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Abstract 

A simple approach to evaluate the stratified half-space response is proposed. 
This approach is the combination of the reflection and transmission properties of 
elastic media (Kennett and Kerry, 1979) with the discrete wavenumber summation 
method (Bouchon, 1981). Numerical examples show that surface reflected phases 
play an important role in shaping the nature of the seismograms for local earth· 
quakes. 

1. In troduction 

The problem of the excitation and propagation of seismic waves in a 
stratified elastic half-space has been extensively discussed since the pioneering 
work of Lamb (1904). Recently, many approaches have been proposed to 
evaluate the response of elastic solid to excitation by transient point sources. 
For example, there are generalized ray theory (Heimberger, 1968; Sato, 1973), 
reflectivity method (Fuchs and MUller, 1971; Kind, 1978), reflection and trans· 
mission matrices method (Kennett, 1983; Kennett and Kerry, 1979), and discrete 
wavenumber method (Bouchon, 1979, 1981). 

In this paper, we propose a simple approach to evaluate the stratified half­
space response. This approach is based on the three-dimensional seismic 
wavefield of Aki and Richards (1980), the reflection and transmission properties 
of elastic media of Kennett and Kerry (1979), and the wavenumber integration 
of Bouchon (1981). Yao and Harkrider (1983) have proposed essentially the 
same approach. As numerical example, we show the effect of a single surface 
layer on seismograms for local earthquakes. 
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2. Three dimensional seismic wavefield 

Here we shall follow Aki and Richards (1980; chapter 7) in deriving a 
complete representation of the three dimensional seismic wavefield. 

We consider a cylindrical coordinate system (r, e, z) in an isotropic elastic 
medium with stratification perpendicular to the z axis (Fig. 1). The elastic 
displacement in a homogeneous body can be expressed in terms of the three 
scalar potentials rjJ, ¢, X, as 

U=\lrjJ+\l x \l x(O, 0, ¢)+\l x(O, 0, x). (1) 

The potentials rjJ, ¢, X represent P-, 5 V -, and SH - waves, respectively and 
satisfy the following wave equations 

(2) 

where a and /3 are P-wave and S-wave velocities, and overdots are used to 
indicate time derivatives. The basic solutions to (2) can be obtained by the 
method of separation of variables. They are, for example, 

rjJ(r, e, z; w)=]m(kr)[cos me(Ae- 7Z +Be 7Z ) 

+ sin me(A' e- 7Z + B' e 7Z) ] exp( - iwt), 

¢(r, e, z; w)=]m(kr)[cos m8(Ce-vz +De VZ ) 

+sin me(C'e-vz+D'e VZ )] exp(-iwt), 

x( r, e, z; w)=] m(kr) [cos me(Ee-VZ + Fe VZ ) 

+sin me(E'e-vz+F'e vZ )] exp(-iwt), 

(3 ) 

where] m(kr) is the m th-order Bessel function; k is the horizontal wavenum· 
ber; m is an integer; A, A', B, B'," ", F, F' are constants; y=(k 2 -W

2
/ 

a 2)112, 1m y:::;;O; )/=(k2-w2//32)112,Im )/:::;;0; w is the angular frequency; and t 

is the time. If we substitute potentials of the form (3) into (1) and the stress­
displacement relations, we find that the displacement U and the traction T(rrz, 

--~~~--------~x 

z 
y 

z 

Fig. 1 Orientation of cylindrical polar 
coordinates used to analyze waves 
from a point source in a stratified 
half-space. 
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rzo, rzz) acting on the horizontal plane at depth z have the following from 

u=[lf(w, k, z)nm(r, OHlf(w, k, z) T%m(r, 0) 

+rf(w, k, z) S'i,m(r, OHrr(w, k, z) SZm(r, 0) 

+ri(w, k, z) R'km(r, OHrt(w, k, z) R~m(r, 0)] exp(-iwt), 

T=[l:f(w, k, z) nm(r, OHu(w, k, z) T%m(r, 0) 

+rHw, k, z) S'i,m(r, OHrff(w, k, z) SZm(r, 0) 

+rHw, k, z) R'km(r, 8Hrf(w, k, z) R%m(r, 8)]exp(-iwt). 

(4) 

The r, 0 dependence of U and T is described by two sets of three orthogonal 
vector functions defined by 

TC =_1_ oYfm - _-.1 oYfm ii SC =-.1 oYfm - +_1_ oykcm ii 
km kr 00 r k or ' km k or r kr 00 ' 

R'km=- YkCm(r, O)i, YkCm(r, O)=Jm(kr) cos mO, 

TS __ 1_ oYtm - _-.1 oYtm ii ss --.1 aYtm - +_1_ oYtm ii 
km - kr 00 r k or ' km - k or r kr 00 ' 

(5) 

R~m=- ytm(r, O)i, YkSm(r, O)=Jm(kr) sin mO, 

where 1', ii, and i are unit vectors in directions r, 0, z. 
The z-dependence is described by two sets of six scalar functions (If, Ii, rf, 

ri, rg, rf) and (If, It, rr, rt, rff, rn If and If(i = 1, 2) are made up from the 
potential X alone, and separate from the rest to give the SH -wave part of the 

seismic wavefield and the associated stress. rf and rf (i = 1, 2, 3, 4) are made 
up from the potentials ifi and r/J, and give the displacements and stresses 
accompanied by the P- and 5 V -waves. It can be shown that, as a result of the 
equation of motion and stress-strain relations of perfect elasticity, the motion­

stress vectors f[(k, m, z, w)=(tf, liV, ff(k, m, z, w)=(rf, ri, rg, rfV, N(k, 

m, z, w)=Ur, ltV and N(k, m, z, w)=(rf, rt, rff, rtV, where T denotes a 
transpose, satisfy first-order differential equations of the form 

~~ =Af. (6 ) 

For P-SV waves we have 

A~( -kA[A~2"]' 
k f.L-1 

o ) 0 0 [A +2f.L]-1 
kZI; - wZp 0 0 kA[A~2,u]-1 ' 

0 - w2 p -k 

(7) 

where A and f.L are Lame's constants, p is the density, and I; =4,u[A + f.L]/ [A +2,u], 
and for SH -waves 
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/-I-I) 
o . (8 ) 

The general solution f to the equation af / az = A f is given by 

f=Fw, (9 ) 

where F is made up from eigenvectors of A and the associated eigenvalues, and 
w is a vector of constants weighting the columms of F. F is known as the 
layer matrix and w is the wave vector. For P-SV waves, omitting the 
superscripts c and s, 

C}F(tD (10 ) 

( ak 
l3y ak 

pv ) ar 13k -ar -13k 
F=EA=w- 1 

-I3/-1(k2+y2) (J/-I(e+y2) -2a/-lkr 2a/-lkr 
-a/-l(k2+y2) -2(J/-Iky -a/-l(k2+y2) - 2(J/-Iky 

x CT·'"' 
0 0 

e",.L, ). 
e-I/(Z-Zr .. r) 0 

(11) 
0 eY(Z-Zref) 

0 0 

where PD and Pu are constants giving the displacement amplitude of downgoing 
and upgoing P-waves; SD and Su are those of downgoing and upgoing SV­

waves; and Zref is a reference level for the phase. In a similar way for SH­

waves 

(
[I )=F ( SHD), 
[2 SHu 

(12) 

(13) 

where SH D and SHu are constants giving the displacement amplitude of 
downgoing and upgoing SH-waves. The inverse of F is given by, for P-SV 
waves, 
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and for SH -waves 

o 

o 
o 

o 
o 

e - r(z-Zre,) 

o 
- SfI))(k2 + ))2) 

2aflky)) 

/3f1))(k2 +))2) 

-2aflky)) 

- /3k)) 
ay)) 

/3k)) 
- ay)) 

o ) 1 (fI)) 
e- vcz - z ,.,) x 2f1)) fI)) 

Sy)) ) 
-aky 

/3y)) 

-aky 

-1) 
1 . 

405 

(14) 

(15) 

In terms of the propagator matrix P(z, zo) (Gilbert and Backus, 1966) the 
solution of af/az=Af with the motion-stress vector specified at some level Zo, 

f (zo) is 

(16 ) 

Thus P(z, zo) generates the motion-stress vector at z by operating on the 
vector at zoo The propagator matrix has the following properties: 

P(Zo, zo)=I, 

P(Z2, ZI)=P(ZI, Z2)-\ (17) 

P(Z2, zO)=P(Z2, ZI) P(ZI, zo), 

where 1 is the unit matrix. For homogeneous layers we may construct the 
propagator matrix in terms of F in (9) as 

(18) 

The response of a stratified half-space due to excitation by a source can be 
obtained by imposing the boundary conditions on the seismic wavefield: the 
vanishing of the stress at a free surface; a radiation condition in a half-space 
that the wavefield should consist of either downward propagating waves or 
evanescent waves decaying with depth; and the action of source in terms of a 
discontinuity in the motion-stress vector at the source level (e.g., Harkrider, 
1964). A formal solution for the displacement field can be found by starting 
with the radiation conditions and then projecting the motion and stress to the 
surface using the propagator matrix given by (16). The jumps in motion and 
stress across the source plane are also projected to the surface and then the 
displacement field is constructed so that there is no net surface traction. Once 
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solutions for the motion-stress vectors are known, the displacements can be 
obtained by a superposition of the basic solutions (4) (the inverse Fourier­

Hankel transformations) 

1 100 

Uz(r, e, z; t)=-2 exp (-iwt)dw 
J[ -00 

Ur(r, e, z; 

x m~L 100 

[ - rf cos me- rf sin me ] ]m(kr )kdk, 

1 1= t)=-2 exp (- iwt )dw 
J[ -00 

00 (00 [ m 
x m~oo)o Tr( -If sin me+ If cos me) f m(kr) 

+(rrcos me+rfsin me) J'm(kr) ]kdk, 

1 100 

t )=-2 exp (- iwt )dw 
J[ -00 

x j~.oo f" [ -(If cos m8+ If sin m8) J' m(kr) 

+ ;::'(-rrsin me+rfcos me) ]m(kr) ]kdk, 

where J'm(kr)=afm(kr)/a(kr). 

(19 ) 

The solutions for the motion-stress vectors using the propagator matrix 
allow a complete specification of the seismic wavefield but suffer from some 
computational disadvantages due to growing exponential terms particularly 
when the frequency is high, as pointed out by Dunkin (1965). In order to avoid 

the numerical difficulties, Kennett and Kerry (1979) have presented an alterna­
tive approach based on the wave-propagator as shown in the next section. We 
shall follow their approach in deriving the solutions for the motion-stress 
vectors. 

3. The response of a stratified half-space 

First we define the reflection and transmission matrices of a portion (ZA, zd 
of a stratified medium by embedding this region between two uniform half 

spaces in z < ZA, Z > Zc (Fig. 2). From (16) the motion-stress vectors at the top 
and bottom of the region are related by 

(20) 

When we combine (9) and (20), the wave vectors in the upper and lower uniform 
half spaces are related by 
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Half - space 
,ZA 

Z A -= =-=-:-~-=-=-=-=-= -= -~ --~-~---~-~-~ ---= 'zl 

Ze----------

407 

Zc ========:==::=:::::====:~~ 
Half - spac e 

Fig. 2 A stratified medium between two 
uniform half spaces. z;t(zt) is just 
below the ZA(ZC) interface and z.«zc) 

is just above the zA(zcl interface. 

w(z;.)=E-1(z;.) P(ZA, zc) E(zt) w(zt) 

= Q(z;., zt) w(zt), 
(21) 

and by analogy with (16) Q is called as the wave-propagator (Kennett and 

Kerry, 1979). The wave-propagator has similar properties to the propagator 

matrix in (17) 

Q(ZA, zc)= Q(ZA, ZB) Q(ZB, zc), 

Q(ZA, zc)= Q-I(ZC, ZA). 
(22) 

Although P( ZA, ~) will be continuous across a plane Z = ~, the wave-propagator 
will not be unless the elastic parameters are continuous across~. Thus in (21) 
the +, - indicators are strictly necessary (see Fig. 2). 

We split the wave vectors in the uniform half spaces into their up and 
downgoing wave parts and partition Q(ZA, zc) so that (21) becomes 

( .~~.(~.~). )=( . ?D.D.~. ?D.U. ) ( .~~.(~.~). ). 
wu(z;') QUD: Quu wu(zt) 

(23) 

According to Kennett and Kerry (1979), we may define reflection and transmis· 
sion matrices R, T from (23). For incident downgoing waves from the half­

space Z < ZA, the transmission and reflection matrices are given by 

TiJc = (QDD )-1, 

R1/ = QUD( QDD)-I, 

and with incident upgoing waves in Z > Z c they are 

Td c = Quu - QUD( QDD tl QDU, 

R1/=-(QDDt l QDU. 

(24 ) 

(25) 

For P-S V waves reflection and transmission matrices are 2 X 2 matrices but for 
SH -waves they are just the coefficients. The wave-propagator takes the form 
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When the region (ZA, zc) is divided by splitting the stratification at a level 
ZB between ZA and Zc (Fig. 2), the reflection and transmission matrices for the 
entire region can be given by those for the upper region 'AB' and the lower 
region 'BC'. Combining the first equation in (22) and (26), the overall reflection 
and transmission matrices are 

TfJC = Tgc[J - Rtl RZC]-l TtB, 

Rtc=RtB+T6B Rzc[J-Rtl RZC]-l TtB, 

T6c = T6B[1 - RZc Rt/]-l TOc, 

RtF = RZc + Tgc Rtl[1 - RZc RtB]-1 TOc. 

(27) 

These are addition rules for the reflection and transmission matrices. In (27) 
the matrix inverse [I - RtB RZC]-l corresponds to a reverberation operator for 
the region 'AC'. 

We construct the reflection and transmission matrices for an interface at Z 

= Zl. From (21) the wave-propagator for the interface is 

Q(zi, zt)=E-1(zi) P(ZI, Zl) E(zt) 
=E-1(zi) E(zt) 

(28) 

since P(ZI, Zl)= I. If we substitute partitioned forms of Q in (28) into (24) and 
(25), we can construct the reflection and transmission matrices for the interface. 
For p-5 V waves they become considerably complicated forms, but for SH­
waves they have simple forms as 

Tb.SH 
(29) 

Rb.SH= - Rb.SH, T&.SH 

where subscripts 1 and 2 indicate the upper (z < Zl) and lower (z > Zl) regions. 
In the special case of a uniform layer (ZA ~ Z ~ Z d, the wave-propagator is 

given by 

(30 ) 

For P-SV waves 
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where D is the phase income matrix for downward propagation from ZA to Zc. 

Comparing (31) with (26), we have the reflection and transmission matrices for 

the uniform layer as 

For SH -waves 

TfJC=D, 
R~c=O, 

Q(ZA, ZC)=( e-V(~--Zcl 

and 

TgSH=D, 

R~~H=O, 

TJc=D, 

R1F=o. 

TJ~H=D, 

Rtr:sH=O. 

(32) 

(33) 

(34) 

In the uniform layer the reflection matrices vanish and transmission through the 
layer gives phase terms, as would be expected. 

For a stack of uniform layers the reflection and transmission matrices may 

be constructed by the phase delays through a layer and the interface coefficients 
in terms of the addition rules (27). Consider a uniform layer in ZI < Z < Z2 

overlying a pile of such layers in Z2 < Z < Z3. We suppose the reflection and 
transmission matrices at zi just into the layer are known and write e.g. RD( zi) 

=RD(zi, zit). We may add in the phase terms corresponding to transmission 
through the uniform layer using the addition rules (27) and (32). Then the 
reflection and transmission matrices just below the interface at zt are given by 

TD(Zi)= TD(zi) D 12
, 

RD(Zi)=D I2 RD(zi) D 12
, 

T u(zi)=D I2 Tu(zi), 

(35) 

where D 12 is the phase income for downward propagation through the layer (see 
(31)). A further application of the addition rules allows us to include the 

reflection and transmission matrices for the interface ZI, e.g. Rb= RD(zi, zn. 

The reflection and transmission matrices just above the ZI interface are given by 
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TD(zj)= TD(zi) [J - R~ RD(zi) ]-1 TA, 
RD(Zj)= Rb+ n RD(zt)[I - R~ RD(Zt) ]-1 TA, 
Tu(zj)= Tb[I - RD(zt) R~]-I Tu(zi), 

Ru(z>:)= Ru(zi)+ TD(Zt) RMI - RD(Zt) R~]-I Tu(zi). 

(36 ) 

These two applications of the addition rules may be used recursively to calculate 

the overall reflection and transmission matrices, by starting at the base of the 

layers. The recursive scheme is numerically stable even at high frequencies 
because no exponential terms which grow with frequency will appear in D12. 

When a vertical inhomogeneous region is bounded above by the free surface, 

we may introduce the free surface reflection matrix R. We partition E matrix 

in (11) as 

E=(' ~~.~. ~~. ) 
N D : Nu 

(37) 

so that M D, Mu are the displacement transformations and N D, Nu the stress 
transformations. For the P-SV wave system MD etc. will be 2 x2 matrices and 
for SH -waves simply scalars. In terms of the partitions of E the free surface 
boundary condition of vanishing traction at z = 0 is, from (9), 

(38) 

where ro is the surface displacement field. Thus the free surface reflection 
matrix is 

(39 ) 

For P-SV waves, from (11) and (37), 

- 1 (-[(e+).I2)2+4).1Yk2] -4(3k).l(k2+).12)/a ) 
R = (k 2 + ).12)2 - 4).1yk2 4aky{k2 +).12)/(3 [ (k2+).12)2 + 4).1yk2] 

(40 ) 

and for SH -waves, from (13), 

(41) 

At the free surface the displacement matrix due to an incident upgoing wave is, 
from (38), 

ro=(Mu+MDR) Wu, (42 ) 

where (Mu+ MDR) is called as the receiver function matrix. For P-SV waves 
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Free surface 
..6. -'" r 
R 

/Wu 
S~E-------------- Zs 

~WD 

Half-space 

z 

Fig. 3 Configuration of elastic half-space 
with a source (S) at depth Zs and a 
receiver (R) at a free surface. 
Beneath ZL the medium has uniform 
properties so that a radiation condi­
tion has to be applied at this level. 
The conventions for up and downgo­
ing waves are also indicated. 

where C=(k2+V2)2-4vyk2, and for SH-waves 

(MU,SH+MD,SH RSH)=2. (44 ) 

Using the reflection and transmission properties of elastic media mentioned 
above, we can generate the displacement field in a stratified half-space due to 
excitation of a source. We consider the half space illustrated in Fig. 3 with a 

source at the level Zs and a uniform half space beneath ZL. The boundary 
conditions are the vanishing of the stress at the free surface, the radiation 
condition in the half-space, and the discontinuity in the motion-stress vector at 
the source level as the action of source. For a point source there will be a jump 
in the motion-stress vector across the source plane 

f(k, m, zt, w)-f(k, m, zs, w)=S(k, m, Zs, w). (45) 

An alternative approach to the introduction of a source is to regard it as giving 
rise to a discontinuity in the wave vector (Haskell, 1964; Harkrider, 1964) 

w(k, m, zt, w)-w(k, m, zs, w)=I(k, m, Zs, w) 

=F-1(k, zs) S(k, m, Zs, w). 
(46) 

In the jump vector k= (kD, - ku V, a source will radiate kD downwards and 

Iu upwards. 
According to Kennett and Kerry (1979) the surface response due to a buried 

source takes the form 
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Zo 

~ My '" 
RFS

: ' 
R 

Zs 
U I : . 

;; !V 
ZL . . 

r----.-----,------,----,~~._-------R 

j\ R~S , 

,v 5 

~--~--=-~------~--~----~-------L 

Fig. 4 Schematic diagram of the major elements in the surface response 
from a source at depth zs(equation (47)). 

ro=(Mu+MDR)[I-R~SR]-1 TijS[I-RJ./ R~S]-I(RtL I'D+I'U). (47) 

A schematic diagram of the major elements in (47) is given in Fig. 4. The 
expression (M u+ MDR) is the operator which converts an upgoing wave into a 
free surface displacement (see (42». The source contribution (RtL ID+ Iu) 
corresponds to the entire upward radiation associated with the source at the 
level z = Zs. The term [I - RtL R~S]-l corresponds to a reverberation operator 
through the whole half space, coupling the upper and lower parts at the level z 
=zs. The composite action [I-RtL R~S]-l (RtL I'D+I'U) is thus to produce, 
at the level z = z s, a sequence of wave groups corresponding to radiation from 
the source. Each of these wave groups is then projected to the surface by the 
transmission term TijS. The reverberation operator [I - Rgs R]-l corresponds 
to channelling between the source and the surface. Each of the infinite 
sequence of wave groups at the source level Zs will thus suffer a further infinite 
surface interaction, to produce the entire displacement response at the surface. 

4. Shear dislocation and explosive sources 

Here we derive the jump in the wave vector across the source plane for a 
point shear dislocation source. We consider the dislocation source located at 
depth z = h (Fig. 5) with the moment function M(t). According to Harkrider 
(1976) and Sato (1969), the scalar potentials for the dislocation source corre­
sponding to (1) and (3) are given by, in the frequency domain, 

r/>(r, e, z; M(w) 2 1'" W)=-4--2 2: Am AmFa]m(kr)dk, 
J[pw m~O 0 

¢(r, e, z; M(w) 2 1'" W)=-4--2 2: Am BmFp]m(kr)dk, 
J[pw m~O 0 

(48) 



y 

where 

and 
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~~--~----------~ X 

h ~_'--_...T 

z 

Fig. 5 Coordinate system of the shear 
dislocation source. A = rake angle, 
o =dip angle, and 8=azimuth from 
the fault strike. 

Ao= ~ sin A sin 20, 

Al =cos A cos 0 cos 8-sin A cos 20 sin 8, 

A 2 = ~ sin A sin 20 cos 28+cos A sin 0 sin 28, 

A 3 =0, 
A.= -cos A cos 0 sin 8-sinA cos 20 cos 8, 

A5= - ~ sin A sin 20 sin 28+cos A sin 0 cos 28, 

A = rake angle, 0 = dip angle, 
8 = azimuth from the fault strike, 

M (I)) ) = spectrum moment, 
Ao=k2+2y2, Al = -2Eky, 

Bo=3E)J, BI=(k~-2k2)/k, 

Co = 0, Ct = Ek~)J/ k, 
ku=l))/a, k p =I))/;3, 

C2=-k~, 

E=sgn(z-h), 

Fu= k exp( - y I z- hi) 
y , 

Fp = k exp( -)J I z - hi). 
)J 

(49 ) 

If we substitute these potentials into (1), we find the discontinuity in the 
motion-stress vector (45) for the dislocation source. Then we obtain the jump 
in the wave vector from (46). After all, for a buried dislocation source in the 
stratified media the free surface displacements are, in the time domain, 

1 100 
• M ( I)) ) 2 Uz(r, 8, z; t)=-2 exp(-zl))t)dl)) -4--2 ~ Am(A, 0, 8) TC -00 TCPI)) m ~o 
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Ue(r, 8, z; 
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x l~ [- r;'] J m(kr )kdk, 

1 1~ . M(w) 2 
t)=-2 exp (-[wt)dw -4--2 ~ Ame,), 0, 8) 

7r -~ 7rPW m ~o 

X 1~ [rf' J~(kr )-/f' ;::. J m(kr) ]kdk, 

1 1~ . M(w) 2 
n=-2 exp (-[wt )dw -4--2 ~ Amd;l, 0, 8) 

7r -~ 7rPW m~O 

X l~ [rf' ;::. J m(kr )-If' J~(kr) ]kdk, 

where rf', r;' and If' are given by, from (47), 

with 

and 

l SL ( PC ) ( P{J ) J 
X RD SVDm + SVJ" ' 

1f'=2[1-Rfi~sH]-1 T~h[l-Rg~sH Rf?SH]-1 
X [Rg~SH SHC+SH{J], 

pI = _€ 2wk 
a ' 

€ = {-1 for U subscript 
1 for D subscript. 

SHI=€k~, 

(50) 

(51) 

(52) 

For an explosive type source the scalar potentials are, in the frequency 
domain, 

¢;(r 8 z· w)= F(w) 1~ k]o(kr)exp(-rlz-hl )dk 
, " 47rpa 2 

0 r ' 
cp(r, 8, z; w)=O, 

x(r, 8, z; w)=O, 

and the surface displacements are, in the time domain, 

(53) 
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1 100 F( w) 100 UzCr, e, z; t)=-2 exp(-iwt)dw-4--2 [-rg)]o(kr)kdk, 
Jr -00 Jrpa 0 

U,(r, e, z; 

U.(r, e, z; 

1 100 F( w) 100 t) = -2 exp ( - iwt )dw-4--2 rU' o(kr )kdk, 
Jr -00 Jrpa 0 

t)=O, 
where F( w ) = Fourier transform of the source time function, and 

(~n=(Mu+MDR) [I-R~SR]-l Ti;S[I-R!fF R~S]~1 

with 

x [ RhL ( ~o )+( ~o ) ~ 

po=~. 
ay 

415 

(54) 

(55) 

The source potentials of the form (1) for various force systems have been 
given by Onda et al. (1975). 

5. Computational aspects 

First we construct RhL
, R~s, TiP, R~s and R for one frequency (J) and many 

wavenumbers k specified by (58), using the iterative technique for calculating the 
reflection and transmission matrices. Then we construct the surface displace­
ment scalars rr', rr, If' from (51). 

Next we carry out the wavenumber integration which involves quantities of 
the form 

Im= l°°F(k, w) ]m(kr) k dk m=O, 1, 2. (56) 

The kernel F(k, w) depends upon wavenumber, frequency, source depth, and 
layer properties. According to Bouchon (1981) the wavenumber integration (56) 
can be evaluated by a discrete wavenumber summation 

where 

_{2 for j=l=O 
tj- 1 for j=O' 

k j =2Jrj/L, 

(57) 

(58) 

and L is an equal radial interval for a circular source array. The representa· 
tion (57) is valid as long as relations r < L/ 2 and [(L - r)2 + Z2]lI2 > at are 
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satisfied. To avoid the influence of the singularities of the integrand F(k, (f), 

and the discretization, we give to the frequency an imaginary part, the effect of 
which is later removed from the time domain solution. This procedure is 
described in detail by Bouchon (1979). The k loop in (57) is stopped if 

(59) 

where e is a previously specified precision. The loop will not be terminated by 
a zero of the Bessel functions. 

We can obtain the spectra of the seismograms which would be recorded at 
an observation point, by performing the above calculations at different fre· 
quencies and including the source spectrum. Finally the inversion to the time 
domain is performed by using the fast Fourier transform. 

6. Numerical examples 

Our first set of examples illustrates the effect of a single surface layer on 
seismograms for local earthquakes, comparing with seismograms for a half­
space model. Parameters of the single layer model are shown in Fig. 6. For 
the crust half-space model we take parameters of a=6 km/ sec, P=3.5 km/ sec 
and p = 2.7 g/ cm3

• We look at the varying response to a dislocation source with 
A = 30°, 0 = 60°, e = 30° at 20 km depth (Fig. 7). The source time function adopted 
IS 

Fig. 6 Layer parameters for the single 
layer over a half -space model for 
local earthquake calculations. The 
three focal depths used are indicated. 
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Fig. 7 Synthetic seismograms at various distances for the half-space and the single 
layer models due to the dislocation source with ,1=30',0=60' and 8=30'. The 
focal depth is 20 km and the source time function has To of 1 sec. Amplitude is 
normalized. 
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Fig, 8 Synthetic seismograms for various focal depths for the half-space and the 
single layer models due to the dislocation source with A = 3~', <1 = 60' and e = 3~', 
The distance is 50 km and the source time function has To of 1 sec, Amplitude 
is normalized, 
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M(t)= ~[ l+cos(Vo(t- :J] (60 ) 
=0 t<O,t>To. 

The far-field displacement for this time function is a one cycle sine wave with 
a period of To = 2Jr/ (Vo(Sasatani, 1984). 

We have no significant surface waves in the seismograms in Fig. 7 because 
of the deep source. The seismograms for the half-space model are simply 
made up of P, SP and S phases, but those for the single layer model have 
complex forms influenced strongly by reverberations in the surface channel. 

The second set of examples illustrates the effect of varying the focal depth 
(5, 10, 20 km depth) with the fixed source mechanism as used above (Fig. 8). 
The seismograms from the shallowest source (5 km depth) show that as expect­
ed the surface waves become predominant phases for both crustal models. For 
the single layer model, the main phase is preceded by a rather osillatory higher 
mode train, especially in the radial component. The combinations of P and S 
reflections in the surface layer lead to a very complex reverberation sequence on 
vertical and radial components, compared with the purely S reflections on the 
tangential component. From Figs. 7 and 8 we can see that surface reflected 
phases play an important role in shaping the nature of the seismograms. 
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