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Abstract
We are concerned with the system of N vortex points on a sphere with

two fixed vortex points at the poles. This article gives a reduction method
of the system to invariant dynamical systems when all the vortex points
have the same strength. It is carried out by considering the invariant
property of the system with respect to the shift and pole reversal transfor-
mations, for which the polygonal ring configuration of the N vortex points
at the line of latitude, called “N -ring”, remains unchanged. We prove that
there exists a 2p-dimensional invariant dynamical system reduced by the
p-shift transformation for arbitrary factor p of N . The p-shift invariant
system is equivalent to the p-vortex points system generated by the aver-
aged Hamiltonian with the modified pole vortices. It is also shown that the
system can be reduced by the pole reversal transformation when the pole
vortices are identical. Since the reduced dynamical systems are defined in
the linear space spanned by the eigenvectors given in the linear stability
analysis for the N -ring, we obtain the inclusion relation among the invari-
ant reduced dynamical systems. This allows us to decompose the system
of a large number of vortex points into a collection of invariant reduced
subsystems.

PACS: 47.32.Cc 47.20.Ky,05.45.-a
Keywords: Vortex points; Flow on a sphere; Reduction method; Invariant dynamical systems

1 Introduction

We consider the motion of the inviscid and incompressible flow on a sphere.
Specifically, we focus on the motion of the vortex points, in which the vorticity
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concentrates discretely. Since the strength of the vortex point, which is the
circulation around the point, is conserved according to Kelvin’s theorem, the
vortex point behaves like a material point, and it is advected by the velocity field
that the other vortex points induce.

Now, let (Θm, Ψm) denote the position of the mth vortex point in the spherical
coordinates. The equations of the N -vortex points with the identical strength
Γ(N) = 2π/N on the sphere are given by

Θ̇m = −Γ(N)

4π

N∑
j �=m

sin Θj sin(Ψm − Ψj)

1 − cos γmj
≡ Fm, (1)

Ψ̇m = − Γ(N)

4π sin Θm

N∑
j �=m

cos Θm sin Θj cos(Ψm − Ψj) − sin Θm cos Θj

1 − cos γmj

+
Γ1

4π

1

1 − cos Θm

− Γ2

4π

1

1 + cos Θm

≡ Gm, m = 1, 2, · · · , N, (2)

in which γmj represents the central angle between the mth and the jth vortex
points, and

cos γmj = cos Θm cos Θj + sin Θm sin Θj cos(Ψm − Ψj).

The last two forcing terms in the equation (2) represent the flow fields induced
by the pole vortices. The strengths of the north and the south pole vortices are
denoted by Γ1 and Γ2 respectively. They are formally introduced in order to
incorporate an effect of rotation of the sphere locally.

The equations (1) and (2) define the dynamical system in the 2N -dimensional
phase space PN ≡ [0, π]N × (R/2πZ)N , which we rewrite in the following vector
form:

d�x

dt
= F(�x),

where the map F : PN → R
2N gives the vector field for the position �x ∈ PN ,

F : (Θ1, · · · , ΘN , Ψ1, · · · , ΨN) �→ (F1, · · · , FN , G1, · · · , GN).

We call the dynamical system the “N -vortex system” or the “N -vortex problem”
with the identical strength. This is the Hamiltonian dynamical system[7, 12],
whose Hamiltonian is represented by

H = −
(
Γ(N)

)2
8π

N∑
m=1

N∑
j �=m

log(1 − cos γmj)

−Γ1Γ
(N)

4π

N∑
m=1

log(1 − cos Θm) − Γ2Γ
(N)

4π

N∑
m=1

log(1 + cos Θm). (3)
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The solution of the equations (1) and (2) exists globally in time, since the self-
similar collapse of the vortex points never occurs when the strengths of the vortex
points are the same[5]. We also note that the system has the invariant quantity∑N

m=1 cos Θm due to the invariance of the Hamiltonian with respect to the rota-
tion around the pole.

The N -vortex system attracts many researchers as a nonlinear Hamiltonian
dynamical system[12]. For instance, the system of the three vortex points is
integrable in the absence of the pole vortices and its motion was studied well[5, 6,
15]. Many relative fixed configurations of the N vortex points were systematically
found[10, 11, 13]. Relative periodic orbits were also determined by the invariance
of the Hamiltonian under the action of groups[9, 19]. In the meantime, when the
N vortex points are spaced equally along the line of latitude, the polygonal ring
configuration is called “N -ring”. The motion of the N -ring has been investigated
in particular, since the ring configuration of the vortex structure is often observed
in the numerical research of the atmospheric phenomena[4, 14, 16]; The linear
and nonlinear stability analysis of the N -ring with and without the pole vortices
were given[1, 2, 3, 8, 17]. The unstable motion of the perturbed N -ring was
investigated[17, 18].

On the other hand, the N -vortex problem appears when the Euler equations
are solved by the vortex method; Discretizing the vorticity region at the initial
time with a cluster of vortex points, we investigate the evolution of the vortex
points as an approximated solution of the Euler equations. In order to attain
accurate approximation, the number of the discretizing vortex points must be
very large. However, mathematical analysis of the vortex-points system gets more
difficult in general as the number of the vortex points increases. Therefore we
sometimes reduce the N -vortex system to low-dimensional systems by assuming
a certain symmetry, and then study them as embedded subsystems. For instance,
in the papers [17] and [18], the N -vortex system was successfully reduced to the
integrable two-dimensional systems, with which the existence of the periodic, the
heteroclinic and the homoclinic orbits and their stability were investigated. Thus
the reduced systems help us understand the dynamics of the large number of the
N -vortex points.

In the article, we give a reduction method of the N -vortex system to invariant
dynamical systems. In §2, the linear stability analysis of the N -ring[17, 18] is
reviewed. It is required to characterize the invariant systems in the following
sections. In §3, we show that it is possible to reduced the system by considering
the invariant property for a shift transformation. The reduced dynamical system
exists for every factor p of N , and it is equivalent to the p-vortex system generated
by the averaged Hamiltonian on the sphere when the strengths of the pole vortices
are modified suitably. In §4, we reduce the N -vortex system by the invariance
with respect to a pole reversal transformation when the strength of the north pole
vortex is equivalent to that of the south pole vortex. We conclude and discuss
the results in the last section.
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2 Preliminary results

We give a brief summary of the linear stability analysis for the N -ring [17, 18],
which is expressed by

Θm = θ0, Ψm =
2πm

N
, m = 1, 2, · · · , N. (4)

The N -ring is a relative equilibrium for the equations (1) and (2) rotating with
the constant velocity V0(N) in the longitudinal direction,

V0(N) =
Γ1 − Γ2

4π sin2 θ0

+
(Γ1 + Γ2 + 2π) cos θ0

4π sin2 θ0

− 1

2N

cos θ0

sin2 θ0

.

When we add small perturbations to the equilibrium,

Θm(t) = θ0 + εθm(t), Ψm(t) =
2πm

N
+ V0(N)t + εϕm(t), |ε| � 1, (5)

we obtain the linearized equations of O(ε) for the perturbations:

θ̇m =
1

2N sin θ0

N∑
j �=m

ϕm − ϕj

1 − cos 2π
N

(m − j)
, (6)

ϕ̇m =
1

2N sin3 θ0

N∑
j �=m

θm − θj

1 − cos 2π
N

(m − j)
+ BNθm. (7)

The parameter BN is denoted by

BN =
1 + cos2 θ0

2N sin3 θ0

− κ1(1 + cos2 θ0)

2 sin3 θ0

− κ2 cos θ0

2 sin3 θ0

, (8)

in which κ1 and κ2 are defined by

κ1 =
Γ1 + Γ2 + 2π

2π
, κ2 =

Γ1 − Γ2

π
.

Then, we have obtained the eigenvalues and their corresponding eigenvectors for
the linearized equations (6) and (7).

Theorem 1. For m = 0, 1, · · · , N − 1, the eigenvalues λ±
m are represented by

λ±
m = ±

√
ξmηm, (9)

in which

ξm =
m(N − m)

2N sin θ0
, ηm =

m(N − m)

2N sin3 θ0

+ BN . (10)
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It follows from (9) and (10) that we have λ±
m = λ±

N−m. The symmetry indicates
that when the number of the vortex points is even, say N = 2M , we have the zero
eigenvalues λ±

0 = 0, the double eigenvalues λ±
m for m = 1, · · · , M − 1, and the

simple eigenvalues λ±
M . On the other hand, for the odd case, i.e. N = 2M + 1,

the eigenvalues λ±
0 are zero, and all the other eigenvalues λ±

m are double for
m = 1, · · · , M .

The following theorem provides us with the explicit representation of the
eigenvectors corresponding to the eigenvalues.

Theorem 2. Let the vectors �φ±
m and �ψ±

m be defined by

�ψ±
m = t

(√
ξm,
√

ξm cos
2π

N
m, · · · ,

√
ξm cos

2π

N
(N − 1)m,

±√
ηm,±√

ηm cos
2π

N
m, · · · ,±√

ηm cos
2π

N
(N − 1)m

)
, (11)

�φ±
m = t

(
0,
√

ξm sin
2π

N
m, · · · ,

√
ξm sin

2π

N
(N − 1)m,

0,±√
ηm sin

2π

N
m, · · · ,±√

ηm sin
2π

N
(N − 1)m

)
, (12)

for m = 1, · · · , M = [N/2], in which [x] denotes the largest integer less than

or equals x. Then, the vectors �φ±
m and �ψ±

m are the eigenvectors corresponding

to the eigenvalues λ±
m for m = 1, · · · , M − 1. When N = 2M , the vectors �ψ±

M

are the eigenvectors for the simple λ±
M , whereas �φ±

M and �ψ±
M are the eigenvectors

corresponding to the double λ±
M for N = 2M + 1. Furthermore, the eigenvectors

are linearly independent.

Since the multiplicity of the eigenvalues λ±
M for the even case is different from

that for the odd case, so are the corresponding eigenvectors. In the present
article, we use these eigenvectors to characterize invariant dynamical systems
embedded in the real phase space PN . However, while the eigenvectors (11) and
(12) are real vectors for ηm > 0, they have the pure imaginary component

√
ηm

when ηm is negative. Then noting that �φ−
m is the complex conjugate of �φ+

m for

the negative case, we newly define the real eigenvectors by (�φ+
m + �φ−

m)/2 and

(�φ+
m − �φ−

m)/2i. In the same way, we redefine the real eigenvectors with respect to
�ψ±

m. Hence, regardless of the sign of ηm, we can construct the linearly independent
real eigenvectors. In what follows, for the sake of convenience, the redefined real
eigenvectors are denoted by �φ±

m and �ψ±
m for ηm < 0. On the other hand, since the

total number of the non-zero eigenvectors given in Theorem 2 is 2N − 2, we need
two more linearly independent vectors, which are given as follows [18].

Lemma 3. Let �ζ± be defined by

�ζ± =
1√
2N

t (1, 1, · · · , 1,±1,±1, · · · ,±1) . (13)
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Then, they satisfy (�ψ±
m, �ζ±) = 0, (�φ±

m, �ζ±) = 0 for all m.

3 Reduction by the shift invariance

We define the p-shift transformation for the vortex points. For a given point
(Θ1, · · · , ΘN , Ψ1, · · · , ΨN) ∈ PN , the angular rotation by the degree 2π

N
p, rp :

PN → PN , and the circular p-shift of variables sp : PN → PN are given by

rp, sp : (Θ1, · · · , ΘN , Ψ1, · · · , ΨN) → (Θ′
1, · · · , Θ′

N , Ψ′
1, · · · , Ψ′

N),

in which

rp : Θ′
m = Θm, Ψ′

m = Ψm +
2π

N
p mod 2π, for m = 1, . . . , N,

and

sp : Θ′
m = ΘN−p+m, Ψ′

m = ΨN−p+m, for m = 1, . . . , p,
Θ′

m = Θm−p, Ψ′
m = Ψm−p, for m = p + 1, . . . , N.

The p-shift transformation σp is defined by σp = rp ◦ sp, which is specified by

σp : Θ′
m = ΘN−p+m, Ψ′

m = ΨN−p+m + 2πp
N

, for m = 1, . . . , p,
Θ′

m = Θm−p, Ψ′
m = Ψm−p + 2πp

N
, for m = p + 1, . . . , N.

(14)

On the other hand, we introduce the circular p-shift map for the vector field,

Σp : (F1, · · · , FN , G1, · · · , GN) �→ (F ′
1, · · · , F ′

N , G′
1, · · · , G′

N),

in which

Σp : F ′
m = FN−p+m, G′

m = GN−p+m, for m = 1, . . . , p,
F ′

m = Fm−p, G′
m = Gm−p, for m = p + 1, . . . , N.

(15)

Then we have the following lemma.

Lemma 4. For �x ∈ PN , ΣpF(�x) = F(σp�x).

Proof: For the sake of convenience, we use the following notations.

f(Θm, Θj, Ψm − Ψj) =
sin Θj sin(Ψm − Ψj)

1 − cos γmj
,

g(Θm, Θj, Ψm − Ψj) =
cos Θm sin Θj cos(Ψm − Ψj) − sin Θm cos Θj

1 − cos γmj
.
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For m = 1, . . . , p, it follows from (14) that

N∑
j �=m

f(Θ′
m, Θ′

j, Ψ
′
m − Ψ′

j) =

p∑
j �=m

f(Θ′
m, Θ′

j, Ψ
′
m − Ψ′

j) +

N∑
j=p+1

f(Θ′
m, Θ′

j, Ψ
′
m − Ψ′

j)

=

p∑
j �=m

f(ΘN−p+m, ΘN−p+j, ΨN−p+m − ΨN−p+j) +

N∑
j=p+1

f(ΘN−p+m, Θj−p, ΨN−p+m − Ψj−p)

=

N∑
j′ �=N−p+m

f(ΘN−p+m, Θj′, ΨN−p+m − Ψj′) +

N−p∑
j′=1

f(ΘN−p+m, Θj′, ΨN−p+m − Ψj′)

=

N∑
j′ �=N−p+m

f(ΘN−p+m, Θj′, ΨN−p+m − Ψj′).

In the third equality, we change the summation variable j′ = N − p + j in the
first summation, and j′ = j − p in the second summation. Hence, we have

Fm(σp�x) = −Γ(N)

4π

N∑
j �=m

f(Θ′
m, Θ′

j, Ψ
′
m − Ψ′

j)

= −Γ(N)

4π

N∑
j �=N−p+m

f(ΘN−p+m, Θj , ΨN−p+m − Ψj) = FN−p+m(�x).

Regarding Gm for m = 1, . . . , p, since

N∑
j �=m

g(Θ′
m, Θ′

j, Ψ
′
m − Ψ′

j) =

p∑
j �=m

g(Θ′
m, Θ′

j, Ψ
′
m − Ψ′

j) +
N∑

j=p+1

g(Θ′
m, Θ′

j, Ψ
′
m − Ψ′

j)

=

p∑
j �=m

g(ΘN−p+m, ΘN−p+j, ΨN−p+m − ΨN−p+j) +

N∑
j=p+1

g(ΘN−p+m, Θj−p, ΨN−p+m − Ψj−p)

=
N∑

j′ �=N−p+m

g(ΘN−p+m, Θj′, ΨN−p+m − Ψj′) +

N−p∑
j′=1

g(ΘN−p+m, Θj′, ΨN−p+m − Ψj′)

=
N∑

j′ �=N−p+m

g(ΘN−p+m, Θj′, ΨN−p+m − Ψj′),
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we obtain

Gm(σp�x) = − Γ(N)

4π sin Θ′
m

N∑
j �=m

g(Θ′
m, Θ′

j, Ψ
′
m − Ψ′

j)

+
Γ1

4π

1

1 − cos Θ′
m

− Γ2

4π

1

1 + cos Θ′
m

= − Γ(N)

4π sin ΘN−p+m

N∑
j �=N−p+m

g(ΘN−p+m, Θj , ΨN−p+m − Ψj)

−Γ1

4π

1

1 − cos ΘN−p+m
− Γ2

4π

1

1 + cos ΘN−p+m
= GN−p+m(�x).

In the similar way, we show the relations Fm(σp�x) = Fm−p(�x) and Gm(σp�x) =
Gm−p(�x) for m = p + 1, . . . , N . �

The next proposition claims that the σp invariance persists for all the time
when it holds at the initial moment.

Proposition 5. Let N = pq, (p,q ∈ N). If the solution �x of (1) and (2) is σp

invariant at the initial time, i.e. σp�x(0) = �x(0), then σp�x(t) = �x(t) for t ≥ 0.

Proof. Since N = pq and σp�x(0) = �x(0), we have σk
p�x(0) = �x(0) for k = 0, . . . , q−

1, which is equivalently expressed by

Θkp+m(0) = Θm(0), Ψkp+m(0) = Ψm(0) +
2π

N
kp = Ψm(0) +

2π

q
k, (16)

for k = 0, . . . , q − 1 and p = 1, . . . , m.
On the other hand, when �x is σp invariant, it follows from Lemma 4 that

ΣpF(�x) = F(σp�x) = F(�x). In other words, FN−p+m = Fm, GN−p+m = Gm for
m = 1, . . . , p and Fm−p = Fm, Gm−p = Gm for m = p + 1, . . . , N . Hence, due to
N = pq, we have

Θ̇kp+m − Θ̇m = Fkp+m − Fm = 0, Ψ̇kp+m − Ψ̇m = Gkp+m − Gm = 0,

for k = 0, . . . , q − 1 and m = 1, . . . p. Hence, if �x satisfies the initial condition
(16), then we obtain

Θkp+m(t) = Θm(t), Ψkp+m(t) = Ψm(t) +
2π

q
k, (17)

for k = 0, . . . , q − 1 and m = 1, . . . , p, which indicates that �x(t) is invariant with
respect to σp for all the time. �

The relation (17) indicates that the motion of the vortex points (Θkp+m, Ψkp+m)
for k = 1, . . . , q − 1 is automatically determined by that of the vortex point
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(Θm, Ψm). In other words, the N vortex points are divided into the q clusters of
the p vortex points. Therefore, we expect that the σp invariant N -vortex system
defines the 2p-dimensional dynamical system embedded in PN . However, Propo-
sition 5 just claims that if there exists a σp invariant point, then the evolution
starting from the point remains σp invariant. Thus, we need to show that there
really exists the 2p-dimensional σp invariant subspace of PN , in which the reduced

system is defined. Here, we use the linearly independent real vectors �ψ±
m, �φ±

m and
�ζ± in order to characterize the σp invariant subspace. We need the following
lemma for the purpose.

Lemma 6. Let N = pq, (p, q ∈ N). The vectors �ψ±
kq and �φ±

kq for p ≤ kq ≤ M ,

and �ζ± are invariant with respect to sp. Moreover, the number of the sp invariant
eigenvectors is 2p.

Proof. First we prove the sp invariance of the eigenvectors. It is obvious that

the vectors �ζ± is sp invariant. The eigenvectors �ψ±
kq and �φkq are also sp invariant,

since the eigenvectors are expressed by (11) and (12), and

cos
2π

N
(k + j)mq = cos

2π

N
jmq, sin

2π

N
(kp + j)mq = sin

2π

N
jmq,

hold for m, k and j ∈ Z due to N = pq.
Next we show the number of the sp invariant eigenvectors is 2p by considering

the following three cases separately; First, when N = 2M and p = 2p′, then q is
a factor of M , i.e. p′q = M . Hence, the eigenvectors �ψ±

M are sp invariant. Thus,

the 2p eigenvectors �ψ±
kq for k = 1, . . . , p′, �φ±

kq for k = 1, . . . , p′ − 1 and �ζ± are sp

invariant. Second, when N = 2M and p = 2p′ + 1, since �ψ±
M are no longer sp

invariant, the number of the sp invariant eigenvectors is

4

[
M

q

]
+ 2 = 4

[
p′ +

1

2

]
+ 2 = 4p′ + 2 = 2p.

Finally, when N = 2M + 1, since p must be odd, namely p = 2p′ + 1. So the
number of the sp invariant eigenvectors is

4

[
M

q

]
+ 2 = 4

[
p′ +

1

2
− 1

2q

]
+ 2 = 4p′ + 2 = 2p. �

It follows from Lemma 6 that the σp invariant subspace of PN is represented
by the linear combination of the sp invariant eigenvectors.

Proposition 7. Let N = pq, (p, q ∈ N). Then, the σp invariant subspace of PN ,
say PN(σp), is the set of

�x = �x0 +
∑

k

(
a+

k
�ψ+

kq + a−
k

�ψ−
kq + b+

k
�φ+

kq + b−k �φ−
kq

)
+ c+�ζ+ + c−�ζ−,
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in which �x0 =
(
θ0, θ0, · · · , θ0, 0,

2π
N

, · · · , 2π
N

(N − 1)
)

and a±
k , b±k , c± are real coef-

ficients.

Proof. We note that the transformation σp is expressed by the following form,

σp�x =

(
0, · · · , 0,

2π

N
p, · · · ,

2π

N
p

)
+ sp�x.

Since σp�x0 = �x0 and Lemma 6, we have

σp�x =

(
0, · · · , 0,

2π

N
p, · · · ,

2π

N
p

)
+ sp�x0

+sp

(∑
k

(
a+

k
�ψ+

kq + a−
k

�ψ−
kq + b+

k
�φ+

kq + b−k �φ−
kq

)
+ c+�ζ+ + c−�ζ−

)

= �x0 +
∑

k

(
a+

k
�ψ+

kq + a−
k

�ψ−
kq + b+

k
�φ+

kq + b−k �φ−
kq

)
+ c+�ζ+ + c−�ζ− = �x. �

The subspace is defined for the N -ring at arbitrary latitude θ0. This is why
the reduced system is always available to describe the unstable motion of the
perturbed N -ring successfully[17]. Proposition 7 also yields the inclusion relation
between the two invariant subspaces, PN(σp) and PN(σq).

Corollary 8. Suppose that integers p and q are the factors of N , and p also di-
vides q. Then, the σp invariant subspace is included by the σq invariant subspace,
namely PN(σp) ⊂ PN(σq).

Proof. From the assumptions, there exist integers m, p′ and q′ such that q = mp
and N = pp′ = qq′. For the arbitrary sp invariant �ψ±

kp′ and �φ±
kq′, they are also

sq invariant eigenvectors, since kp′ = kN
p

= k qq′
p

= kmq′. Consequently, we have

PN(σp) ⊂ PN(σq) �.
In the following theorem, we characterize the σp invariant dynamical system.

Theorem 9. Let N = pq, (p, q ∈ N). The σp invariant dynamical system is
equivalent to the system of the p-vortex points generated by the averaged Hamil-
tonian,

H = −
(
Γ(p)
)2

8π

p∑
m=1

p∑
j �=m

1

q

q−1∑
l=0

h

(
Θm, Θj, Ψm − Ψj − 2π

q
l

)

−Γ′
1Γ

(p)

4π

p∑
m=1

log(1 − cos Θm) − Γ′
2Γ

(p)

4π

p∑
m=1

log(1 + cos Θm), (18)
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in which Γ(p) = 2π/p, Γ′
1 and Γ′

2 are the modified strengths of the pole vortices
given as follows,

Γ′
1 = Γ1 +

1

2
Γ(p)

(
1 − 1

q

)
, Γ′

2 = Γ2 +
1

2
Γ(p)

(
1 − 1

q

)
. (19)

Proof. Let h be defined by h(Θ, Θ′, Ψ) = log(1− cos Θ cosΘ′ − sin Θ sin Θ′ cos Ψ)
for the convenience. Since the dynamical system is invariant with respect to
σp, the N vortex points satisfy the relation (17). Then the summations in the
Hamiltonian (3) are taken separately with respect to the q clusters of the p vortex
points. Accordingly, the Hamiltonian is rewritten by

H = −
(
Γ(N)

)2
8π

q−1∑
k=0

p∑
m=1

(
q−1∑
l �=k

h(Θkp+m, Θlp+m, Ψkp+m − Ψlp+m)

+

q−1∑
l=0

p∑
j �=m

h(Θkp+m, Θlp+j, Ψkp+m − Ψlp+j)

)

−Γ1Γ
(N)

4π

q−1∑
k=0

p∑
m=1

log(1 − cos Θkp+m) − Γ2Γ
(N)

4π

q−1∑
k=0

p∑
m=1

log(1 + cos Θkp+m)

= −
(
Γ(N)

)2
8π

q−1∑
k=0

p∑
m=1

(
q−1∑
l �=k

h(Θm, Θm, 2π(k − l)/q)

+

q−1∑
l=0

p∑
j �=m

h(Θm, Θj , Ψm − Ψj − 2π(k − l)/q)

)

−Γ1Γ
(N)

4π

q−1∑
k=0

p∑
m=1

log(1 − cos Θm) − Γ2Γ
(N)

4π

q−1∑
k=0

p∑
m=1

log(1 + cos Θm).

By using h(Θm, Θm, 2π(k − l)/q) = log(1 − cos2 Θm) + log(1 − cos(2π(k − l)/q)
in the first term and summing up with respect to k, we have

H = −
(
Γ(p)
)2

4π
(1 − 1/q)

p∑
m=1

log(1 − cos2 Θm) −
(
Γ(N)

)2
8π

p

q−1∑
k=0

q−1∑
l �=k

log(1 − cos(2π(k − l)/q))

−
(
Γ(p)
)2

8π

p∑
m=1

p∑
j �=m

1

q

q−1∑
l=0

h

(
Θm, Θj, Ψm − Ψj − 2π

q
l

)

−Γ1Γ
(p)

4π

p∑
m=1

log(1 − cos Θm) − Γ2Γ
(p)

4π

p∑
m=1

log(1 + cos Θm).

Since the second term is constant, eliminating it from the Hamiltonian, we have
(18). The Hamiltonian (18) is 2π/q periodic in the Ψ direction. In the first term

11



of the Hamiltonian, the function h is averaged over the q period, so we call it
the averaged Hamiltonian of period q. Thus the σp invariant dynamical system
is equivalent to the p-vortex system generated by the averaged Hamiltonian with
the modified pole vortices. �

Because of the 2π/q-periodicity of the averaged Hamiltonian, the p-vortex
system is defined in the restricted region [0, π]p × [0, 2π/q]p and extended in the
whole space PN by shifting the restricted space q times in the Ψ direction. For
example, when N is even, the 2-vortex system with the averaged Hamiltonian is
embedded in the N -vortex system. Since the 2-vortex system is integrable due
to the invariant quantity cos Θ1 + cos Θ2 = Const., it is sufficient to observe the
contour plot of the averaged Hamiltonian. Figure 1 shows the contour plots of
the averaged Hamiltonian reduced by the σ2 invariance for N = 6 and N = 10
with various strengths of the pole vortices. They are plotted in the phase space
(Φ = Ψ1 − Ψ2, Θ1). The invariant quantity is cos Θ1 + cos Θ2 = 2 cos θ0 with
θ0 = π

3
. According to Proposition 7, each of the subspaces P6(σ2) and P10(σ2)

contains the 6-ring and the 10-ring at the latitude θ0 = π
3

respectively. The
structure of the contour plots is 2π/3-periodic for N = 6 and 2π/5-periodic
for N = 10 in the Φ direction. The reduced dynamical system has already
been investigated to describe the unstable motion of the even vortex points by
numerical means[17]. Finally, we remark that the σ2 invariant dynamical system
is in fact the same as the one reduced by the invariance of the Hamiltonian
under the action of the dihedral group, which was used to find relative periodic
orbits[19].

4 Reduction by the pole reversal invariance

In this section, we reduce the N -vortex system by the invariant property in terms
of the pole reversal transformation, which is defined differently for the odd vortex
points and the even vortex points.

When the number of the vortex points is odd, N = 2M +1, we define the pole
reversal transformation around the point vortex (Θ1, Ψ1), say πo : PN → PN , by
the following three steps.

(1) We rotate the system in the longitudinal direction by the degree −Ψ1 so
that the vortex point (Θ1, Ψ1) is in the xz-plane:

(Θ1, · · · , ΘN , Ψ1, · · · , ΨN) �→ (Θ1, Θ2, · · · , ΘN , 0, · · · , ΨN − Ψ1).

(2) Then we rotate the system around the x-axis by the degree π. The operation
interchanges the north and the south poles:

(Θ1, Θ2, · · · , ΘN , 0, Ψ2 − Ψ1, · · · , ΨN − Ψ1)
�→ (π − Θ1, π − ΘN , · · · , π − Θ2, 0, Ψ1 − ΨN , · · · , Ψ1 − Ψ2).

12



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

N=6 N=10

Figure 1: Contour plots of the averaged Hamiltonian (18) reduced by the σ2 shift
invariance for N = 6 (a-d) and N = 10 (e-h) when the pole vortices are identical,
i.e. Γ1 = Γ2. The strength of the pole vortex is (a) 0.6π, (b) 0.2π, (c) −0.2π, (d)
−0.6π, (e) 1.5π, (f) 0.6π, (g) 0.0, and (h) −0.6π respectively. They are plotted
in the region (Φ = Ψ1 − Ψ2, Θ1) ∈ [0, 2π] × [0, π].
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(3) Finally we rotate back the system in the angular direction by the degree Ψ1:

(π − Θ1, π − ΘN , · · · , π − Θ2, 0, Ψ1 − ΨN , · · · , Ψ1 − Ψ2)
�→ (π − Θ1, π − ΘN , · · · , π − Θ2, Ψ1, 2Ψ1 − ΨN , · · · , 2Ψ1 − Ψ2).

Consequently, the transformation πo is specified by

πo : (Θ1, · · · , ΘN , Ψ1, · · · , ΨN) → (Θ′
1, · · · , Θ′

N , Ψ′
1, · · · , Ψ′

N),

in which

Θ′
1 = π − Θ1, Ψ′

1 = Ψ1,
Θ′

m = π − ΘN−m+2, Ψ′
m = 2Ψ1 − ΨN−m+2, for m �= 1.

(20)

The transformation for the vector field by the pole reversal is given by

Πo : (F1, · · · , FN , G1, · · · , GN) → (F ′
1, · · · , F ′

N , G′
1, · · · , G′

N),

where
F ′

1 = −F1, G′
1 = −G1,

F ′
m = −FN−m+2, G′

m = −GN−m+2, for m �= 1.

When the strengths of the pole vortices are the same, we have the following
lemma.

Lemma 10. Let N = 2M + 1. If Γ1 = Γ2, then ΠoF(�x) = F(πo�x) for �x ∈ PN .

Proof. It follows from (20) that we obtain

F1(πo�x) = −Γ(N)

4π

N∑
j=2

f(π − Θ1, π − ΘN−j+2, ΨN−j+2 − Ψ1)

=
Γ(N)

4π

N∑
j=2

f(Θ1, ΘN−j+2, Ψ1 − ΨN−j+2) = −F1(�x),

G1(πo�x) = −Γ(N)

4π

N∑
j=2

g(π − Θ1, π − ΘN−j+2, ΨN−j+2 − Ψ1) +
Γ1

2π

cos(π − Θ1)

sin(π − Θ1)

=
Γ(N)

4π

N∑
j=2

g(Θ1, ΘN−j+2, Ψ1 − ΨN−j+2) − Γ1

2π

cos Θ1

sin Θ1
= −G1(�x).
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Similarly, for m �= 1, we have

Fm(πo�x) = −Γ(N)

4π

N∑
j �=m

f(π − ΘN−m+2, π − ΘN−j+2, ΨN−j+2 − ΨN−m+2)

=
Γ(N)

4π

N∑
j �=m

f(ΘN−m+2, ΘN−j+2, ΨN−m+2 − ΨN−j+2)

=
Γ(N)

4π

N∑
j �=N−m+2

f(ΘN−m+2, Θj, ΨN−m+2 − Ψj) = −FN−m+2(�x),

Gm(πo�x) = −Γ(N)

4π

N∑
j �=m

g(π − ΘN−m+2, π − ΘN−j+2, ΨN−j+2 − ΨN−m+2)

+
Γ1

2π

cos(π − ΘN−m+2)

sin(π − ΘN−m+2)

=
Γ(N)

4π

N∑
j �=m

g(ΘN−m+2, ΘN−j+2, ΨN−m+2 − ΨN−j+2) − Γ1

2π

cos ΘN−m+2

sin ΘN−m+2

= −GN−m+2(�x). �

It is easy to show that if the initial data �x(0) is invariant with respect to πo, then
the invariant property holds for all the time.

Lemma 11. Let N = 2M + 1 and Γ1 = Γ2. If πo�x(0) = �x(0), then πo�x(t) = �x(t)
for t ≥ 0.

Proof. The πo-invariance of the system yields

Θ1 =
π

2
, Ψ1 = 0, Θm + ΘN−m+2 = π, Ψm + ΨN−m+2 = 0, for m �= 1. (21)

On the other hand, it follows from Lemma 10 that ΠoF(�x) = F(πo�x) = F(�x), that
is to say, Θ̇1 = F1 = 0, Ψ̇1 = G1 = 0, and

Θ̇m+Θ̇N−m+2 = Fm+FN−m+2 = 0, Ψ̇m+Ψ̇N−m+2 = Gm+GN−m+2 = 0, (22)

for m �= 1. Hence, the πo-invariant relation (21) holds for all the time if it is
satisfied at the initial time. �

Lemma 11 indicates that the N -vortex system can be reduced to the 2M-
dimensional invariant dynamical system as long as the πo-invariant subspace ex-
ists. The following lemma guarantees the existence of the 2M-dimensional πo

invariant subspace.

Lemma 12. Let N = 2M + 1, Γ1 = Γ2 and �x0 is represented by

�x0 =

(
π

2
, · · · ,

π

2
, 0,

2π

N
, · · · ,

2π

N
M,−2π

N
M, · · · ,−2π

N

)
.
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Then, the 2M-dimensional set of

�x = �x0 +

M∑
k=1

(
b+
k
�φ+

k + b−k �φ−
k

)
, b±k ∈ R, (23)

is invariant with respect to the transformation πo, which is denoted by PN(πo).

Proof. It is easy to see the eigenvectors �φ±
k are invariant with respect to the

following transformation,

π′
o : (Θ1, Θ2, · · · , ΘN , Ψ1, Ψ2, · · · , ΨN) → −(Θ1, ΘN , · · · , Θ2, Ψ1, ΨN , · · · , Ψ2).

Since Ψ1 = 0 in (23), we can rewrite πo by πo�x = (π, · · · , π, 0, · · · , 0) + π′
o�x.

Hence, since πo�x0 = �x0, we have

πo�x = (π, · · · , π, 0, · · · , 0) + π′
o�x0 + π′

o

M∑
k=1

(
b+
k
�φ+

k + b−k �φ−
k

)

= (π, · · · , π, 0, · · · , 0) + π′
o�x0 +

M∑
k=1

(
b+
k
�φ+

k + b−k �φ−
k

)

= �x0 +

M∑
k=1

(
b+
k
�φ+

k + b−k �φ−
k

)
= �x. �

We implement the similar reduction for the even vortex points, N = 2M . The
pole reversal transformation πe : PN → PN and the accompanied transformation
for the vector field Πe : R

2N → R
2N are defined by

πe : (Θ1, · · · , ΘN , Ψ1, · · · , ΨN) → (π − Θ′
N , · · · , π − Θ′

1,−Ψ′
N , · · · ,−Ψ′

1), (24)

and

Πe : (F1, · · · , FN , G1, · · · , GN) → (−F ′
N , · · · ,−F ′

1,−G′
N , · · · ,−G′

1).

Then, we have the following lemma for the even case.

Lemma 13. Let N = 2M . If Γ1 = Γ2, then ΠeF(�x) = F(πe�x) for �x ∈ PN .
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Proof.

Fm(πe�x) = −Γ(N)

4π

N∑
j �=m

f(π − ΘN−m+1, π − ΘN−j+1, ΨN−j+1 − ΨN−m+1)

=
Γ(N)

4π

N∑
j �=m

f(ΘN−m+1, ΘN−j+1, ΨN−m+1 − ΨN−j+1)

= −FN−m+1(�x),

Gm(πe�x) = −Γ(N)

4π

N∑
j �=m

g(π − ΘN−m+1, π − ΘN−j+1, ΨN−j+1 − ΨN−m+1)

+
Γ1

2π

cos(π − ΘN−m+1)

sin(π − ΘN−m+1)

=
Γ(N)

4π

N∑
j �=m

g(ΘN−m+1, ΘN−j+1, ΨN−m+1 − ΨN−j+1) − Γ1

2π

cos ΘN−m+1

sin ΘN−m+1

= −GN−m+1(�x). �

Lemma 14. Let N = 2M and Γ1 = Γ2. If πe�x(0) = �x(0), then πe�x(t) = �x(t) for
t ≥ 0.

Proof. The initial condition πe�x(0) = �x(0) yields Θm(0) + ΘN−m+1(0) = π and
Ψm(0) + ΨN−m+1(0) = 0. On the other hand, if πe�x = �x holds, then ΠeF(�x) =
F(πe�x) = F(�x), i.e.

Θ̇m + Θ̇N−m+1 = Fm + FN−m+1 = 0, Ψ̇m + Ψ̇N−m+1 = Gm + GN−m+1 = 0.

Hence, we have

Θm + ΘN−m+1 = π, Ψm + ΨN−m+1 = 0, (25)

for t ≥ 0. �

We give the existence of the 2M-dimensional πe-invariant subspace. The proof
is now easy.

Lemma 15. Let N = 2M , Γ1 = Γ2 and �x0 is denoted by

�x0 =

(
π

2
, · · · ,

π

2
, 0, · · · ,

2π

N
(N − 1)

)
.

Then, the 2M-dimensional set of

�x = �x0 +
M∑

k=1

(
a+

k
�ψ+

k + a−
k

�ψ−
k

)
, a±

k ∈ R, (26)

is invariant with respect to the transformation πe, which is denoted by PN(πe).
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Lemma 12 and Lemma 15 indicate that the N -vortex system can be reduced
to the 2M-dimensional invariant dynamical system defined in the subspace of
PN containing the N -ring at the equator. The reduced system due to the pole
reversal invariance exists only when the north and the south pole vortices are
identical. Note that the invariant quantity

∑N
m=1 cos Θm = 0 is automatically

satisfied for the reduced system because of (22) and (25). Thus we conclude the
above results as follows.

Theorem 16. Suppose that the strengths of the pole vortices are equivalent.
Then, there exists the 2M-dimensional invariant dynamical system reduced by
the pole reversal transformation πe or πo that contains the N-ring at the equator.

Lemma 12 shows that for N = 3, the πo invariant space P3(πo) is spanned

by the eigenvectors �φ±
1 , and thus it is the two-dimensional integrable dynamical

system. It has already been studied in order to describe the complex recurrent
motion of the unstable perturbed 3-ring at the equator[18].

Finally, applying the reductions due to the shift and the pole reversal trans-
formations simultaneously, we further reduce the system.

Corollary 17. We assume that the strengths of the pole vortices are the same,
and odd N has the factor p. Then, if σpπo�x(0) = �x(0), we have σpπo�x(t) = �x(t)
for t ≥ 0. The σpπo-invariant subspace of PN is the set of

�x = �x0 +
∑

k

(
b+
k
�φ+

kq + b−k �φ−
kq

)
, b±k ∈ R,

in which

�x0 =

(
π

2
, · · · ,

π

2
, 0,

2π

N
, · · · ,

2π

N
M,−2π

N
M, · · · ,−2π

N

)
.

Proof. It follows from Lemma 4 and Lemma 10 that we have ΣpΠoF(�x) =
F(σpπo�x). The σpπo-invariance of the solution is derived from the fact with the
similar arguments as in Proposition 5 and Lemma 11. The linear representation
of the invariant space is easily obtained, since the eigenvectors φ±

kq and �x0 are
invariant with respect to σpπo. �

We have the similar result for the even case. The proof is now easy.

Corollary 18. We assume that the strengths of the pole vortices are the same,
and even N has the factor p. Then, if σpπe�x(0) = �x(0), we have σpπe�x(t) = �x(t)
for t ≥ 0. The σpπe-invariant subspace of PN is the set of

�x = �x0 +
∑

k

(
a+

k
�ψ+

kq + a−
k

�ψ−
kq

)
, a±

k ∈ R,

in which

�x0 =

(
π

2
, · · · ,

π

2
, 0, · · · ,

2π

N
(N − 1)

)
.
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The σpπo-invariant and σpπe-invariant spaces are denoted by PN(σpπo) and
PN(σpπe) respectively. Using these corollaries, we give all the invariant systems
and their corresponding linear bases of the invariant subspaces from N = 6 to 12
in Table 1. We also show the inclusion relations between the invariant dynamical
systems in Figure 2.

5 Conclusion and discussion

We have obtained the reduced invariant dynamical systems embedded in the
system of identical N -vortex points on the sphere with pole vortices by using the
p-shift transformation and the pole reversal transformation. We have shown that
for any factor p of N , there exists the 2p-dimensional invariant dynamical system
reduced by the p-shift invariance, and it is equivalent to the p-vortex points system
on the sphere with the modified pole vortices, which is generated by the averaged
Hamiltonian (18). We also give the existence of the dynamical system reduced
by the pole reversal transformation when both of the pole vortices are equivalent.
The reduced dynamical systems play an important role in an understanding of
the dynamics of N vortex points as embedded elements in the dynamical system.

The reduction of the dynamical system due to the group invariance of the
Hamiltonian has been proposed in order to determine the relative periodic orbits
for the vortex-point system [9, 19]. The present reduction method is based on the
similar idea of theirs in the sense that we focus on the invariant property of the
relative fixed configuration under the shift and the pole reversal transformations.
However, while the purpose of their method is to reduce the N vortex system to
the two-dimensional dynamical system, the present method gives us the collection
of the invariant dynamical systems embedded in the N -vortex system and their
inclusion relation, which allows us to decompose the N -vortex system into the
systems of a small number of vortex points. Furthermore, since the invariant
subspace is spanned by the eigenvectors obtained in the linear stability analysis of
the N -ring, it is possible to connect the stability of the eigenvalues corresponding
to the eigenvectors with that of the invariant systems as we have done in the
paper[17].

The p-shift and the pole reversal transformations used in §3 and §4 are intro-
duced so that the N -ring becomes a fixed point for them. It suggests that it is pos-
sible to obtain different invariant dynamical systems embedded in the N -vortex
system when we apply the similar reduction by introducing the transformations
that make the other relative equilibria of the N -vortex points unchanged.
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N Invariant Systems Linear Basis

6 P6(σ2) �ψ±
3 , �ζ±

P6(σ3) �ψ±
2 , �φ±

2 , �ζ±

P6(πe) �ψ±
1 , �ψ±

2 , �ψ±
3

P6(σ2πe) �ψ±
3

P6(σ3πe) �ψ±
2

7 P7(πo) �φ±
1 , �φ±

2 , �φ±
3

8 P8(σ4) �ψ±
2 , �φ±

2 , �ψ±
4 , �ζ±

P8(σ2) �ψ±
4 , �ζ±

P8(πe) �ψ±
1 , �ψ±

2 , �ψ±
3 , �ψ±

4

P8(σ4πe) �ψ±
2 , �ψ±

4

P8(σ2πe) �ψ±
4

9 P9(σ3) �ψ±
3 , �φ±

3 , �ζ±

P9(πo) �φ±
1 , �φ±

2 , �φ±
3 , �φ±

4

P9(σ3πo) �φ±
3

10 P10(σ5) �ψ±
2 , �φ±

2 , �ψ±
4 , �φ±

4 , �ζ±

P10(σ2) �ψ±
5 , �ζ±

P10(πe) �ψ±
1 , �ψ±

2 , �ψ±
3 , �ψ±

4 , �ψ±
5

P10(σ5πe) �ψ±
2 , �ψ±

4

P10(σ2πe) �ψ±
5

11 P11(πo) �φ±
1 , �φ±

2 , �φ±
3 , �φ±

4 , �φ±
5

12 P12(σ6) �ψ±
2 , �φ±

2 , �ψ±
4 , �φ±

4 , �ψ±
6 , �ζ±

P12(σ4) �ψ±
3 , �φ±

3 , �ψ±
6 , �ζ±

P12(σ3) �ψ±
4 , �φ±

4 , �ζ±

P12(σ2) �ψ±
6 , �ζ±

P12(πe) �ψ±
1 , �ψ±

2 , �ψ±
3 , �ψ±

4 , �ψ±
5 , �ψ±

6

P12(σ6πe) �ψ±
2 , �ψ±

4 , �ψ±
6

P12(σ4πe) �ψ±
3 , �ψ±

6

P12(σ3πe) �ψ±
4

P12(σ2πe) �ψ±
6

Table 1: Invariant dynamical systems reduced by the shift and the pole reversal
transformations from N = 6 to 12 when the strengths of the pole vortices are
identical.
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Figure 2: Inclusion relations between the invariant dynamical systems for (a)
N = 6, (b) N = 7, (c) N = 8, (d) N = 9, (e) N = 10, (f) N = 11 and (g)
N = 12. The relation A → B symbolizes B ⊂ A.
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