑ × n)×m, (9)

where n is the unit vector perpendicular to the edge. This
is because the above condition is included naturally within
the process of solving the Eq. (8). Therefore, the Rayleigh-
Ritz method has the benefit that all elements can be equally
treated without dealing with the edges exceptionally. When
the spin torque is generated from the spin Hall effect, the
last term of Eq. (6) is written as follows [13–16]:

τ = −γℏ
2e

θsh
tf

m× [m× (ẑ × j)] , (10)

where ℏ is the Dirac constant, e is the electron charge, θsh
is the spin Hall angle of the heavy metal, tf is the thickness
of the ferromagnet layer, and j is the current density.

We utilize a finite difference method based on the mid-
point rule for the time discretization of Eq. (6) [17, 18].
After substituting Eq. (10) to Eq. (6), Eq. (6) can be re-
arranged to the following form:

dm

dt
= − 1

1 + α2
γµ0m× H̃, (11)

where

H̃ =H + αm×H,

H =Heff +
ℏ

2eµ0

θsh
tfMs

[m× (ẑ × j)] . (12)

For the time discretization of Eq. (11), we introduce the
midpoint rule approximations as follows:(

dm

dt

)(n+ 1
2 )
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m(n+1) −m(n)
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+O(∆t2), (13)

m(n+ 1
2 ) =
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2
+O(∆t2), (14)
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where the superscript (n) denotes the time step tn and ∆t
is the time interval tn+1 − tn. We also need to approxi-

mate H̃
(n+ 1

2 ) in order to derive the formula of the time

discretization. H̃
(n+ 1

2 ) is calculated by the extrapolation
method as follows:

H̃
(n+ 1

2 ) =
3

2
H̃

(n) − 1

2
H̃

(n−1)
+O(∆t2). (15)

By substituting Eqs. (13), (14), and (15) to Eq. (11) and
neglectingO(∆t2), a time-discretized LLG equation is given
by

m(n+1) −m(n) = − γµ0∆t

2(1 + α2)

(
m(n+1) +m(n)

)
×
(
3

2
H̃

(n) − 1

2
H̃

(n−1)
)
,

(16)

which is a linear vector equation for m(n+1). Therefore, it
is easy to calculate the value of m(n+1) using the values

of m(n), H̃
(n)

, and H̃
(n−1)

. Moreover, Eq. (16) has the
desirable property that the magnitude of magnetization
unit vector is conserved at any time steps. This is because
the following equation can be obtained by calculating the
inner product of both sides of Eq. (16) with the vector
m(n+1) +m(n):

|m(n+1)|2 = |m(n)|2. (17)

After preparing the space and time discretization schemes
mentioned above, we can perform the micromagnetic sim-
ulation by solving Eq. (16).

Meanwhile, we can also solve the LLG equation analyt-
ically under the special condition although it is impossible
to solve the LLG equation analytically under the general
condition. If it is assumed that the motion of magneti-
zation structure is only translation and its configuration
does not change, the dynamics of the magnetization is de-
scribed by the Thiele equation which can be derived from
the LLG equation [19]. From Eq. (6), we obtain the Thiele
equation which describe steady state motion of a skyrmion
written by

G× v − 4παD · v + 4πB · j = 0, (18)

where G = (0, 0,−4πQ) is the gyromagnetic coupling vec-
tor, v is the magnetic skyrmion velocity, D = (D 0

0 D ) is
the dissipative force tensor, B = (B 0

0 B ) quantifies the effi-
ciency of the spin Hall torque, and the components of these
tensor D and B are determined by the configuration of the
magnetic skyrmion. When the current density is spatially
homogeneous and has only x-component j = (jx, 0), the
magnetic skyrmion velocity is given by

vx =
αD

Q2 + α2D2
Bjx, vy = − Q

Q2 + α2D2
Bjx. (19)

Since the skyrmion charge of a skyrmion is Q = +1 or
Q = −1, the skyrmion has the perpendicular velocity com-
ponent to the current flow. Moreover, the analytical ratio
of in-plane velocity components is given by

vy
vx

=
−Q

αD
. (20)

In order to estimate this value, we need to calculate the
value of D. Generally, the components of dissipative force
tensor D are given by [11, 19]

Dij =
1

4π

∫
∂m

∂xi
· ∂m
∂xj

dxdy. (21)

Using the magnetization of an isolated skyrmion described
by Eq. (1), we obtain the components of D as follows:

Dxx =Dyy = D, (22)

Dxy =Dyx = 0, (23)

where

D =
1

4

∫ ∞

0

[(
dθ
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)2

+
n2 sin2 θ

r2

]
rdr, (24)

and n is vorticity. By substituting the solution of Eq. (3)
into Eq. (24), we can obtain the value of D of 1.204.

3. Results and discussion

In micromagnetic simulation, the heavy metal and the
ferromagnetic material are assumed to be tantalum and
FeCoB. We use the following material parameters: Ms =
600 kA/m, A = 30 pJ/m,DDMI = 4 mJ/m2,K = 0.8 MJ/m

3
,

tf = 1 nm, θsh = −0.1. First of all, we have to pre-
pare a skyrmion structure for the initial condition before
performing a calculation of skyrmion Hall effects. Then,
a skyrmion structure can be obtained by the variational
method. The red (blue) line in Fig. 2(a) shows the so-
lution of Eq. (3) under the boundary condition θ(0) = 0
and θ(∞) = π (θ(0) = π and θ(∞) = 0). Moreover, the
red and blue lines correspond to the skyrmions having the
skyrmion charge of Q = +1 and Q = −1, respectively. In
order to obtain the skyrmions size, we define a skyrmion
radius as a point where the angle of θ(r) becomes π/e.
Then, it is found that the radii of both the skyrmions
are 11.3 nm. Figures 2(b) and 2(c) show the skyrmion
structures with skyrmion charge of Q = +1 and Q = −1,
respectively. These skyrmion structures can be obtained
from Eq. (1) by substituting the calculated θ(r). In both
the figures, the directions and the colors of arrows rep-
resent the magnetization-direction and the magnitude of
z-components of magnetization at each point, respectively.
These skyrmions are called Néel-type skyrmions. This is
because the magnetization-direction changes from up to
down (from down to up) in the same way as Néel-type do-
main walls, which is clear from the cross sectional views
of the skyrmions as shown in Figs. 2(d) and 2(e).
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Next, we utilize the above skyrmions for the initial
states of the micromagnetic simulations. In the simula-
tions, we apply the current density jx = 1 TA/m2 to the
heavy metal layer in the x-direction and the magnetic field
Bz = 1 mT in the z-direction. In the case of α = 0.3,
the snap shots of time evolution of the skyrmion motions
are shown in Figs. 3(a), 3(b), and 3(c) for the skyrmion
with the skyrmion charge of Q = +1 (in Figs. 3(d) ,3(e),
and 3(f) for the skyrmion with the skyrmion charge of

(b) (c)

(d) (e)

(a)

Figure 2: (a) The radial dependence of the θ(r) obtained using
the variational method. The red and blue lines represent θ(r) of
a Q = +1 skyrmion and a Q = −1 skyrmion, respectively. The mag-
netization structures of (b) the Q = +1 skyrmion and (c) the Q = −1
skyrmion obtained using the above θ(r), respectively. The cross sec-
tional views of (d) Q = +1 skyrmion and (e) Q = −1 skyrmion.
In figures (b), (c), (d), and (e), the directions and the colors of ar-
rows represent the magnetization-direction and the magnitude of z-
component of magnetization at each point, respectively.

Q = −1). As shown in the figures, the skyrmions having
the skyrmion charge of Q = +1 and Q = −1 deflect to
the left and the right direction against the current flow,
respectively. These results could be also obtained using
the Eq. (19) which is derived from the Thiele equation.
However, there exists the difference quantitatively between
results obtained by the LLG equation and analytical so-
lution by the Thiele equation. We can confirm the above
discrepancy by comparing the ratios of in-plane skyrmion
velocity components.

When estimating the ratio of in-plane skyrmion veloc-
ity components using the equation (20), we need to cal-
culate the value of D. In order to calculate the value
of D, we use the initial magnetization distribution of the
skyrmion obtained by the variational principle. As a re-
sult, using Eq. (24), we obtain the value of D of 1.204.
Then, this value of D is assumed to remain constant since
the equation (20) is derived from the Thiele equation an-
alytically. We regard this an analytical ratio of in-plane
skyrmion velocity components. On the other hand, in or-
der to calculate the numerical value of the ratio, we uti-
lize the average skyrmion velocities in the micromagnetic
simulation. The analytical and numerical values are rep-
resented by the orange solid line and the blue solid circles
in Fig. 4. As shown in the figure, the analytical ratio of
in-plane skyrmion velocity components obtained using the
Thiele equation deviates from the numerical one obtained
using micromagnetic simulation with decreasing the value
of the Gilbert damping constant α. Since the Thiele equa-
tion is derived from the LLG equation assuming that the
skyrmion structure does not change and behaves like a
rigid body, the above result suggests that the system does
not satisfy the assumption and that the Thiele equation
is invalid when the value of α is relatively small. This is
because the structures of skyrmions are distorted with de-
creasing the value of α. As a result, the value of D cannot
remain constant in the equation (20) and the deviation
from numerical results becomes large. Namely, under the

(a)

(d) (f)(e)

(b) (c)
t = 0 ns

t = 0 ns

t = 0.5 ns

t = 0.5 ns

t = 1 ns

t = 1 ns

Figure 3: The time evolution of skyrmion motion (a), (b), and (c) with the skyrmion charge of Q = +1 and (d), (e), and (f) with the skyrmion
charge of Q = −1 in the case of α = 0.3.
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Figure 4: The dependence of the ratios of in-plane velocity compo-
nents on the damping constant α. The blue solid circles and the
orange solid line represent the numerical results and analytical value
obtained from Eq. (20), respectively.

slow damping
rapid damping

m

heff

Figure 5: The illustration of the magnetization damping. Here, the
red and blue solid arrows are the magnetization unit vector m and
the effective magnetic field unit vector heff , respectively. The green
and the orange solid curves represent the trajectories of the magne-
tization for the large and small α, respectively.

condition of smaller α, the direction of the magnetization
inclines more slowly to the direction of the effective mag-
netic field as shown in Fig. 5. This fact means that the
structures of skyrmions are shaken for a long period to
distort largely. Therefore, the dissipative force tensor D
is considered to change from the initial state. In fact, Fig-
ure 6 shows time average values of the components of D
which is calculated using Eq. (21) at the each value of α.
As shown in Fig. 6, the values of off-diagonal components
of D become to have some values although they are equal
to zero in the initial state as shown in Eq. (23). There-
fore, we are sure that the skyrmion distortion is related
to the off-diagonal part of the components of the dissipa-
tive force tensor. However, it is difficult to extract simple
relation between the skyrmion distortion and the dissipa-
tive force tensor. We manage to extract simple relation
between the skyrmion distortion and the dissipative force
tensor. Then, we focus on the speed of the time change of
the dissipative force tensor. In order to estimate the speed

(a) (b)

(c) (d)

Dxx Dxy

Dyx Dyy

Figure 6: The time average values of the components of the dissipa-
tive force tensor D which is calculated using Eq. (21) for the different
values of the damping constant α.

(a) (b)

(c) (d)

Dxx Dxy

Dyx Dyy

Figure 7: The average frequencies of the time change of the compo-
nents of the dissipative force tensor D for the different values of the
damping constant α.

of the time change of the dissipative force tensor, we need
to calculate frequencies of the time change of D using the
DFT (discrete Fourier transform) method. Figure 7 shows
the average frequencies for the different values of α. As
shown in Fig. 7, there exist a tendency that the frequency
of the off-diagonal components of D becomes higher with
the value of α decreasing. This means that the shape of
the skyrmion vibrates drastically with the value of α de-
creasing. This fact is consistent with our above intuitive
consideration. Therefore, we consider that the speed of the
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Figure 8: The dependence of the ratios of in-plane skyrmion velocity
components on the current density jx, which is obtained by utilizing
the micromagnetic simulation.

time change of the skyrmion distortion is one of the reason
for the difference between analytical value and numerical
value.

Although, so far, we have discussed the dependence
of the ratio of the skyrmion velocity components on the
Gilbert damping constant, the ratio of the skyrmion ve-
locity components also depends on the current density as
shown in Fig. 8. Figure 8 shows the dependence of the
ratios of in-plane skyrmion velocity components on the
current density in the case of α of 0.3, which is obtained
by utilizing the micromagnetic simulation. This result is
consistent with the result of Ref. [5].

4. Conclusion

When skyrmions are moved by the spin Hall torque,
the motions of skyrmions are not parallel to the injected
current flow and skyrmions deflect to the left or the right
corresponding to the skyrmion charge. Namely they show
so-called skyrmion Hall effect. This result is obtained us-
ing not only the micromagnetic simulation but also the
Thiele equation. However, there exists clear difference be-
tween the ratio of the in-plane skyrmion velocity using the
micromagnetic simulation and the one using the Thiele
equation when the Gilbert damping constant is relatively
small. This fact shows that the Thiele equation is invalid
for the systems with the relatively small Gilbert damp-
ing constant. This is very important since the Gilbert
damping constant of metal materials are generally very
small. Therefore, when applying skyrmions to spintron-
ics devices, it is mandatory to investigate the skyrmion
dynamics accurately by utilizing the micromagnetic simu-
lation.
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