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List of abbreviations 

MVPA: multivariate pattern analysis 

VI: visual motor imagery 

KI: kinesthetic motor imagery 

MIQ: motor imagery questionnaire 5 

SMC: sensorimotor cortices 

M1: primary motor cortex 

V1: primary visual cortex 

S1: primary somatosensory cortex 

SMA: supplementary motor area 10 

PMd: dorsal premotor cortex 

PMv: ventral premotor cortex 

SPL: superior parietal lobules 

IPL: inferior parietal lobules 

SVM: support vector machine 15 
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Abstract 

The present study investigated whether different types of motor imageries can be classified 

based on the location of the activation peaks or the multivariate pattern analysis (MVPA) of 

functional magnetic resonance imaging (fMRI) and compared the difference between visual 

motor imagery (VI) and kinesthetic motor imagery (KI). During fMRI scanning sessions, 25 5 

participants imagined four movements included in the Motor Imagery Questionnaire-Revised 

(MIQ-R): knee lift, jump, arm movement, and waist bend. These four imagined movements 

were then classified based on the peak location or the patterns of fMRI signal values. We 

divided the participants into two groups based on whether they found it easier to generate VI 

(VI group, n = 10) or KI (KI group, n = 15). Our results show that the imagined movements 10 

can be classified using both the location of the activation peak and the spatial activation 

patterns within the sensorimotor cortex, and MVPA performs better than the activation peak 

classification. Furthermore, our result reveals that the KI group achieved a higher MVPA 

decoding accuracy within the left primary somatosensory cortex than the VI group, 

suggesting that the modality of motor imagery differently affects the classification 15 

performance in distinct brain regions. 

 

Keywords 

motor imagery, functional magnetic resonance imaging, multi-voxel pattern analysis, Motor 

Imagery Questionnaire-Revised 20 
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Introduction 

Motor imagery is defined as the mental simulation or mental rehearsal of movements 

without any overt motor output (Decety & Jeannerod, 1996; Jeannerod, 2001). Neuroimaging 

studies in humans demonstrated that motor imagery involves the activation of neural 

networks engaged in motor execution (Decety et al., 1994; Hanakawa et al., 2003; Parsons 5 

et al., 1995) with a similar somatotopic organization of the motor system (Ehrsson et al., 

2003; Szameitat et al., 2007a). 

Motor imagery involving coordination of the whole body is widely used to facilitate skill 

acquisition (e.g., Immenroth et al., 2007), enhance motor performance in sports training (e.g., 

Aymeric Guillot & Collet, 2008), or explore and rehabilitate motor functions (e.g., Braun et 10 

al., 2013), and understanding the neural correlates of motor imagery will be useful to 

optimize sports training or rehabilitation. However, the imagery of general movements is less 

understood since neuroimaging studies prefer to use simple effector-specific movements that 

can be executed in a narrow space for the comparison of motor imagery and motor execution, 

such as motor tasks: hand grasping (Decety et al., 1994), finger tapping (Guillot et al., 2009), 15 

manual pointing (Lorey et al., 2010), and foot flexion/extension (Lorey et al., 2014). 

Furthermore, previous studies reveal that the imagery of hand movements and whole-body 

(WB) movements recruit different brain regions (Fourkas et al., 2008; Olsson et al., 2008), 

which suggests that studying motor imagery of effector-specific movement is not sufficient 

for understanding the functional correlates of motor imagery. 20 

To study general movements, Szameitat (2007b) compared the average of seven upper 

extremities (UE) movements with the average of seven WB movements, finding that UE 

activates an inferior part of the sensorimotor cortices (SMC), whereas WB activates a 
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superior and medial part of the SMC. However, traditional functional magnetic resonance 

imaging (fMRI) analysis methods lack the resolution to study the imagined movement 

individually. Recently developed approaches considering patterns of responses across 

multiple voxels, called multivariate pattern analysis (MVPA), could bypass some of the 

spatial limitations (Weaverdyck et al., 2020), and Pilgramm et al. (2016) decoded the content 5 

of imagined hand movements from the spatial patterns of fMRI data by using MVPA. 

Therefore, we considered that the MVPA classifier could also be used to study motor imagery 

of general movements. Moreover, as Friston (2009) pointed out that what could be interpreted 

from MVPA is the same as univariant analysis, and Ehrsson et al. (2003) proved that the 

location of activation peaks within the SMCs contains relevant information on the imagined 10 

movements, we considered that fMRI signals might also be decoded into imagined 

movements according to their corresponding peak locations. 

Based on the imagery type, previous studies revealed a different neural representation of 

motor imagery modalities, i.e., between visual-motor imagery (VI) and kinesthetic motor 

imagery (KI; e.g., Binkofski et al., 2000). Guillot (2009) initially suggested that seeing the 15 

movement mentally (visual motor imagery, VI) activates the occipital regions predominantly, 

whereas feeling the movement mentally (kinesthetic motor imagery, KI) recruits more motor-

related regions. However, Hétu (2013) found no significant difference between these two 

modalities using an activation likelihood estimation (ALE) meta-analysis. Those studies only 

compared VI and KI using univariant approaches, while MVPA has enhanced sensitivity and 20 

finessed characterizations of distributed responses (Friston, 2009). Therefore, we wondered 

whether the differences between VI and KI could be detected by using MVPA. Considering 

studies of visual imagery have shown that the primary visual cortex (V1) is critical for visual 
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imagery (Dijkstra et al., 2017), and studies of tactile imagery have revealed that the primary 

somatosensory cortex (S1) is associated with mental tactile imagery (Schmidt & Blankenburg, 

2019), we focused on the MVPA accuracy within the V1 and S1 to compare the neural 

correlates of VI and KI.  

To sum up, the current study hypothesized that motor imagery of movements involving 5 

whole-body coordination could be classified according to brain activity and that some 

differences may exist between visual motor imagery and kinesthetic motor imagery. We 

investigated whether and where different imagined movements could be classified from the 

location of peak activation and spatial patterns, and we further addressed whether the neural 

differences between VI and KI could be detected by using MVPA.10 
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Materials and methods 

Participants 

Twenty-five right-handed healthy volunteers (12 men, mean age = 23.64 years old, standard 

division (SD) = 1.89) participated in the experiment. The study protocol was approved by the 

local ethics committee of the Center for Experimental Research in Social Sciences at 5 

Hokkaido University, and all participants provided written informed consent according to the 

institutional guidelines before undergoing fMRI scanning. 

 

Movement imagery questionnaire phase 

The complete experiment consisted of three phases: (1) movement imagery questionnaire 10 

phase, (2) familiarization phase, and (3) fMRI scanning phase. 

The present study used the motor items in the MIQ-R (Hall and Martin, 1997), Japanese 

version (JMIQ-R; Nozomu, 2004). We considered motor items in motor imagery 

questionnaires as motor imagery tasks since those movements are typical human movements, 

and we chose MIQ-R rather than newer questionnaires since Nozomi (2004) has validated 15 

the Japanese version of the MIQ-R (JMIQ-R) in the Japanese language and population. The 

JMIQ-R movements are: lifting the right knee, jumping in the air, moving the non-dominant 

arm, and bending at the waist, each of them requiring the organization of several body parts. 

There are eight motor imagery items, four from the visual perspective (VI; mentally seeing 

the movement) and four from the kinesthetic perspective (KI; mentally feeling the 20 

movement). For each item in the JMIQ-R, participants first read a description of the start 

position and the movement (knee lifting, jumping, arm movement, or waist bending). Then, 

they performed the movement from the start position. After completing the movement, they 
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were instructed to imagine the movement from VI or KI perspective. Participants were asked 

to imagine movements with their eyes open to match the motor imagery task during the fMRI 

experiment. After imagining, they rated the ease of seeing/feeling the movement they had 

imagined on a 7-point Likert scale ranging from 1 (very difficult to see/feel) to 7 (very easy 

to see/feel). After completing all motor items in JMIQ-R, participants verbally reported 5 

which imagery was more manageable, the VI or KI, without considering any specific 

individual movement. 

 

Familiarization phase 

In the familiarization phase, participants learned to perform the four movements described 10 

in the JMIQ-R with simple cues: 1) knee movement, 2) jump, 3) arm movement, and 4) waist 

movement. All movement cues were restricted to four characters in Japanese to reduce 

differences between visual stimuli. Participants first learned the correspondence between 

cues and movements. Then, they completed the four movements with the cues of the four-

character Japanese words, which confirmed that they would imagine the correct movements 15 

when given the corresponding cues in the fMRI experiment. Participants were then instructed 

to imagine naturally and relaxedly the four movements in their preferred way, without much 

consideration for fixing on the VI or KI perspective, as specified in the motor imagery 

questionnaire. They were asked to imagine all the movements at a fixed frequency—

completing one movement every 4 s. At the end of this phase, they completed a training 20 

session with the same temporal structure as the fMRI experimental session described below. 

 

fMRI scanning phase 
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The fMRI scans consisted of four repetitive sessions. Each session contained 20 trials, with 

five trials for each movement (condition). Conditions were presented in a pseudo-randomized 

order to avoid presenting the same condition three or more times in a row. At the beginning 

of each trial, the condition instructions were presented for 4 s, during a period in which the 

participants were required to imagine that they were ready to initiate the instructed movement. 5 

Then, when the orange fixation point appeared, the participants began to imagine performing 

a set of instructed movements every 4 s for a total of three sets. The number displayed above 

the fixation was the count of the movement sets. When the fixation turned white, participants 

were asked to tap the response button once with their right thumb and then relax until the 

subsequent trial (Figure 1). If no finger response was detected, we considered that the 10 

participant failed to complete the task in this trial and discarded the corresponding data. 

After the scanning, participants completed a questionnaire about the imagery they created 

during the fMRI scan. They were asked to rate the degree to which they saw or felt the 

movement on a 10-point rating scale from 1 (no visual image at all/completely unable to feel) 

to 10 (there was a complete visual image/feel as if you were performing the movement). The 15 

participants also reported their sports experience and motor imagery training experience in 

the questionnaire. 

-------------------- FIGURE 1 ABOUT HERE -------------------- 

 

Group division 20 

There is evidence that creating motor imagery is not an easy task for untrained individuals, 

especially when they are asked to distinguish between VI and KI. For example, Neuper 

(2005) suggested that mentally feeling movements do not come easily to some individuals, 
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whereas Hwang (2009) proposed that motor imagery training is needed to help participants 

create motor imagery. Therefore, instead of asking participants to imagine VI or KI according 

to their groups, we divide the participants into the VI and KI groups based on their verbal 

report before the experiment about whether they thought it was easier to perform VI or KI 

for the analysis (see details in the Results). 5 

 

MRI acquisition and preprocessing 

 MRI scans were performed on Siemens MRI Scanner MAGNETOM Prisma (3T) with a 

64-channel head coil at Hokkaido University. T2*-weighted gradient echo planar imaging 

was used to acquire a total of 244 volumes per session (axial slices = 32, slice thickness = 10 

3.5 mm with 4.37 mm gap, repetition time (TR) = 2 s, echo time (TE) = 30 ms, flip angle 

(FA) = 90°, field of view (FOV) = 192 × 192 mm, matrix = 94 × 94). The orientation of the 

axial slices was parallel to the anterior commissure–posterior commissure line. The first three 

volumes within each session were discarded to allow for T1 equilibration. T1-weighted 

anatomical imaging covering the whole brain was acquired after capturing functional images 15 

using a T1 MP-RAGE sequence (axial slices = 224, slice thickness = 0.8 mm without gap, 

TR = 2300 ms, TE = 2.41 ms, FA = 8°, FOV = 256 × 256 mm2). 

MRI data preprocessing was performed using Statistical Parametric Mapping (SPM12, 

The Wellcome Centre for Human Neuroimaging). The functional images were first realigned 

using the least-squares approach and the rigid-body spatial transformation. Then, the 20 

realigned functional images and co-registered structural images were spatially normalized to 

the Montreal Neurological Institute (MNI) space with a final voxel size of 3 × 3 × 3 mm3 
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using sinc-interpolation. The scans were smoothed using a Gaussian kernel of 6-mm full 

width at half-maximum for mass univariate analysis. 

 

Definition of regions of interest 

Regions of interest (ROIs) were selected based on previous fMRI studies of motor imagery 5 

(e.g., Hétu et al., 2013; Pilgramm et al., 2016). The bilateral primary motor cortex (M1) and 

S1, supplementary motor area (SMA), and pre-SMA, as well as the dorsal and ventral 

premotor cortices (PMd and PMv), were defined based on the functional labels obtained from 

the functional meta-analysis of cortical motor areas (Mayka et al., 2006). Superior and 

inferior parietal lobules (SPL and IPL) were selected according to the Automated Anatomical 10 

Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002), and V1 was defined as the Brodmann 

area 17. All voxels within the ROI were used as brain features for training the decoder.  

 

fMRI mass univariate analysis 

 The fMRI data were analyzed with SPM12 using the General Linear Model. The voxel-15 

wise analysis was performed for boxcar regressors convoluted with a canonical 

hemodynamic response function. In addition, the six-movement parameters were added to 

the model as regressors of no interest. Low-frequency noise was removed using a high-pass 

filter with a 128-s cutoff period. We first analyzed areas significantly activated during the 

imagery period, regardless of which movement was imagined. The regressors covered the 20 

six-volumes (12 s) task period, while both the instruction and button press period were 

considered part of the baseline. We applied a statistical analysis of the entire brain with a 

threshold of p < 0.05 (family-wise error (FWE) corrected at cluster level with a cluster-
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forming threshold of p < 0.001 uncorrected). Individual contrast images were generated as 

imagery > baseline and then modeled as a random effect using the one-sample t-test for group 

analysis.  

We then investigated whether the imagery of different movements showed any 

somatotopic arrangement in the M1, S1, premotor cortex, and SMA. fMRI data were modeled 5 

with four regressors corresponding to four movements. Contrast images were calculated as 

(1) knee, (2) jump, (3) arm, and (4) waist vs. all other movements. 

 

Peak coordinate classification and multi-voxel pattern classification 

 The 20 trials per session were modeled as separate 20 boxcar regressors convolved with a 10 

canonical hemodynamic response function using smoothed fMRI data for peak location 

classification and non-smoothed fMRI data for MVPA classification. Twenty independently 

estimated parameters per session were calculated for each individual voxel and were then 

normalized across voxels for each trial. Parameter estimates were subsequently used to 

identify the imagined movement according to the peak locations and the multi-voxel patterns. 15 

Considering that Ehrsson et al. (2003) showed that motor imagery engages the somatotopic 

organization in the M1, whereas electroencephalogram studies have classified different 

motor imagery tasks using features from primary somatosensory areas (e.g., Gouy-Pailler et 

al., 2008; Pfurtscheller et al., 2006), we hypothesized that imagined movement can be 

predicted based on the locations of the peak activation within unilateral M1 and S1. We 20 

estimated the average prediction accuracy using a four-fold “leave-one-out” cross-validation 

method, where three sessions were used as training data sets and the other as test data set. 

The average peak coordinates of each movement in the training set and the peak coordinates 
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of each trial in the test set were used to classify the imagined movements. We calculated the 

Euclidean distance between the peak of each experiment in the test set and the peaks of the 

four movements in the training set, where the movements with the closest distance to the trial 

peak were used as the predicted category (Euclidean distance method for the peak coordinates 

classification). We then analyzed the data structure and found that movements are activated 5 

with different multi-dimensional Gaussian distributions within the somatosensory regions. 

We thus added a discriminant analysis method for their classification. 

We then performed a linear support vector machine (SVM) on the multi-voxel patterns to 

discriminate between the four classes of imagined movements. The multi-class classification 

was conducted using a one-vs-one strategy with the LIBSVM package (Chang & Lin, 2011) 10 

with a linear kernel and a cost factor C = 1 to train and test multiple binary classifiers. The 

four-class dataset was first split into six binary classification datasets and trained separately. 

The test data was predicted six times, and the model with the most votes was defined as class 

label. The averaged classification accuracy was estimated with the same fold structure as the 

peak coordinate classification to obtain the highest sensitivity and specificity. 15 

A one-sample t-test across participants in each ROI was performed to determine if the 

observed classification accuracy was significantly higher than chance (25.0%). Statistical 

results were corrected for multiple comparisons (number of ROIs) using the Holm-

Bonferroni method. 

 20 

Searchlight analysis 

A volume-based searchlight decoding analysis was performed using gray matter voxel 

patterns within a 9-mm radius sphere. For each iteration, the analysis same as multi-voxel 
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pattern classification for ROIs was conducted. Classification accuracies were assigned to the 

central voxel of each sphere. One-sample t-tests were performed to subtract clusters where 

classification accuracy was significantly higher than the chance level (25%) at the group level 

corrected for the whole brain multiple comparisons with a threshold of p < 0.05 and a cluster 

size of >15. Significant clusters were identified anatomically using the AAL atlas. 5 
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Results 

Behavioral analysis 

The mean score for global JMIQ-R was 6.00 (SD = 0.601), the mean score for VI was 5.87 

(SD = 0.96), and the mean score for KI was 6.12 (SD = 0.719). In addition, three participants 

rated VI higher (i.e., easier) in the JMIQ-R, but KI higher (i.e., easier) after they finished the 5 

JMIQ-R, which they claimed was due to their unfamiliarity with the action: the first action 

in the questionnaire imagined knee movements with KI, and they rated this imagery lower 

than the other seven imageries. One participant rated KI higher in the questionnaire but 

verbally reported VI easier later: he/she thought that KI was easier after only finishing the 

movement. We divided the VI group (n = 10) and KI group (n = 15) according to the 10 

participants’ reported ease. Because those with inconsistent ratings of ease were asked to 

confirm whether VI or KI was easier at the reporting stage, we therefore considered self-

report to be a better measure of the imagery modality that participants found easier. In 

addition, we considered that JMIQ-R ratings were related to the prescribed movements, 

whereas the group division according to self-report provided a more general judgment. 15 

In addition, nine participants reported KI as easier before the fMRI scan but created VI 

during the experiment. They explained that even though KI was easier to imagine for a given 

movement, VI saved much more effort than KI when repeating the imagined movement 

multiple times, so they shifted to imagining seeing the movement (i.e., using VI) during the 

fMRI experiment. Due to the widely varying sample sizes (19 participants created VI and 6 20 

created KI), we did not analyze the group differences according to the imagery they created 

during the experiment. 
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fMRI mass univariate analysis 

The activation for all imagined movements in all participants overlapped in the bilateral 

SMA, M1, and putamen, as well as in the left IPL and right supramarginal gyrus (SMG, 

Figure 2 and Table 1). Activations revealing the contrast for each movement compared to all 

other movements are shown in Figure 3 and Table 2. We then compared the VI group with 5 

the KI group, and the result showed no significant activation with a cluster-level corrected p 

< .05. 

-------------------- FIGURE 2 & 3 and TABLE 1 & 2 ABOUT HERE -------------------- 

 

Then, ROI analysis was performed to investigate whether ROIs selected according to 10 

previous motor imagery studies were also activated in the present study. One-sample t-test 

was performed to determine whether the estimated parameter changed compared with 

baseline. The SMA (t(24) = 3.18, p = 0.004, Cohen’s d = 0.65) and pre-SMA (t(24) = 2.17, p 

= 0.04, Cohen’s d = 0.44) were significantly activated during motor imagery task. V1 was 

also significantly negatively activated (t(24) = −5.81, p < 0.001, Cohen’s d = 1.19), whereas 15 

the averaged activations (parameter estimates) in other ROIs did not differ significantly from 

the baseline values (Supplementary Figure 1B). The number of activated voxels within each 

ROIs is shown in Supplementary Figure 1A. Considering our focus on the bilateral activation 

of M1 and S1, we also plotted their number of activated voxels and estimated parameters 

separately (Supplementary Figure 2).20 
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Peak coordinate classification 

One-way repeated measures analysis of variance (ANOVA) and Tukey’s honestly 

significant difference (HSD) post-hoc tests were performed to compare the coordinates of 

four movements for each dimension. The results showed statistically significant differences 

for coordinates along the X, Y, and Z axes between movements in the left M1 and S1 (Fs(3, 5 

72) > 3.91, ps < 0.012), without significant differences in the right M1 and S1 (Fs(3, 72) < 

1.69, ps > 0.176). The results of the multiple comparisons showed significant differences 

between the coordinates of the knee movement and those of the other movements. The 

averaged peak coordinates for each movement are shown in Figure 4. 

-------------------- FIGURE 4 ABOUT HERE -------------------- 10 

 

To test whether the movements could be classified according to their peak coordinates in 

the bilateral M1 and S1, we compared the classification accuracy against the chance level 

(25%) using a one-sample t-test and the FDR method for multiple comparison correction 

(Figure 5). The results reveal that the accuracy of classification using a discriminant analysis 15 

method exceeded the chance level in the left M1, left S1, and right S1 (ts(24) > 2.12, ps < 

0.048; Table 3), indicating that the imagery contents can be classified through their associated 

peak coordinates in the SMC. 

-------------------- FIGURE 5 and TABLE 3 ABOUT HERE -------------------- 

 20 

As the ANOVA result only suggested differences between the knee movement and the 

others, we calculated confusion matrices of classification accuracies to determine the 

percentage of correct classifications for each movement (Figure 6). The matrices showed that 
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using the discriminant analysis method, the knee movement in the left M1 and the arm 

movement in the right S1, as the participants imagined their right knee and left arm 

movement, achieved 35% classification accuracy (Figure 6B). In addition, the diagonal 

elements of the left S1 were found to be brighter than the other classifications, indicating that 

the proportion of correct over misleading predictions was greater. The confusion matrices 5 

thus provided an intuitive proof that the imagery content can be classified by the peak 

coordinates of the left M1 and bilateral S1. 

-------------------- FIGURE 6 ABOUT HERE -------------------- 

 

Multi-voxel classification analysis 10 

We next compared the decoding accuracy in each ROI against the chance level to test 

whether the imagined movements can be classified using activation patterns. The result 

showed significantly higher-than-chance classification accuracies in the bilateral M1, S1, 

pre-SMA, SMA, PMd, PMv, SPL, IPL, and V1 (Supplementary Figure 3). 

The decoding accuracy of the bilateral M1 and S1 is shown in Figure 5 for comparison 15 

with the peak coordinates analysis. The confusion matrices of the bilateral M1 and S1 

calculated from the MVPA classification results are presented in Figure 6C. The comparisons 

reveal that the classification accuracy using MVPA vs peak coordinates is much higher, and 

this is in line with our expectation that MVPA can provide considerably more information. 

A mixed ANOVA with Tukey’s HSD post-hoc test was conducted to assess the influence 20 

of the group as an independent factor and of the ROI as a within-subjects factor on the MVPA 

decoding accuracy (Figure 7). Group factor included two levels (VI group and KI group), 

and ROI factor consisted of four levels (bilateral S1 and V1). The main effect for ROI (F(3, 
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69) = 4.17, p = 0.009) and the interaction effect (F(3, 69) = 4.27, p = 0.008) were statistically 

significant. The multiple comparison test showed a significant difference between the VI 

group (mean = 31.25, SD = 5.30) and KI group (mean = 40.75, SD = 12.43) on the left S1 

(F(1, 92) = 6.08, p = 0.016), indicating that 15 participants who considered KI easier achieved 

a significantly higher decoding accuracy within their left S1, whereas no significant 5 

difference was found in their other three ROIs (Fs(1, 92) < 0.7, ps > 0.372). The multiple 

comparison test also revealed a significant difference among four ROIs on the KI group (F(3, 

69) = 5.73, p = 0.001), whereas there was no significant difference among ROIs on the VI 

group (F(3, 69) = 2.70, p = 0.052). 

-------------------- FIGURE 7 ABOUT HERE -------------------- 10 

 

Searchlight analysis 

 The searchlight analysis was lastly performed to identify clusters in which the imagined 

movements can be classified according to voxel patterns. The results revealed that imagined 

movements can be decoded from activation patterns in the bilateral precuneus and M1, left 15 

IPL, middle temporal lobule, supramarginal lobule, SMA, and right SPL and S1 (Figure 8 

and Table 4). 

-------------------- FIGURE 8 and TABLE 4 ABOUT HERE -------------------- 

 

 20 
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Discussion 

The present study focused on the decoding of motor imagery involving whole-body 

coordination. We classified imagined movements using fMRI, measuring brain activity peak 

location and spatial patterns within the SMCs, compared their performance, and investigated 

the difference between the VI group (those who considered visual motor imagery easier) and 5 

the KI group (those considered kinesthetic motor imagery easier) in their classification 

accuracy. The results show that the four general movements can be classified based on the 

peak location and spatial patterns within the SMCs, and motor imagery can be differentiated 

at the individual movement level using signals from regions in the motor imagery network, 

such as the M1, S1, premotor cortex, SMA, SPL, IPL, and V1. Furthermore, previous studies 10 

suggested that a homuncular organization of the SMCs allows representing the imagining of 

motor processing for different anatomical divisions of the body (Ehrsson et al., 2003; Gouy-

Pailler et al., 2008; Szameitat et al., 2007b). Therefore, we hypothesized that the location of 

brain activity might classify motor imagery involving different body parts. Using simple 

signal features as the somatotopic features of motor imagery—the activation peak 15 

coordinates, our results show that the imagery content might be classified in primary motor 

and sensory areas using machine learning algorithms. In addition, our results suggest that 

unilateral limb movements may be more easily classified than WB movements.  

Our results reveal that the classification accuracy of the bilateral S1 is significantly higher 

than the chance level using peak location and spatial patterns as signal features. Many 20 

previous studies did not find significant S1 activity during motor imagery (e.g., Hanakawa, 

Dimyan, & Hallett, 2008; Mizuguchi, Nakata, & Kanosue, 2016; Szameitat, Shen, & Sterr, 

2007; Wei & Luo, 2009; see review in Robert M. Hardwick et al., 2018), whereas some 
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reported that S1 was significantly activated (e.g., Guillot et al., 2008; Van der Meulen, Allali, 

Rieger, Assal, & Vuilleumier, 2014). Furthermore, Hétu (2013) suggested that activations are 

constantly found in the postcentral gyrus using ALE meta-analyses. The results of our mass 

univariate analysis are consistent with those studies finding significant S1 activation, and 

more importantly, the above-chance classification accuracy of S1 indicates that motor 5 

imagery needs the involvement of S1. Therefore, we thought that S1 might play a crucial role 

in motor imagery. In addition, the MVPA classification accuracy of the left S1 showed a 

significant group effect, with the VI group compared to the KI group achieving a higher 

decoding accuracy. We focused on the S1 because tactile imagery activates the somatotopic 

organization of S1 (Schmidt & Blankenburg, 2019; Yoo et al., 2003), and Guillot et al. (2009) 10 

reported that KI, but not VI, activates S1 bilaterally. Group effects on the S1 classification 

accuracy suggest that the imagery modalities affect the motor imagery classification accuracy 

with fMRI multi-voxel pattern analysis. This finding provides an approach to improve the 

classification accuracy by training the participants to imagine the movement kinesthetically, 

which could be applied to help individuals learn motor imagery, thus facilitating their 15 

efficiency of motor skill learning or rehabilitation. 

Our results reveal that the motor imagery can be decoded from V1, even when negatively 

activated. Previous studies have demonstrated that brain activity increases in attended areas 

and decreases in not attended areas (Maunsell & Cook, 2002), and Amedi (2005) showed that 

visual imagery suppresses the activation of sensory processing in the auditory cortex that is 20 

unrelated to vision. Therefore, the negative response in the V1 might be interpreted as a 

suppressive effect from motor-related areas. Furthermore, Bressler (2007) showed that even 

visual stimuli can induce negative BOLD responses within the visual cortex and that these 
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negative responses still contain valuable information for visual processing. This is consistent 

with our finding that during motor imagery, the negative responses within V1 are still 

informative and therefore can be used to classify motor imagery. 

Our decoding results agree with Monaco et al. (2020), which suggested that the content 

of VI and KI can be decoded from the activity patterns of V1. Previous studies directly 5 

comparing VI with KI did not show any V1 activation (Guillot et al., 2009; Lee et al., 2019), 

which was confirmed by the results of our mass univariate analysis. We focused on the visual 

cortex because visual imagery can be decoded from activity patterns in V1 even if its brain 

activity does not exceed baseline (Koenig-Robert & Pearson, 2019; Naselaris et al., 2015). 

However, decoding accuracy was not significantly higher in the VI group than in the KI group, 10 

suggesting functions for V1 beyond creating visual images of movement. This might be 

related to the role of V1 in motor tasks. There is growing evidence that V1 is involved in 

motor-related functions, such as action planning and execution (Gallivan et al., 2019; 

Gutteling et al., 2015). Moreover, Mizuguchi et al. (2016) showed that V1 activity is 

associated with the ability to imagine kinesthetically WB movements. Another possibility is 15 

that the V1 plays an essential role in working memory, which is necessary for the completion 

of motor imagery tasks, and as suggested by Albers et al. (2013), mental imagery and working 

memory share a joint representation in the early visual cortex. 

The searchlight results suggest that the patterns of activity within the M1, S1, SPL, SMA, 

SMG, precuneus, middle temporal gyrus, and superior occipital gyrus allow distinguishing 20 

four types of imagined movements, indicating that information on the different motor 

imageries can be obtained from the activation patterns in specific regions that form a spatially 

distributed network. Among these regions, only the SMA, M1, and SMG showed significant 



 23 

activation during motor imagery, suggesting that the regions activated in different 

movements do not necessarily show a general increase at the univariate level. Furthermore, 

the SMA, M1, and IPL were previously found to be consistently activated during motor 

imagery (Hanakawa, 2016) and are thought to be part of the sensorimotor network. Moreover, 

the SMG contributes to phonological processing (Gough et al., 2005) and plays an essential 5 

role in visual word recognition (Stoeckel et al., 2009). Considering that the condition 

instructions were Japanese words and the cue words for each movement differed from the 

others, we considered it reasonable that the SMG was activated during motor imagery and 

could distinguish between the four movements. Furthermore, ROI analysis but not 

searchlight analysis showed above chance classification accuracy in V1, indicating that a 10 

larger rather than a smaller range of activation patterns in V1 contains more information for 

classifying various imagined movements.  

Moreover, our mass univariate analysis suggests that the different types of motor imagery 

were indistinguishable on a univariate level, in agreement with the findings by Pilgramm et 

al. (2016). Furthermore, we failed to predict movement classes using the nearest Euclidean 15 

distance, indicating that different movements may elicit similar neural representations on a 

univariate level. However, using the location of peak activation within SMCs as the feature 

signal and discriminant analysis as the classification algorithm, imagined movements were 

distinguishable. Therefore, we consider the location of the activation peaks within the SMC 

as containing relevant information on the type of imagined movements. 20 

We asked participants to imagine the movements naturally for the following reasons. First, 

intentionally generated motor imagery is not a commonly used cognitive function for healthy 

individuals without experience in sports or playing musical instruments. These have been 
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confirmed by the results of the questionnaire used in the present study. Although all 

participants conceptualized motor imagery and imagined some movements under the 

experimenter’s guidance, only 7 of the 25 participants had experience with the conscious 

imagery of movement. In addition, we were unable to assess whether the participants 

imagined the movements in the desired way, making it difficult for us to help them learn this 5 

new skill by providing feedback. Thus, motor imagery was not a task that participants 

recruited in the current study were able to perform without resistance when let alone 

intentionally employing visual imagery or kinesthetic imagery. Second, motor imagery was 

challenging to be supervised by an external observer (i.e., the experimenter), and whether the 

motor imagery task was performed during the experiment depended entirely on the 10 

participant. The experimenter cannot confirm that participants were creating the same motor 

imagery when given the same movement instructions. Therefore, reducing the resistance to 

completing a motor imagery task is critically important, especially in repetitive and 

sometimes monotonous fMRI experiments. Third, reducing the difficulty can reduce the 

resistance in completing the motor imagery task and thus allow individuals with unlike 15 

capacities to perform diverse motor imagery modalities. For these three reasons, we asked 

participants to imagine the movements naturally to reduce resistance to imagining 

movements in fMRI experiments, thereby increasing the likelihood that they would complete 

the motor imagery task well.  

Our results illustrated that the neural responses corresponding to different conditions 20 

within the ROI differ in two aspects: the spatial distribution of neural signals and the signal 

values assigned to each specific location. However, the weights of the information carried by 

all voxels within the ROI are not the same, and the pattern of the weights of the information 
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carried by each voxel varies under different conditions. Future studies should fully consider 

the specificity of neural signals to train classification models with better performance, and to 

find more detailed and specific neural representations of the experimental behavior/ 

cognition. Moreover, one should interpret these results cautiously since the fMRI signal is an 

indirect measure of neural activation and is vulnerable to within-subject noise, as there is no 5 

guarantee that the imagery created by a participant could be exactly the same when repeatedly 

imagining a particular movement. 

Before and after the fMRI experiment, the questionnaire results showed that it was more 

challenging to complete KI repeatedly during fMRI scanning, even for some participants who 

found KI easier when naturally imagining the movement. This finding suggested that 10 

performing KI during a repetitive experimental process might be more challenging than a 

single trial. Even after having learned KI prior to the experiment and after being asked to 

imagine the movement in a kinesthetic way, participants may have unconsciously replaced 

KI with VI because they felt KI was more effortful, as nine participants self-reported that KI 

was easier before the fMRI experiment but still used VI during the experiment in our study. 15 

Therefore, we recommend that researchers ask participants after the experiment about the 

imagery they used during the experiment, especially when imagery modality is one of the 

studied variables. We expected to compare group division approaches, so we estimated motor 

imagery ability or preference in several ways. However, limited by the small size of the 

participants, we could only compare one of the relatively balanced grouping methods. Future 20 

studies could compare VI and KI more closely by using more sophisticated grouping methods 

rather than asking participants to imagine movements visually or kinesthetically.  
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Conclusion 

The present study indicates that motor imagery involving whole-body coordination can be 

classified based on the location of the related peak activation within the SMC and the multiple 

voxel activation patterns within the M1, S1, premotor cortex, SMA, SPL, IPL, and V1. In 

addition, our results suggest that participants who perceived KI as easier than VI had a 5 

significantly higher classification accuracy within the left S1 than participants who instead 

perceived VI as easier than KI. 
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Tables 

Table 1: Anatomical regions, peak voxel coordinates, and t-values of observed activations 

during motor imagery. 

Anatomic region  voxels  MNI coordinates           
t-value  

           x  y  z       
L Supplementary motor area 491 -3 -1 59 8.2 
  R Supplementary motor area     9 2 65 7.07 
  L Postcentral cortex  -42 -10 50 6.34 
R Insula 441 48 8 5 7.7 
  R Inferior frontal gyrus  60 11 23 6.95 
  R Rolandic operculum  45 8 14 6.6 
L Inferior Frontal gyrus 103 -48 5 8 7.04 
  L Precentral cortex  -57 5 23 4.81 
L Putamen 93 -21 -1 11 5.91 
R Supramarginal gyrus 58 42 -34 44 4.32 
  R Inferior parietal Lobule  33 -40 44 4.32 
  R Inferior parietal Lobule   39 -43 53 4.13 

      
MNI, Montreal Neurological Institute; L, left hemisphere; R, right hemisphere. 

 5 
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Table 2: Anatomical regions, peak voxel coordinates, and t-values of observed activations. 

Anatomic region  voxels  MNI coordinates           
t-value  

           x  y  z       
Knee > Others      

L Postcentral cortex 143 -18 -40 68 6.18 
 L Postcentral cortex  -24 -34 77 5.52 
 L Superior parietal gyrus  -18 -58 71 3.87 
Jump > Others      
L Supplementary Motor 
Area 264 -3 2 65 5.74 
 L Supplementary Motor 
Area  -9 -4 74 5.37 
 L Supplementary Motor 
Area  -6 -7 65 5.36 
Arm > Others      
R Precentral cortex 80 30 -4 53 5.96 
- (-)  18 2 50 5.25 
R Superior parietal gyrus 48 39 -43 59 4.75 
 R Inferior parietal gyrus  33 -40 53 4.3 
Waist > Others      

no voxels exceeded           
MNI, Montreal Neurological Institute; L, left hemisphere; R, right hemisphere. 
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Table 3: One-sample t-test compare accuracies of classification according to peak ccordinates 

using Euclidean method and discrinimant analysis method, and classification according to 

MVPA using SVM to 25% chance level. 

One-sample t-test (N = 25) 

      
95% Confidence 

Interval 

Methods ROIs t Sig. (2-tailed) FDR Mean Lower Upper 

Peak Coordinates left M1 1.49 0.151 0.29 27.5 24.026 30.974 

Euclidean right M1 0.32 0.751 0.751 25.45 22.551 28.349 

 left S1 2.11 0.045 0.181 28.2 25.072 31.328 

 right S1 1.27 0.218 0.29 26.2 24.244 28.156 

Peak Coordinates left M1 2.45 0.022 0.048 29.45 25.696 33.204 

Discriminant right M1 -0.56 0.799 0.799 24.65 21.838 27.462 

Analysis left S1 2.41 0.024 0.048 29.3 25.615 32.985 

 right S1 2.12 0.044 0.059 27.4 25.064 29.736 

MVPA left M1 4.84 <.001 <.001 37.65 32.258 43.042 

SVM right M1 5.29 <.001 <.001 36.5 32.014 4.0986 

 left S1 5.38 <.001 <.001 36.95 32.369 41.531 

  right S1 6.53 <.001 <.001 37.25 33.377 41.123 
 

  5 
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Table 4: Searchlight results showing clusters with above chance decoding of four types of 

imagery movements. 

Anatomic region  voxels  MNI coordinates           
t-value  

           x  y  z       
L Precuneus  214 -9 -49 68 11.41 
 L Superior parietal gyrus     -24 -55 62 10.56 
 L Superior parietal gyrus     -15 -58 59 9.33 
L Inferior parietal gyrus 25 -36 -43 44 10.18 
L Superior frontal gyrus 21 -24 -7 56 9.59 
 L Precentral gyrus     -30 -1 50 7.02 
R Superior parietal gyrus 203 18 -46 68 9.10 
 R Postcentral gyrus     30 -46 62 8.96 
 R Precuneus     12 -52 56 8.75 
L Middle temporal gyrus 20 -48 -58 11 8.76 
 L Middle temporal gyrus     -54 -58 2 7.04 
R Precuneus 26 15 -73 44 8.48 
 R Superior Occipital sulcus     27 -73 44 7.70 
L Supplementary motor area 69 0 -1 56 8.45 
 L Supplementary motor area     0 -1 65 8.38 
 R Superior frontal gyrus     18 -10 71 7.33 
R Postcentral gyrus 21 57 -10 26 8.10 
 R Supramarginal gyrus     57 -19 26 7.26 
 R Postcentral gyrus     45 -22 41 7.06 
 R Postcentral gyrus 31 42 -28 53 7.86 
 R Precentral gyrus     36 -19 47 7.43 
 R Postcentral gyrus     45 -19 50 7.09 
L Supplementary motor area 19 -12 -7 71 7.56 
  L Paracentral Lobule     -18 -13 68 7.03 
 L Superior frontal gyrus     -21 -7 62 6.80 

MNI, Montreal Neurological Institute; L, left hemisphere; R, right hemisphere.  



 31 

References 

Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C., & De Lange, F. P. (2013). Shared 

representations for working memory and mental imagery in early visual cortex. Current 

Biology, 23(15), 1427–1431. https://doi.org/10.1016/j.cub.2013.05.065 

Amedi, A., Malach, R., & Pascual-Leone, A. (2005). Negative BOLD differentiates visual 5 

imagery and perception. Neuron, 48(5), 859–872. 

https://doi.org/10.1016/j.neuron.2005.10.032 

Binkofski, F., Amunts, K., Stephan, K. M., Posse, S., Schormann, T., Freund, H. J., Zilles, 

K., & Seitz, R. J. (2000). Broca’s region subserves imagery of motion: A combined 

cytoarchitectonic and fMRI study. Human Brain Mapping, 11(4), 273–285. 10 

https://doi.org/10.1002/1097-0193(200012)11:4<273::AID-HBM40>3.0.CO;2-0 

Braun, S., Kleynen, M., Van Heel, T., Kruithof, N., Wade, D., & Beurskens, A. (2013). The 

effects of mental practice in neurological rehabilitation; a systematic review and meta-

analysis. Frontiers in Human Neuroscience, 7(JUL). 

https://doi.org/10.3389/fnhum.2013.00390 15 

Bressler, D., Spotswood, N., & Whitney, D. (2007). Negative BOLD fMRI response in the 

visual cortex carries precise stimulus-specific information. PLoS ONE, 2(5). 

https://doi.org/10.1371/journal.pone.0000410 

Chang, C. C., & Lin, C. J. (2011). LIBSVM: A Library for support vector machines. ACM 

Transactions on Intelligent Systems and Technology, 2(3). 20 

https://doi.org/10.1145/1961189.1961199 

Decety, J., & Jeannerod, M. (1996). Mentally simulated movements in virtual reality: does 

Fitt’s law hold in motor imagery? Behavioural Brain Research, 72(1–2), 127–134. 

https://doi.org/10.1016/0166-4328(96)00141-6 

Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Tadary, B., Woods, R., Mazziotta, J., & 25 

Fazio, F. (1994). Mapping motor representations with positron emission tomography.pdf. 

Nature, 371(6498), 600–602. 

Dijkstra, N., Bosch, S. E., & van Gerven, M. A. J. (2017). Vividness of visual imagery 

depends on the neural overlap with perception in visual areas. Journal of Neuroscience, 

37(5), 1367–1373. https://doi.org/10.1523/JNEUROSCI.3022-16.2016 30 



 32 

Ehrsson, H. H., Geyer, S., & Naito, E. (2003). Imagery of Voluntary Movement of Fingers, 

Toes, and Tongue Activates Corresponding Body-Part-Specific Motor Representations. 

Journal of Neurophysiology, 90(5), 3304–3316. https://doi.org/10.1152/jn.01113.2002 

Fourkas, A. D., Bonavolont, V., Avenanti, A., & Aglioti, S. M. (2008). Kinesthetic imagery 

and tool-specific modulation of corticospinal representations in expert tennis players. 5 

Cerebral Cortex, 18(10), 2382–2390. https://doi.org/10.1093/cercor/bhn005 

Friston, K. J. (2009). Modalities, modes, and models in functional neuroimaging. Science, 

326(5951), 399–403. https://doi.org/10.1126/science.1174521 

Gallivan, J. P., Chapman, C. S., Gale, D. J., Flanagan, J. R., & Culham, J. C. (2019). Selective 

Modulation of Early Visual Cortical Activity by Movement Intention. Cerebral Cortex, 10 

29(11), 4662–4678. https://doi.org/10.1093/cercor/bhy345 

Gough, P. M., Nobre, A. C., & Devlin, J. T. (2005). Dissociating linguistic processes in the 

left inferior frontal cortex with transcranial magnetic stimulation. Journal of 

Neuroscience, 25(35), 8010–8016. https://doi.org/10.1523/JNEUROSCI.2307-05.2005 

Gouy-Pailler, C., Congedo, M., Jutten, C., Brunner, C., & Pfurtscheller, G. (2008). Model-15 

based source separation for multi-class motor imagery. European Signal Processing 

Conference, 57(2), 469–478. 

Guillot, A., & Collet, C. (2008). Construction of the Motor Imagery Integrative Model in 

Sport: a review and theoretical investigation of motor imagery use. International Review 

of Sport and Exercise Psychology, 1(1), 31–44. 20 

https://doi.org/10.1080/17509840701823139 

Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2008). 

Functional neuroanatomical networks associated with expertise in motor imagery. 

NeuroImage, 41(4), 1471–1483. https://doi.org/10.1016/j.neuroimage.2008.03.042 

Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2009). Brain 25 

activity during visual versus kinesthetic imagery: An fMRI study. Human Brain 

Mapping, 30(7), 2157–2172. https://doi.org/10.1002/hbm.20658 

Gutteling, T. P., Petridou, N., Dumoulin, S. O., Harvey, B. M., Aarnoutse, E. J., Leon 

Kenemans, J., & Neggers, S. F. W. (2015). Action preparation shapes processing in early 

visual cortex. Journal of Neuroscience, 35(16), 6472–6480. 30 



 33 

https://doi.org/10.1523/JNEUROSCI.1358-14.2015 

Hall, C. R., & Martin, K. A. (1997). Measuring movement imagery abilities: A revision of 

the Movement Imagery Questionnaire. Journal of Mental Imagery, 21(1–2), 143–154. 

Hanakawa, T. (2016). Organizing motor imageries. Neuroscience Research, 104, 56–63. 

https://doi.org/10.1016/j.neures.2015.11.003 5 

Hanakawa, T., Dimyan, M. A., & Hallett, M. (2008). Motor Planning , Imagery , and 

Execution in the Distributed Motor Network : A Time- Course Study with Functional 

MRI. December, 2775–2788. https://doi.org/10.1093/cercor/bhn036 

Hanakawa, T., Immisch, I., Toma, K., Dimyan, M. A., Gelderen, P. V. A. N., Hallett, M., 

Immisch, I., Toma, K., Michael, A., Gelderen, P. Van, & Functional, M. H. (2003). 10 

Functional Properties of Brain Areas Associated With Motor Execution and Imagery. 

989–1002. 

Hardwick, R. M., Caspers, S., Eickhoff, S. B., & Swinnen, S. P. (2018). Neural correlates of 

action: Comparing meta-analyses of imagery, observation, and execution. In 

Neuroscience and Biobehavioral Reviews (Vol. 94, pp. 31–44). Elsevier Ltd. 15 

https://doi.org/10.1016/j.neubiorev.2018.08.003 

Hétu, S., Grégoire, M., Saimpont, A., Coll, M. P., Eugène, F., Michon, P. E., & Jackson, P. L. 

(2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience 

and Biobehavioral Reviews, 37(5), 930–949. 

https://doi.org/10.1016/j.neubiorev.2013.03.017 20 

Hwang, H.-J., Kwon, K., & Im, C.-H. (2009). Neurofeedback-based motor imagery training 

for brain-computer interface (BCI). Journal of Neuroscience Methods, 179, 150–156. 

https://doi.org/10.1016/j.jneumeth.2009.01.015 

Immenroth, M., Bürger, T., Brenner, J., Nagelschmidt, M., Eberspächer, H., & Troidl, H. 

(2007). Mental training in surgical education: A randomized controlled trial. Annals of 25 

Surgery, 245(3), 385–391. https://doi.org/10.1097/01.sla.0000251575.95171.b3 

Jeannerod, M. (2001). Neural Simulation of Action : A Unifying Mechanism for Motor 

Cognition. 109, 103–109. https://doi.org/10.1006/nimg.2001.0832 

Koenig-Robert, R., & Pearson, J. (2019). Decoding the contents and strength of imagery 

before volitional engagement. Scientific Reports, 9(1), 1–14. 30 



 34 

https://doi.org/10.1038/s41598-019-39813-y 

Lee, W. H., Kim, E., Seo, H. G., Oh, B. M., Nam, H. S., Kim, Y. J., Lee, H. H., Kang, M. G., 

Kim, S., & Bang, M. S. (2019). Target-oriented motor imagery for grasping action: 

different characteristics of brain activation between kinesthetic and visual imagery. 

Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-49254-2 5 

Lorey, B., Naumann, T., Pilgramm, S., Petermann, C., Bischoff, M., Zentgraf, K., Stark, R., 

& Vaitl, D. (2014). Neural Simulation of Actions : Effector- Versus Action-Specific 

Motor Maps Within the Human Premotor and Posterior Parietal Area ? 1225(October 

2012), 1212–1225. https://doi.org/10.1002/hbm.22246 

Lorey, B., Pilgramm, S., Walter, B., Stark, R., Munzert, J., & Zentgraf, K. (2010). Your 10 

mind’s hand: Motor imagery of pointing movements with different accuracy. 

NeuroImage, 49(4), 3239–3247. https://doi.org/10.1016/j.neuroimage.2009.11.038 

Maunsell, J. H. R., & Cook, E. P. (2002). The role of attention in visual processing. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 357(1424), 

1063–1072. https://doi.org/10.1098/rstb.2002.1107 15 

Mayka, M. A., Corcos, D. M., Leurgans, S. E., & Vaillancourt, D. E. (2006). Three-

dimensional locations and boundaries of motor and premotor cortices as defined by 

functional brain imaging: A meta-analysis. NeuroImage, 31(4), 1453–1474. 

https://doi.org/10.1016/j.neuroimage.2006.02.004 

Mizuguchi, N., Nakata, H., & Kanosue, K. (2016). Motor imagery beyond the motor 20 

repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of 

difficult whole body movements. Neuroscience, 315, 104–113. 

https://doi.org/10.1016/j.neuroscience.2015.12.013 

Monaco, S., Malfatti, G., Culham, J. C., Cattaneo, L., & Turella, L. (2020). Decoding motor 

imagery and action planning in the early visual cortex: Overlapping but distinct neural 25 

mechanisms. NeuroImage, 218(May), 116981. 

https://doi.org/10.1016/j.neuroimage.2020.116981 

Naselaris, T., Olman, C. A., Stansbury, D. E., Ugurbil, K., & Gallant, J. L. (2015). A voxel-

wise encoding model for early visual areas decodes mental images of remembered 

scenes. NeuroImage, 105, 215–228. https://doi.org/10.1016/j.neuroimage.2014.10.018 30 



 35 

Neuper, C., Scherer, R., Reiner, M., & Pfurtscheller, G. (2005). Imagery of motor actions: 

Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. 

https://doi.org/10.1016/j.cogbrainres.2005.08.014 

Olsson, C.-J., Jonsson, B., Larsson, A., & Nyberg, L. (2008). Motor Representations and 

Practice Affect Brain Systems Underlying Imagery: An fMRI Study of Internal Imagery 5 

in Novices and Active High Jumpers. The Open Neuroimaging Journal, 2(1), 5–13. 

https://doi.org/10.2174/1874440000802010005 

Parsons, L. M., Fox, P. T., Downs, J. H., Glass, T., Hirsch, T. B., Martin, C. C., Jerabek, P. 

A., & Lancaster, J. L. (1995). Use of implicit motor imagery for visual shape 

discrimination as revealed by PET. 375(May), 4–8. 10 

https://doi.org/https://doi.org/10.1038/375054a0 

Pfurtscheller, G., Brunner, C., Schlögl, A., & Lopes da Silva, F. H. (2006). Mu rhythm 

(de)synchronization and EEG single-trial classification of different motor imagery tasks. 

NeuroImage, 31(1), 153–159. https://doi.org/10.1016/j.neuroimage.2005.12.003 

Pilgramm, S., Haas, B. De, Helm, F., Zentgraf, K., & Stark, R. (2016). Motor Imagery of 15 

Hand Actions : Decoding the Content of Motor Imagery From Brain Activity in Frontal 

and Parietal Motor Areas. 93(October 2015), 81–93. 

https://doi.org/10.1002/hbm.23015 

Schmidt, T. T., & Blankenburg, F. (2019). The Somatotopy of Mental Tactile Imagery. 

Frontiers in Human Neuroscience, 13, 10. https://doi.org/10.3389/fnhum.2019.00010 20 

Stoeckel, C., Gough, P. M., Watkins, K. E., & Devlin, J. T. (2009). Supramarginal gyrus 

involvement in visual word recognition. Cortex, 45(9), 1091–1096. 

https://doi.org/10.1016/j.cortex.2008.12.004 

Szameitat, A. J., Shen, S., & Sterr, A. (2007a). Effector-dependent activity in the left dorsal 

premotor cortex in motor imagery. European Journal of Neuroscience, 26(11), 3303–25 

3308. https://doi.org/10.1111/j.1460-9568.2007.05920.x 

Szameitat, A. J., Shen, S., & Sterr, A. (2007b). Motor imagery of complex everyday 

movements . An fMRI study. NeuroImage, 34, 702–713. 

https://doi.org/10.1016/j.neuroimage.2006.09.033 

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., 30 



 36 

Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM 

using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. 

NeuroImage, 15(1), 273–289. https://doi.org/10.1006/nimg.2001.0978 

Van der Meulen, M., Allali, G., Rieger, S. W., Assal, F., & Vuilleumier, P. (2014). The 

influence of individual motor imagery ability on cerebral recruitment during gait 5 

imagery. Human Brain Mapping, 35(2), 455–470. https://doi.org/10.1002/hbm.22192 

Weaverdyck, M. E., Lieberman, M. D., & Parkinson, C. (2020). Tools of the trade multivoxel 

pattern analysis in fMRI: A practical introduction for social and affective neuroscientists. 

Social Cognitive and Affective Neuroscience, 15(4), 487–509. 

https://doi.org/10.1093/scan/nsaa057 10 

Wei, G., & Luo, J. (2009). Sport expert’s motor imagery: Functional imaging of professional 

motor skills and simple motor skills. https://doi.org/10.1016/j.brainres.2009.08.014 

Yoo, S. S., Freeman, D. K., McCarthyIII, J. J., & Jolesz, F. A. (2003). Neural substrates of 

tactile imagery: A functional MRI study. NeuroReport, 14(4), 581–585. 

https://doi.org/10.1097/00001756-200303240-00011 15 

Nozomu Hasegawa (2004). 'Nihongohan undousinzō situmonsi kaiteihan (JMIQ) no sakusei' 

[Development of the Japanese Motor Imagery Questionnaire-Revised (JMIQ-R)]. 

Japanese J. Ment. Imag. 2, 25–34. [in Japanese]. 

 

 20 

  



 37 

Figures 

 

Figure 1: 

Schematic depiction of the time course of a single block. First, the visual cue (i.e., four 

Japanese characters) was displayed, indicating one of the four movements described in the 5 

MIQ-R. Four seconds later, an orange fixation was presented, and the participants were asked 

to start imagining the respective movement three times, every 4 s during the 12-s imagery 

period. The numbers displayed above the fixation point were counting for the imagery times. 

When the fixation turned white, the participants were asked to tap the response button once 

and then to relax until the next block. 10 
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Figure 2: 

Regions activated in the mass univariate analysis when imagining all movements. Activation 

was reported when reaching a threshold of p < 0.001 and an extent threshold of p < .05 

corrected for multiple comparisons. L, left hemisphere; R, right hemisphere. MNI 5 

coordinates of activated foci are reported in Table 1. The representation is displayed in the 

horizontal plane, with Z denoting locations in the MNI coordinates. 
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Figure 3: 

Regions activated in the fMRI univariate analysis. Red: imagining the knee movement, 

yellow: jump movement, and green: arm movement vs all other movements. Activation was 

reported when reaching a threshold of p < 0.001 and an extent threshold of p < .05 corrected 5 

for multiple comparisons. L, left hemisphere; R, right hemisphere. MNI coordinates of 

activated foci are reported in Table 2. The representation is displayed in the horizontal plane, 

with Z denoting locations in the MNI coordinates. 

 
 10 
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Figure 4: 

The peak of activated clusters for each movement, analyzed using mass univariate analysis. 

(A) Primary motor area and (B) primary somatosensory area. The same sets of coordinates 

are displayed in x–y planes and x–z planes. Error bars indicate standard errors of the mean. 5 
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Figure 5: 

The averaged peak coordinate classification accuracy and multi-voxel classification accuracy 

for imagining the four types of movements. M1, primary motor area; S1, primary 

somatosensory area. The dashed line indicates the chance level (25%). Error bars indicate 5 

standard errors of the mean. * p < 0.05, ** p < 0.0001, FDR <10%. 
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Figure 6: 

Confusion matrix of the classification results between each movement, arranged in the order 

of knee movement, jump, arm movement, and waist movement. (A) Euclidean distance 

method, (B) discriminant analysis method for peak coordinates classification, and (C) SVM 5 

for MVPA. Upper and lower rows represent the results obtained from M1 and S1, 

respectively; the left and right columns in Figures A, B, and C show the results obtained from 

the left and right hemispheres, respectively. Each cell represents the percentage ratio (%) of 

correct classifications determined in each experiment, with the rows and columns 

representing the predicted and the actual movement, respectively. The diagonal elements 10 

represent the classification accuracy (%) for each movement. 
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Figure 7: 

Averaged MVPA classification accuracies for imagining four types of movements within 

bilateral S1 and V1 for the VI group and KI group. The dashed line indicates the chance level 

(25%). Error bars indicate standard errors of the mean. * p < 0.05. 5 
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Figure 8: 

Decoding performance for four motor imagery classification, with clusters of significant 

decoding accuracy (p < 0.05). FWE corrected at cluster level with an extent threshold of 15 

voxels. L, left hemisphere; R, right hemisphere. MNI coordinates of activated foci are 5 

reported in Table 4. The representation is displayed in the horizontal plane, with Z denoting 

locations in the MNI coordinates. 
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Supplementary Figure 1: 

(A) The average number of activated voxels and (B) the averaged activation (parameter 

estimates) within ROIs. pre-SMA, pre-supplementary motor area; SMA, supplementary 

motor area; PMd, dorsal premotor cortex; PMv, ventral premotor cortex; SPL, superior 5 

parietal lobule; IPL, inferior parietal lobule; V1, primary visual area, defined as Brodmann 

area 17. Error bars indicate standard errors of the mean. 
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Supplementary Figure 2: 

(A) The average number of activated voxels and (B) the average activation (parameter 

estimates) within ROIs within bilateral M1 and S1. Error bars indicate standard errors of 

the mean. 5 

 
  



 47 

 

Supplementary Figure 3: 

Average classification accuracies for imagining of four types of movements within the ROIs. 

pre-SMA, pre-supplementary motor area; SMA, supplementary motor area; PMd, dorsal 

premotor cortex; PMv, ventral premotor cortex; SPL, superior parietal lobule; IPL, inferior 5 

parietal lobule; V1, primary visual area, defined as Brodmann area 17. The dashed line 

indicates the chance level (25%). Error bars indicate standard errors of the mean. * p < 0.01, 

** p < 0.0001. 

 


