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Chapter 1

Introduction

1.1 Spin textures

Strongly correlated electron system provides various electromagnetic properties by orbital
hybridization between localized spins and itinerant electrons. In particular, the correlation among
the charge, orbital, and spin degrees of freedom produces exotic properties such as unconventional
superconductivity and cross-correlated phenomena [1, 2].

Spin textures are the spatial arrangement of spins produced by the interaction between
electrons and can be broadly classified into two types: collinear spin structures and noncollinear
spin structures as shown in Fig.1.1 [3]. In collinear spin structures, all spins are in a parallel or
antiparallel to each other, e.g. ferromagnetic and antiferromagnetic structures. On the other hand,
in noncollinear spin structures: helimagnetic structures and magnetic skyrmion structures, all
spins are not in a parallel (antiparallel) to each other. Furthermore, noncollinear spin structures are
classified into two types: coplanar and noncoplanar spin structures. In coplanar spin structures,
all spins are aligned on one plane, and single-propagation vector 𝑄 is defined perpendicular to
that spin rotating plane, as in a helical spin structure. On the other hand, in noncoplanar spin
structures, all spins are not in one plane as in a magnetic skyrmion structure. In noncoplanar
spin structures, at least two propagation vectors are defined, being called multi-𝑄 states.

A vector spin chirality and a scalar spin chirality characterize noncollinear and noncoplanar
magnetic structures, respectively. The vector spin chirality 𝜅𝑖 𝑗 calculating between two neigh-
boring spins 𝑆𝑖 and 𝑆 𝑗 , and the spin scalar chirality 𝜒𝑖 𝑗𝑘 calculating among three neighboring
spins 𝑆𝑖 , 𝑆 𝑗 , and 𝑆𝑘 , are defined as

𝜅𝑖 𝑗 = 𝑆𝑖 × 𝑆 𝑗 , (1.1)

and

𝜒𝑖 𝑗𝑘 = 𝑆𝑖 ¤(𝑆 𝑗 × 𝑆𝑘). (1.2)

The former, as is clear from the definition, is equal to zero if the two spins are aligned to one
direction (Collinear) and non-zero if they are not (Noncollinear). In the same way, the latter
is non-zero if the three spins are in not in a plane (noncoplanar) as shown in Fig.1.2. The
finite scalar spin chirality in noncoplanar spin textures affects itinerant electrons as an effective
magnetic field through the spin-charge coupling arising from hybridization between itinerant
electrons and localized spins [4, 5]. Here, the Berry phase that an itinerant electron acquires
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Collinear structure

Coplanar

Noncollinear structure

Helimagnetic structure

Q
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Q2
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Q

Figure 1.1: Classification of spin textures: collinear and noncollinear structure. In collinear
structures, spins are aligned parallel (ferromagnetic) and antiparallel (antiferromagnetic). The
noncollinear structures are futher classified into coplanar and noncoplanar structures. In these
structures, spin rotation propagates one (two or more) direction, which structures are defined as
single- (double- or multi-) 𝑄 state.

by circling the three neighboring spins 𝑖 → 𝑗 → 𝑘 → 𝑖 is proportional to 𝜒, being equivalent
to the phase acquired by itinerant electrons under an external magnetic field, which acts as an
effective magnetic field for itinerant electrons. In other words, the noncoplanar spin structures
are the intrinsic origin of electromagnetic response induced by external magnetic fields, such as
the Hall effect [5–7]. The anomalous Hall effect of scalar spin chirality (topological Hall effect)
will be discussed in section 1.2.

I have focused only on a spin degrees of freedom of electrons to discuss magnetic structures,
whereas an orbital degrees of freedom are also important in considering magnetism. This
orbital degrees of freedom (orbital angular momentum) is attributed to the orbital motion of
the electrons, which hybridizes with the spin degrees of freedom (spin angular momentum) to
each other, resulting in a predominance of spin-orbit interactions. Therefore, orbital effects are
expected to influence magnetic properties. Exotic properties often appear in the systems with
effective spin-orbit coupling, however, are difficult to describe the convoluted hybridization of
both degrees of freedom. For the unified understanding of the two degrees of freedom, the
concept of multipole was established, which enables us to express an anisotropy of a magnetic
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Collinear Noncollinear Noncoplanar

Vector spin chirality: κij = (S1 × S2)

Scalar spin chirality: χijk = S1 ･ (S2 × S3)

(κij = 0, χijk = 0) (κij ≠ 0, χijk = 0) (κij ≠ 0, χijk ≠ 0)

Figure 1.2: The definition of a vector spin chirality and scalar spin chirality in collinear, non-
collinear, and noncoplaner spin structures.

distribution and a charge distribution due to the spin degrees of freedom and the orbital degrees
of freedom, simultaneously. Here, the unified anisotropy of the magnetic and charge distributions
are called magnetic and electric multipole, respectively. Recently, the possibility of higher-order
multipole, such as magnetic octupole, electric hexadecapole, and so on, has been proposed and
actively studied both experimentally and theoretically [8, 9].

1.1.1 Magnetic skyrmions

Magnetic skyrmion crystals are representative as a typical noncoplanar spin textures with
triple-𝑄 state characterized by the superposition of three different spin propagation vectors
[10–13]. The skyrmion crystal, topologically nontrivial spin vortex textures, given by the spin
configuration superposed on multiple helical spin structures, are expressed by skyrmion number
𝑛sk, and which is described as

𝑛sk =
1

4𝜋

∫
M ·

(
𝜕M

𝜕𝑥
× 𝜕M

𝜕𝑥

)
𝑑𝑥𝑑𝑦, (1.3)

where 𝑀 is the unit vector of the direction of local spins [14]. The skyrmion number 𝑛sk, in
other words, is the number of times the projected spins in the magnetic unit cell covers the unit
sphere as shown in Fig.1.3. In coplanar spin structures, 𝑛sk is equal to zero as well as spin scalar
chirality. On the other hand, 𝑛sk = 0 is permitted in noncoplanar spin structures with finite
spin scalar chirality. Magnetic structures with 𝑛sk = 0 are distinguished topologically nontrivial
magnetic structures, while those with 𝑛sk ≠ 0 are topologically nontrivial magnetic structures.
In addition, skyrmion crystals with 𝑛sk = 1 and 𝑛sk = −1 are called skyrmion and antiskyrmion,
respectively.
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Center OutsideOutside
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Figure 1.3: The schematics of magnetic skyrmion crystal (SkX). When the skyrmion number is
equal to ±1, the spins are one rotation per SkX.

1.1.2 Dzyaloshinskii-Moriya (DM) interaction in chiral magnet MnSi

Skyrmion crystals were first observed in cubic chiral magnet, MnSi, breaking both spatial
inversion symmetry and crystal chirality in crystal structure [15, 16]. Figure 1.4 (a) shows the
temperature-magnetic field phase diagram of MnSi, in which the skyrmion crystals appear in
phase A, in the finite temperature and magnetic field region. The cubic chiral magnets are
described by the following Hamiltonian [17]

H =
∫

𝑑𝑟

[
𝐽

2
∇S (𝑟)2 + 𝐷S (𝑟) · ∇ × S (𝑟) −H · S (𝑟)

]
, (1.4)

where S (𝑟) denotes the localized spin at position 𝑟 in real space. The first term represents the
ferromagnetic exchange interaction 𝐽 (> 0), the second term the Dzyaloshinskii-Moriya (DM)
interaction 𝐷 [18, 19], and the third term the Zeeman coupling of the localized spins with the
magnetic field 𝐻. The DM interaction arising from noncentrosymmetric crystal structure favors
helical magnetic ordering. In Eq.1.4, the ferromagnetic state becomes the ground state due to the
ferromagnetic exchange interaction with 𝐷 = 0 and 𝐻 = 0, whereas the helical magnetic state
becomes the ground state due to the DM interaction with 𝐷 ≠ 0 and 𝐻 = 0. The rotation angle
|𝑄 | in helical magnetic state is equal to the ratio 𝐷/𝐽, consequently, the rotation angle 𝐷/𝐽 is
generally small. Therefore, period of the helical propagation is sufficiently longer than the lattice
constant.

The microscopic stabilization mechanism of the skyrmion crystal in MnSi is understood as
a hybridization of DM interaction and thermal fluctuations [15, 20, 21]. First, since a skyrmion
crystal is characterized by superposition of helical magnetic structures, dominant DM interaction
is required to stabilize skyrmion crystals. In MnSi under intermediate magnetic field, the helical
magnetic structures are stabilized by DM interaction. In addition to this, by thermal fluctuations,
the skyrmion crystals are stabilized. In fact, theoretical calculations using mean-field theory
exhibits that the conical phase is always emerged in the lowest energy state without thermal
fluctuations, while skyrmion crystals are emerged with thermal fluctuations [15].

4



(a) (b)

Figure 1.4: (a) The temperature-magnetic field phase diagram of chiral magnet, MnSi [15]. (b)
The neutron scattering profile obtained at 𝑇 = 26.45 K and 𝐻 = 0.164 T [15].

1.1.3 Magnetic multipole

Magnetic multipoles were originally used in classical electromagnetism to describe anisotropic
charge and magnetic charge distributions in real space. On the other hand, they can also be applied
to quantum mechanics, which is composed of microscopic scales like electrons. The introduction
of such a multipole concept can explain not only the simple conventional charge and magnetic
orders, but also the complex interplay of charge, spin, and orbital degrees of freedom in solid
state materials. Here I present the various types of multipoles (Fig.1.5).

Magnetic monopole: A magnetic monopole moment is a fundamental magnetic
moment, a state in which a single magnetic pole (north or south pole) exists. It
is usually predicted to exist in theoretical discussions, however has not yet been
found in compounds. On the other hand, by considering some spins as clusters,
pseudo magnetic monopoles can be represented like a hedgehog skyrmion.

Magnetic dipole: A magnetic dipole is composed of two precisely contrasting
magnetic poles, which is the most common magnetic moment such as magnetic
spins.

Magnetic quadrupole: A magnetic quadrupole consists of four symmetrical mag-
netic poles and has a more complex structure than a dipole. It can be observed
in certain crystal structures and magnets.

Magnetic octupole: Magnetic Octupoles consist of eight magnetic poles and repre-
sent a very high-order multipole structure. It is usually observed only in certain
materials under special conditions. In Mn3Sb, Mn spins form a cluster magnetic
octupole, thus exhibit large anomalous Hall effect.

Mathematically, multipole systems are just extended systems with more independent degrees
of freedom, such as the Ising model with 1 degree of freedom, the Heisenberg model with
3 degrees of freedom, the SU(3) model with 8 degrees of freedom, etc. On the other hand,
in condensed matter physics, each degree of freedom shows different electrical and magnetic
responses, resulting in interesting properties. Furthermore, these degrees of freedom are mutually

5



Monopole Dipole Quadrupole Octupole

Figure 1.5: The schematics of various types of multipoles. From left to right are monopole,
dipole, quadrupole, and octupole [22].

intertwined and produce unexpected responses, which are still difficult to observe directly at
present.

1.2 Hall effect

The Hall effect was discovered by Edwin Hall in 1879 and described as

𝜌yx = 𝑅0𝐵 + 4𝜋𝑅SM + 𝜌T
𝑦𝑥 (1.5)

including the normal Hall effect proportional to the external magnetic field 𝐵 [23], the anomalous
Hall effect proportional to the spontaneous magnetization 𝑀 [24, 25], and the topological Hall
effect proportional to the scalar spin chirality 𝜒 [4–7, 26, 27]. Here, 𝑅0 is the normal Hall
coefficient and 𝑅S is the anomalous Hall coefficient [28].

The normal Hall effect is a phenomenon where itinerant electrons in a paramagnetic metal
exhibit cyclotron motion due to the Lorentz force induced by a magnetic field, resulting in an
electric field in the direction perpendicular to both the current and the magnetic field. Whereas,
the anomalous Hall effect is understood as a phenomenon where Hall resistance appears propor-
tional to the spontaneous magnetization 𝑀 in a magnetic compound, and the anomalous Hall
coefficient 𝑅S is known to show a strong temperature dependence. In the case of ferromagnetic
Ni, for example, 𝑅S decreases as the temperature approaches absolute zero, while it reaches a
maximum around the Curie temperature 𝑇C and then becomes zero again in the paramagnetic
phase at higher temperatures (Fig.1.6) [29]. The origin of this behavior can be distinguished into
intrinsic and extrinsic mechanisms as written later. The topological Hall effect is the scattering
of itinerant electrons by the topologically nontrivial magnetic structure of skyrmion crystals.
Therefore, it is independent of magnetic field and magnetization and is induced via the Berry
phase [6, 7, 26, 27].

In general, the anomalous Hall effect can be classified into intrinsic and extrinsic mecha-
nisms. The former [30], considering orbital motion of electrons (∼ Bloch electrons) under a
virtual magnetic field is understood as the scattering of itinerant electrons through the Berry
phase derived from the geometry of the electron wave function ΩB(𝑘) [31]. To understand the
mechanism of intrinsic Hall effect and Berry phase in detail, consider itinerant spins in systems
with finite scalar spin chirality [4, 5]. In systems with a strong Hund’s coupling 𝐽H between

6



(a)

(b)

Figure 1.6: (a) Hall effect in nickel. (b) The temperature dependence of the anomalous Hall
coefficient 𝑅H in nickel [29].

(a)

(b)

Impurity (M)

Impurity (M)

Figure 1.7: The schematics of (a) skew scattering and (b) side jump scattering in extrinsic
anomalous Hall effect.
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itinerant and localized spins, the itinerant spins are aligned to parallel on each sites of localized
spins. Here, considering hopping from site 𝑖 to 𝑗 , the Hamiltonian is described as

H = −
∑
𝑖 𝑗

(𝑡eff
𝑖 𝑗 𝑐

†
𝑖 𝑐 𝑗 + ℎ.𝑐.), (1.6)

where 𝑐†𝑖 (𝑐𝑖) is itinerant electron creation (annihilation) operator on site 𝑖. When 𝐽H is strong
enough, the wave function at site 𝑖 of the itinerant is expressed as

|𝜒〉 = 𝑡

[
𝑒𝑖𝑏𝑖 cos

(
𝜃𝑖
2

)
, 𝑒𝑖𝑏𝑖+𝜙𝑖 sin

(
𝜃𝑖
2

)]
, (1.7)

where 𝜃𝑖 and 𝜙𝑖 are the polar coordinates of the localized spin at the 𝑖 site. The overall phase
bi corresponds to the gauge degrees of freedom and does not appear in physical quantities.
Therefore, the effective transfer integral ti 𝑗eff is given by

𝑡eff
𝑖 𝑗 = 𝑡〈𝜒𝑖 |𝜒 𝑗〉

= 𝑡𝑒𝑖 (−𝑏𝑖+𝑏 𝑗 )
[
cos

(
𝜃𝑖
2

)
cos

(
𝜃 𝑗

2

)
+ 𝑒𝜙𝑖+𝜙 𝑗 sin

(
𝜃𝑖
2

)
sin

(
𝜃 𝑗

2

)]
= 𝑡𝑒𝑖𝑎𝑖 𝑗 cos

(
𝜃𝑖 𝑗

2

)
. (1.8)

Here, 𝜃𝑖 𝑗 is the angle between the localized spins 𝑆𝑖 and 𝑆 𝑗 , and the phase 𝑎𝑖 𝑗 is the vector
potential generated by the spins, corresponding to the Berry phase. When the itinerant spin is
hopping like 1 → 2 → 3 → 1, a noncoplanar spin structure with finite scalar spin chirality
consisting of three sites (Fig.1.2) can be denoted as

〈n1 |n3〉〈n3 |n2〉〈n2 |n1〉 = (1 + n1 · n2 + n2 · n3 + n3 · n1) + 𝑖n1 · (n2 × n3)
∝ 𝑒𝑖 (𝑎12+𝑎23+𝑎31 )

= 𝑒𝑖Ω/2, (1.9)

where |ni〉 is the two-component spinor wave function of the spin polarized along ni = Si/|Si |
direction. The itinerant spins acquire a phase factor ΩB = 𝑎12 +𝑎23 +𝑎31. This phase factor is the
Berry phase, which corresponds to half the value of solid angle Ω between three spins created
on the unit sphere. When a spin structure with finite scalar spin chirality is realized, the Berry
phase is emerged and affects to the itinerant electrons as a virtual magnetic field, just like a real
magnetic field. The result is the anomalous Hall effect.

Recently, this mechanism has been associated with topology, and is called the topological
Hall effect. In this thesis, the topological Hall effect is distinguished as the anomalous Hall
effect due to the intrinsic mechanism. On the other hand, the latter is distinguished into skew
scattering [32, 33] and side jump scattering [34]. In skew scattering, up and down spins are
scattered by impurities via spin-orbit interaction. Here, the interaction shows different sign 𝜆𝑆 · 𝐿
depending on the spin direction, therefore, each spins are scattered to opposite directions. The
incident wave and the scattered wave have different wavenumber. On the other hand, in side
jump scattering, conduction-electron orbitals are shifted by impurity scattering without changing
the wavenumber. Schematics of the anomalous Hall effect due to skew scattering and side jump
scattering are shown in Fig.1.7 (a) and (b), respectively.
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1.3 Application aspects

1.3.1 Hall sensor

A Hall sensor is one of the typical magnetic sensors using semiconductors. In general,
Hall Effect sensors consist of a thin semiconductor material through a continuous current flows.
When a magnetic field is applied perpendicular to the direction of current flow, it creates a
voltage difference across the semiconductor material. This voltage, known as the Hall voltage,
is proportional to the strength of the magnetic field. Actually, Hall sensors convert the strength
and direction of a magnetic field into the magnitude and positive/negative of a voltage. Their
main applications are detection of rotation, position, open/close, current, and orientation. The
most common example is in non-contact switch applications such as open/close detection of
refrigerator doors, electronic equipment lids and cases, etc. Hall sensors can be broadly classified
into three types as shown below [35].

Latch type

In the latch type, the output voltage gets high (low) when the N-pole (S-pole) approaches,
and the output state is maintained even when the N-pole (S-pole) are leaved. In other words,
once the N-pole changes the voltage to high, it is necessary to move the S-pole closer in order
to change to low. Latch type one applies the effect of magnetic hysteresis and is currently used
in the automotive industry. Figure 1.8 (a) shows the latch type operation mechanism, where the
horizontal axis is the strength of the magnetic field and the vertical axis is the voltage level of
the output signal.

Switch type

In the switch type, the output gets low when the magnets are close to each other and gets
high when they leave. There are also two types of switch types: unipolar (single-pole detection)
and omnipolar (double-pole detection). Unipolar detection responds only to either the N-pole
or S-pole, while omnipolar detection responds to both the N-pole and S-pole. The switch type
sensor has a basic on/off action and detects magnetic fields simply and effectively. Therefore,
as a simple sensor, it is used for open/close sensing, proximity detection, and security systems.
Figure 1.8 (b) shows the operation mechanism in the case of omnipolar detection.

Analog type

The output voltage of the analog output type varies linearly with the strength of the N-pole/S-
pole as shown in Fig.1.8. In other words, the output voltage increases (decreases) by N-pole
(S-pole) getting closer to the Hall sensor, allowing more precise detection of the degree and
direction of changes in the magnetic field. Due to their continuous signal output, analog Hall
sensors are suitable for applications requiring high accuracy and detailed monitoring of magnetic
field fluctuations such as position detection, angle sensing, magnetic field mapping.

Recently, in addition, Hall sensors that do not require a magnetic field have been attracted
much attention, and the anomalous Hall effect is applied for this purpose. As already explained,
the anomalous Hall effect utilizes the magnetization (mainly ferromagnetism) of a material as a
scattering source of itinerant electrons.
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Figure 1.8: The operation mechanisms for (a) latch type, (b) switch type, and (c) analog type
Hall sensors.
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1.3.2 Skyrmion memory

Because of topological features of skyrmion crystals, they are robust against external dis-
turbances such as thermal fluctuations and magnetic fields, and exhibit a larger electromagnetic
response to small external field than trivial magnetic structures. Therefore, skyrmion crystals
are attracting many researchers’ attention as an innovative magnetic structure for realizing stable
and power-saving magnetic memory and computing devices. In addition, recent studies have
gradually revealed that low-energy excitation of skyrmion crystals have various device functions
such as microwave rectification effects, microwave-to-voltage conversion, and high-sensitivity
magnetic field detection. Here, I present the advantages for applying skyrmions to magnetic
devices.

Stability: Skyrmions are more stable than traditional magnetic domains, making
them stable to external perturbations.
Small size: Skyrmions can be much smaller than magnetic domains, potentially
allowing for higher data storage density.
Low energy consumption: The manipulation of skyrmions can be achieved with
lower energy consumption compared to some other magnetic memory technologies.

These advantages have led to a variety of applied research of skyrmions. To realize practical
skyrmion memory devices, topologically protected information carriers must be generated and
manipulated in materials to achieve both writing and addressing functions. Also, in such
devices, binary data bits ”1” and ”0” are suggested to be represented by existence and absence
of skyrmions, respectively. The following are some of the most recent and attractive ones.

Skyrmion shift device for memory

While much theoretical research has focused on skyrmion memory [36], here I present some
experimental studies that have attracted a lot of attention. At first, the concept of skyrmion based
magnetic memory is depicted in Fig.1.9 (a) [37]. The skyrmion with topologically protected spin
swirling texture is more stable than other ordinary magnetic structures, therefore, the presence
and absence of a skyrmion are regarded as ”1” and ”0” information. Figure 1.9 (b) shows the
relationship between the distance between each of the individual skyrmions and the number of
skyrmions. Obviously, the larger the number of skyrmions, the shorter the distance between the
skyrmions and the higher density state can be realized. Figure 1.9 also indicates a model and
experimental realization in which the presence and absence of a skyrmion corresponds to the
information ”1” and ”0”. Here, ”1” and ”0” represents a skyrmion and a ferromagnetic domain
as illustrated in Fig.1.9.

Next, I introduce how to create and control skyrmions, which are reported by W. Jiang,
𝑒𝑡 𝑎𝑙. [38], and G. Yu 𝑒𝑡 𝑎𝑙. [39]. To generate single skyrmion, the mechanism of soap bubble
formation from thin films is applied. Figure 1.10 shows how a magnetic topological structure,
a skirmion bubble, is formed in a solid system in a similar manner: applying a pulsed current
to the chiral stripes in the left container, a single skyrmion is generated in the right container.
This single skyrmion can be moved by applying current, and the direction of movement can be
controlled by switching the direction of current application. Furthermore, during the shifting of
skyrmions, no new skyrmion was generated, confirming the selective device operation controlled
by the pulse shape.
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(a)

(c)

(b)

“1” “0”(d)

Figure 1.9: The skyrmion based magnetic memory [37]. (a) Variation of the distance between the
two nearest skyrmions in Fe3Sn2 nanostripes under a magnetic field of 450 mT. (b) The skyrmion
number 𝑁S dependence of distance between the two nearest skyrmions in the nanostripes under
a magnetic field of 450 mT. (c) Experimental realization of a single skyrmion in the 750 nm
width Fe3Sn2 nanostripe, with an out-of-plane magnetic field of 450 mT and an in-plane field
component of 39 mT along 𝑦 axis. (d) The magnetic configuration of skyrmion (”1”) and
ferromagnetic domain (”0”).
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(a) (b)

Figure 1.10: (a) Capturing the transformational dynamics from stripe domains to skyrmions
and motion of skyrmions. From a top photo, the stripe domains are forced to pass through
the constriction and are eventually converted into skyrmions at the right side of the device by
constant current density 𝑗𝑒 = +6.4 × 104 A/cm2 under +0.46 mT. (b) The skyrmion generation
and motion driven by a current pulse for negative and positive direction.

1.4 Recent research

In this section, I introduce the recent studies about skyrmions and anomalous Hall effect in
new compounds. In these studies, some novel theories that differ from conventional mechanisms
and precise experiments supporting these theories have been reported. Furthermore, some
compounds, far surpass conventional properties have been discovered.

1.4.1 Centrosymmetric skyrmion compounds

Initially, magnetic skyrmions were observed only in materials without crystallographic in-
version center. Examples include MnSi, EuPtSi, and FeGe, where the Dzyaloshinski-Moriya
interaction plays a pivotal role in magnetism [7, 12, 40–42]. However, theoretical advancements
have proposed the possibility of skyrmion formation even in compounds with centrosymme-
try [43–48]. For instance, in 𝐽1-𝐽2(𝐽3) triangular-lattice antiferromagnets, geometrical frustration
was predicted to lead to the emergence of skyrmion lattices, despite these systems being insu-
lating unlike their predecessors [49]. Additionally, skyrmions observed in the Gd3+ triangular
lattices in Gd2PdSi3 [50–53] and the breathing kagome networks in Gd3Ru4Al12 [54–56] further
support the influence of this magnetic frustration.

More recently, it has been suggested that the skyrmion lattice may also manifest in non-
frustrated lattices with centrosymmetry and metallic attributes. The interplay between the
Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction and multiple spin interaction is consid-
ered crucial in this context. This possibility was demonstrated in studies of the tetragonal
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compound GdRu2Si2 [57–62]. These findings suggest the ubiquitous presence of skyrmions
across a variety of material systems.

Another important aspect of the skyrmion lattice is related to its characteristic transport
properties. In particular, the topological Hall effect manifests itself in connection with the
skyrmion lattice [7,63–65] due to the scalar spin chirality 𝑆𝑖 ¤(𝑆 𝑗 × 𝑆𝑘), which acts like a fictitious
magnetic field. However, only a few metallic compounds with special inversion symmetry
currently studied show the existence of a skyrmion lattice [53, 56–58, 66]. Among them, I will
introduce Gd2PdSi3 and GdRu2Si2 which have attracted great attention due to their multi-𝑄-
skyrmion lattice and complex magnetic phase diagram [53,58].

Gd2PdSi3

A centrosummetric intermetallic magnet, Gd2PdSi3 exhibits skyrmion lattice on a triangular
lattice with magnetic frustration [43,48,49]. Here, let us considering the following Hamiltonian
on a triangular lattice [49],

H = −𝐽1
∑
<𝑖 𝑗>

S𝑖 · S 𝑗 − 𝐽3
∑

<<𝑖 𝑗>>

S𝑖 · S 𝑗 − 𝐻
∑
𝑖

𝑆𝑧𝑖 , (1.10)

where S𝑖 (|S𝑖 | = 1) is the localized spin on real space 𝑖. The first, second, and third terms
represent the nearest-neighbor ferromagnetic exchange interaction 𝐽1(> 0), the third-neighbor
antiferromagnetic exchange interaction 𝐽3(< 0), the effect of the magnetic field 𝐻 in the 𝑧
direction, respectively: when 𝐽3 = 0 and 𝐻 = 0, the ferromagnetic state becomes ground state
by the nearest-neighbor ferromagnetic exchange interaction. On the other hand, when 𝐽3 ≠ 0,
magnetic frustration occurs [Fig.1.11 (a)] and the ground state depends on the ratio of 𝐽1 to 𝐽3. In
Fig.1.11 (a), both spin 1 and spin 2 are expected to align upwards due to ferromagnetic exchange
interaction, as well as spin 3 due to ferromagnetic exchange interaction with spin 2. On the
other hand, spin 3 also favors a down spin through antiferromagnetic exchange interaction with
spin 1. In such a situation with strong magnetic frustration, a helical magnetic state is realized.
Specifically, the ground state of this system is distinguished as ferromagnetic state (𝐽1/|𝐽3 | ≥ 4),
and the helical state (𝐽1/|𝐽3 | < 4). The rotation angle of the helical magnetic state is given by
|Q| = 2 cos−1{(1 +

√
1 − 2𝐽1/𝐽3)/4}, where Q is parallel to the nearest bond direction.

When 𝐽1/|𝐽3 | < 4, the ground state is expressed by three propagation vectors, 𝑄1 ‖ (1, 0),
𝑄2 ‖ (−1/2, 3/2), and 𝑄3 ‖ (−1/2,−

√
3/2), suggesting double-𝑄 or triple-𝑄 state as a su-

perposition of multiple helical structures. However, in mean-field calculations without thermal
fluctuations, the single-𝑄 state is more stable regardless of temperature and magnetic field. There-
fore, thermal fluctuation is important for stabilization of multiple-𝑄 state in frustrated magnetic
system as well as in chiral magnetic one. Figure 1.11 (b) illustrates the temperature-field phase
diagram at 𝐽1/𝐽3 = −1/3 obtained from theoretical calculations. Here, the Double-𝑞, Triple-𝑞
(skyrmion phase), and 𝑍 phases appear with noncoplanar structures in a finite temperature and
magnetic field region.

GdRu2Si2

GdRu2Si2 as a centrosymmetric skyrmion compound has attracted much attention. First, in
order to understand the stabilization mechanism of noncoplanar structures (skyrmion lattice) in
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sentrosymmetric crystals, let us consider Kondo lattice model in itinerant electron system,

H =
∑
𝑖 𝑗 𝜎

𝑡𝑖 𝑗𝑐
†
𝑖𝜎𝑐 𝑗 𝜎 − 𝐽

∑
𝑖𝜎𝜎′

𝑐†𝑖𝜎σ𝜎𝜎′𝑐𝑖𝜎′ · S𝑖 − 𝐻
∑
𝑖

𝑆𝑧𝑖 , (1.11)

where 𝑐†𝑘𝜎 (𝑐𝑘𝜎) and S𝑖 are creation (annihilation) operator of itinerant electron with spin 𝜎
and localized electron (|S𝑖 | = 1), respectively [45, 67]. The first term express the kinetic energy
of the itinerant electron, and 𝑡𝑖 𝑗 is the hopping integral from 𝑖 to 𝑗 . The second indicates the
spin-charge coupling 𝐽, denoted by the Pauli matrix, σ = (𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧), and the third represents
an external field. By considering the situation where an energy scale of the spin-charge coupling
is smaller than one of a bandwidth, Eq.1.11 is given

H = H0 + H ′, (1.12)

H0 =
∑
𝑘𝜎

𝜖𝑘𝑐
†
𝑘𝜎𝑐𝑘𝜎 , (1.13)

H ′ =
𝐽

√
𝑁

∑
𝑘𝑞𝜎𝜎′

𝑐†𝑘𝜎σ𝜎𝜎′𝑐𝑘+𝑞𝜎′ · S𝑞, (1.14)

on reciprocal space [44, 68]. Here, 𝑁 and S𝑞 are the number of lattice points and the Fourier
component of localized spins. Finally, the effective spin model is transformed [69–71]

H = 2
∑
𝜈

[
−𝐽S𝑄𝜈 · S−𝑄𝜈 +

𝐾

𝑁
(S𝑄𝜈 · S−𝑄𝜈 )2

]
, (1.15)

where 𝑄𝜈 is the wave vector with the maximum value of susceptibility 𝜒0
𝑞 (𝐽 > 0 and 𝐾 > 0.

In Eq.1.15, the first term represents the RKKY interaction, which induces a helical magnetic
state, while the multiple spin interaction represented by the second term induces a mult-𝑄 state.
In this Hamiltonian, a magnetic frustration: itinerant frustration between the helical magnetic
structure characterized by 𝑄1, and the double-𝑄 state characterized by 𝑄1 and 𝑄2 exists. For
instance, |S𝑄1 |2 has a maximum value of 𝑁/2, thus obtaining the maximum energy gain from the
RKKY interaction. However, since 𝐾 > 0, it suffers the largest energy loss from multiple spin
interactions. On the other hand, in the double-𝑄 state, |S𝑄1 |2, |S𝑄2 |2 < 𝑁/2 due to harmonic
components such as |S𝑄1±𝑄2 |2 and |S−𝑄1±𝑄2 |2. Considering the energy gain with respect
to helical structures, the RKKY interaction is energetically unstable, while the multiple spin
interaction is stable. This competition of both interactions, originated from itinerant electrons,
is called the itinerant frustration (Fig.1.12).

Originating from this itinerant electron system, the Multi-Q state is stabilized in GdRu2Si2.
Figure 1.12 (b) shows the crystal structure of GdRu2Si2, where the Gd3+ ions responsible for
the magnetism form a square lattice, thus no geometric frustration occurs on Gd layers. On the
other hand, itinerant electrons, mainly Ru-4𝑑 electrons, are responsible for conductivity, and the
anisotropic contribution (𝐾) is relatively larger in GdRu2Si2, which allows itinerant frustration
to work effectively and a double-𝑄 state (skyrmion lattice) to develop [Fig.1.12 (c)].

1.4.2 Large anomalous Hall effect in a noncollinear antiferromagnet

Mn3Sn

Recent breakthroughs in both theory and experiment have provided a robust framework for
understanding the anomalous Hall effect through the Berry-phase concepts [5]. This perspective
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predicts that some specific magnetic states such as spin liquids and antiferromagnets trigger a
anomalous Hall effect even in the absence of net spin magnetization [72–76]. While observed
a spontaneous Hall effect in spin liquid states [77], the intriguing aspect is the absence of a
zero-field anomalous Hall effect in antiferromagnets.

Here I introduce empirical evidence of large anomalous Hall conductivity in Mn3Sn, an
antiferromagnet without magnetization. Mn3Sn has a hexagonal Ni3Sn-type structure with
space group 𝑃63/𝑚𝑚𝑐 as shown in Fig.1.13 (a) [78, 79], and Mn spins order like noncollinear
120-degree spin texture at the Neel temperature of 𝑇N ∼ 420𝐾 [Fig.1.13 (b)]. In this magnetic
phase, an anomalous Hall conductivity of approximately 20Ω−1 cm−1 at room temperature and
over 100Ω−1 cm−1 at 100 K were observed, being consistent with one in ferromagnetic metals
as shown in Fig.1.13 [80].

Of particular note is the chiral antiferromagnetic state inherent in Mn3Sn, indicating an
extremely weak ferromagnetic moment of about 0.002𝜇B/𝑀𝑛 [78,81]. Therefore, the switching
of the direction of Hall effect with magnetic fields, as small as a few hundred Oe, make much
easier. Due to this flexible response of this large anomalous Hall effect is useful for a various
applications, including spintronics: i.e. a development of memory devices that generate almost
no extra electric field.

1.5 Motivation

The purpose of this thesis is to develop novel intermetallic compounds, focusing on exotic
transport properties such as anomalous Hall effect and topological Hall effect arising from
new-type mechanisms. As shown in section 1.3, these transport properties has a potential
of industrial applications as new magnetic materials, however, experimental investigations of
them are entirely inadequate due to the limited variety of candidate compounds. The discovery
of Mn3Sn and of centrosymmetric skyrmion materials has shed light on this situation: since
the restrictions on crystal structure and spin texture have been removed, the scope of material
exploration has expanded, allowing for the development of devices with higher performance and
stability. Recently, some of theoretical studies supporting these new mechanisms have attracted
much attention, thus, further experimental verification is required. The aim of this study is to
expand the materials field for the development of innovative magnetic devices based on their
unique electrical conduction properties.

I also aim at obtaining higher performance materials. For instance, synthesis of new materials
exhibiting a larger anomalous Hall resistance, a crystal growth of centrosymmetric skyrmion
compounds, the observation of smaller size of skyrmion lattices, etc. Even if these materials
cannot be directly made into magnetic devices, they are important research because the synthesis
methods and mechanisms can be applied for other materials.
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Figure 1.11: (a) Magnetic frustration due to the nearest-neighbor ferromagnetic exchange interac-
tion 𝐽1 and the third nearest-neigbor antiferromagnetic exchange interaction 𝐽3. (b) Temperature-
field phase diagram at 𝐽1/𝐽3 = −1/3. The phase diagram was obtained from Monte Carlo simu-
lations: Single-𝑞, Double-𝑞, Triple-𝑞, 𝑍 , and Para corresponds to helical and conical structure,
double-𝑄 states with noncoplanar structures, the skyrmion phase, domain structures with 𝑛sk = 1
and 𝑛sk = −1 skyrmions, and paramagnetic state, respectively.
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Figure 1.12: (a) The competition between RKKY interaction and multiple spin interaction in the
itinerant electron system. In the single-𝑄 state, the energy gain from the RKKY interaction is
maximum (minimum from the Multiple Spin interaction), and in the Multi-𝑄 state, the energy
gain from the Multiple Spin interaction is maximum (minimum from the RKKY interaction).
(b) The crystal structure and (c) the magnetic phase diagram of GdRu2Si2. In red-colored area,
double-𝑄 state (skyrmion lattice) is stabilized due to the large contribution from multiple spin
interaction term.
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(a) (b)

(c)

Figure 1.13: (a) The crystal structure of Mn3Sn. The spheres colored red, orange, dark gray, and
light gray indicate Mn (𝑧 = 0), Mn (𝑧 = 1/2), Sn (𝑧 = 0), and Sn (𝑧 = 1/2), respectively [80].
(b) An individual 𝑎–𝑏 plane of Mn3Sn. Mn spins (blue arrows) form an inverse triangular
spin structure, and has the local easy-axis parallel to the in-plane direction towards its nearest-
neighbour Sn sites. Here, [2110], [1210] and [0001] are the 𝑎, 𝑏 and 𝑐 axes, respectively [80].
(c) The magnetic field dependence of Hall conductivity 𝜎𝐻 measured in 𝐵 ‖ [2110], [0110] and
[0001] obtained at 300K (left) and 100K (right) [80].
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Chapter 2

Experimental

In this chapter, several techniques for crystal growth and physical property measurements are
noted. Details on the synthesis part of each compounds is summarized later.

2.1 Crystal growth

A major breakthrough in crystal growth technology came with the discovery of the electrical
transistor by John Bardeen and Walter Houser Brattain at Bell Telephone Laboratories (US) in
1947. Since then, the focus of electronics technology development has shifted from vacuum tubes
to transistors, and with this shift, several crystal growth methods centered on semiconductors
such as Si and Ge were established. In solid state physics, crystal growth techniques play a
crucial role in understanding the unique behavior of electrons. Here I will describe the crystal
growing methods I have been working on.

2.1.1 Solid state method

Solid state reaction is one of the most widely used method for chemical synthesis from a
mixture of solid reagents. In this method, the mixture of reagents with high melting point (higher
than 1000 ◦C for typical inorganic compounds) is grinded, pelletized and subsequently heated
to high temperature to proceed the chemical reaction. Since diffusion of the sample accelerates
the reactions, temperature and reaction time play a crucial role to obtain a high purity sample.
For example, repeating the steps of grinding, pelletizing, and annealing is effective to improve
the sample quality.

Figure.2.1 (a) shows the process of a solid state reaction. In this reaction, starting materials of
A and B are grinded to small particles as a and b. To proceed the reaction, particles a are required
to move into material B area, adjacent to particles b, and react chemically. The movement of
such particles is called diffusion, especially through solids, which is called solid-state diffusion.
These two processes, diffusion and reaction are critical elements for a solid state reaction.

The solid-state diffusion length of particles a is described as 𝑙 ∼
√
𝐷a𝑡 as shown in Fig.2.1

(b). Here, heating time 𝑡 is proportional to 𝑙2, thus a long reaction time is required to obtain a
sufficient diffusion length. In general, possible solid-state diffusion paths include (i) through gaps
in the crystal, (ii) through defects in the crystal, and (iii) through the grain surface. The larger
the mobility of particles (atoms or ions), the greater the diffusion coefficient 𝐷a(b) . Furthermore,
the diffusion coefficient is thermally activated as in 𝐷 = 𝐷0 exp(Δ𝐻/𝑘𝑇).
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Figure 2.1: The process of a solid state reaction. (a) More than two inorganic chemicals are
diffused and reacted, respectively. (b) The solid-state diffusion length increases in proportion to
the square root of the heating time.

2.1.2 Flux method

Flux is a substance added to a material to lower the melting point. Single crystals can be
obtained by transferring a mixture of the target compounds and flux in a crucible, raising the
temperature to dissolve the target compounds to the melted flux, and then slowly cooling for
recrystallization. Since the quality and size of the single crystal strongly depends on the type
and ratio of starting compounds (flux) and heating process, optimization of each condition is
required to obtain good crystals. Incidentally, when the flux is the same as the element in the
target material, it is called the self-flux method.

The flux method has the advantages of (i) growing high-quality single crystals and (ii)
growing crystals at temperatures lower than the melting point of starting materials. On the other
hand, there are disadvantages such as a long time required for crystal growth. However, the
flux method can overcome these disadvantages by combining with other synthesis methods. For
example, by using the Bridgman furnace, in which the inside of the furnace moves vertically,
efficient crystal growth can be achieved using a temperature gradient as shown in Fig.2.2. In
addition, combining with the high-pressure method described below is expected to significantly
shorten the crystal-growth time.

Crystalize

sampleHigher

Lower

Lower

sample

Bridgman furnace

Figure 2.2: The schematics of a Bridgman furnace. Higher and lower temperature part corre-
sponds to red and blue region, respectively.
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Figure 2.3: The photo and schematics of CZ method. The discharges from four directions can
uniformly melt the polycrystalline (feed material). Single crystals can be obtained by crushing
the pulled sample rod as depicted in the right photo.

2.1.3 Czochralski (CZ) method

The Czochralski (CZ) method grows large bulk single crystals by pulling the melted poly-
crystalline compounds upward under a temperature gradient as shown in Fig.2.3. To melt a feed
material, arc discharge or high frequency induction is used as the heating method. The former
can apply to the crystal growth for various types of intermetallic compounds using a tetra arc
furnace equipped with multiple discharge needles. On the other hand, the latter can grow crystals
from a large amount of feed materials in a crucible, being applied as a basic production method
for a single crystal of silicon and other materials.

To obtain high-quality crystals in the CZ method, optimization of growth conditions such
as temperature distribution in the furnace, gas flow, temperature gradient near the solid-liquid
interface, crystal pulling and rotation speed, and necking are required. In addition, since an
uniform composition distribution in crystals is necessarily to improve a homogeneity of crystals,
a congruent growth is generally employed in which a composition matches between the solid
and liquid phases. The CZ method is a potent method for a single crystal growth in intermetal-
lic compounds, whereas is challenging and profound due to the many parameters involved in
synthesis.

2.1.4 Floating zone (FZ) method

The FZ method produces single crystals by slowly cooling the molten polycrystalline rods
(seed rod and feed rod) as shown in Fig.2.4 (a). In this method, a grounded part of both rods
are heated and melted using halogen lamp light focused by ellipsoidal mirrors. The solvent
is supported by surface tension and moved slowly downward without sagging. Finally, as the
molten section is slowly cooled, crystals gradually precipitate on the seed rod. The crystal growth
condition can be optimized by controlling the speed of rod movement, rotation and gas flow.
Especially, necking is an important technique to reduce the number of crystals and to grow larger
sizes. Unlike the CZ method, FZ method does not come in contact with foreign substances, thus
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Figure 2.4: (a) The photo and schematics of FZ method. The focused light from a halogen lamps
locally heat the grounded part of a seed rod and a feed rod to melt the sample and proceed crystal
growth. (b) The preparation steps of sample rods.

producing high-purity single crystals. On the other hand, the instability of the solvent under the
influence of gravity makes it difficult to grow large single crystals.

Although the FZ method is highly suitable for growing single crystals, the preparation is
difficult because sample rods are soft and brittle. Figure 2.4 (b) shows the preparation steps of
both rods. The following describes each step in detail.

step 1: Grind the mixture of regents (or pre-reacted compounds) elaborately, and
then transfer it to rubber tube using a funnel. The rubber tube should be wiped
with ethanol, as powder may adhere to the inner surface.

step 2: Put cotton into the rubber tube and it is evacuated using a diaphragm pump.
The cotton prevents the grinded powder from sucked into the pump. Also, rub
the rubber tube lightly to avoid remaining air.

step 3: After sufficient evacuation is achieved, tie off the end of the rubber tube and
set it in aluminum tools, followed by fixing with tape.

step 4: Press into rod shape at around 700 bar using a hydrostatic press.
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step 5: Using tweezers and scissors, carefully open the rubber tube and remove a
sample rod. The rod is divided into two pieces for a seed rod and a feed rod and
subsequently set in the FZ furnace. At this time, the rods can be annealed and
sintered to make them denser.

2.1.5 High pressure method

The diffusion is one of the most important factor for solid state reaction as discussed in the
previous section. Under high pressure, the particles are more likely to come into contact with
each other and diffusion is accelerated, thus synthesis proceeds rapidly and is generally completed
in a few hours. High-pressure synthesis is also the most impactive methods in the development
of new compounds, because products with metastable denser structures at high temperatures can
be obtained at room temperature by rapidly cooling. On the other hand, unstable compounds
may be produced under ambient pressure, making it difficult to evaluate physical properties.

My affiliation, NIMS is one of the world’s leading institute in high-pressure synthesis tech-
nology, and some call it the Mecca of high-pressure synthesis. In NIMS, there are several types
of high-pressure synthesis apparatus such as multi type, belt type, etc as shown in Fig.2.5 (a).
Multi-anvil type apparatus, mainly used in my synthesis, can apply cubic stable pressure of 1.5-
6.0 GPa repeatably using cemented carbide (WC-Co) anvils. Figure 2.5 (b) displays schematics
of the high-pressure synthesis method. The sample is heated by flowing a high current through
anvils to a carbon heater, and temperature is monitored by incorporating thermocouples inside
a pyrophyllite cell. In general, the sample is encapsulated within an outer capsule made of Au,
Pt, and Ta, while intermetallic compounds are synthesized without a capsule, or using an inner
capsule of BN to prevent the sample from reacting with the outer capsule.

The high-pressure synthesis, impactive and convenient method, has the disadvantage of
making it difficult to start up the high-pressure apparatus. The Walker-type one, on the other
hand, overcomes the disadvantage by separating the sample space from the press By using a
mobile pot as shown in right panel of Fig.2.5 (a), high-pressure synthesis can be performed
anywhere a press is available. However, for practical use, the synthesis system needs to be
set up with pressure and temperature calibrations, which requires preeminent expertise. The
Walker-type apparatus in the photo belongs to Prof. Takagi group in Max Planck Institute for
Solid State Research (MPI-KFK), and was set up by Dr. Isobe with his colleges in MPI-KFK.

2.2 X-ray technique

X-ray is a electromagnetic waves with wavelengths of about 1 pm - 10 nm, which is sometimes
called Röntgen ray after Wilhelm Röntgen discovered it in 1895. It is both an electromagnetic
wave and a type of radiation, and its name comes from "X," a mathematical "unknown number,"
as named by Röntgen.

2.2.1 Bragg’s law

Two types of x-ray, continuous and characteristic x-ray are generated using bremsstrahlung
and fluorescence, respectively, by accelerated electron colliding with the target. The former has
the property of white light with a continuous distribution of wavelengths, while the latter has the
property of monochromatic light that is observed as sharp peaks on the spectrum and has a large
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Figure 2.5: (a) Several types of high pressure apparatus. They has their own advantages, and
different compounds can be synthesized despite the same pressure applied. (b) The schematics
of the high-pressure synthesis method. (c) The photos of various tools used in high pressure
synthesis. A pyrophyllite cell collapses after applying pressure.
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Figure 2.6: (a) The photo and schematics of FZ method. The focused light from a halogen lamps
locally heat the grounded part of a seed rod and a feed rod to melt the sample and proceed crystal
growth. (b) The preparation steps of sample rods.

intensity at a specific wavelength. The wavelength of characteristic x-ray depends on metals
used as the target (Cu, Mo, Ag, Co, Fe, W, etc.). In general, wave diffraction and interference,
observed by incident waves with wavelengths comparable to the distance of the grating pitch
is applicable to studying periodic structure of materials. Therefore, the x-ray is employed to
determine the crystal structure since the wavelength of x-ray corresponds to the distance of each
elements in solids (a few Å). When x-rays enter to the reflecting surfaces separated by planes
spacing 𝑑 at an angle of 𝜃, the scattered x-rays have an optical path difference of 2𝑑sin𝜃 as
shown in Fig.2.6 (a). If the difference is a multiple of the wavelength, the scattered x-rays are
enhanced by interference and a large reflection is expected. This system is called Bragg’s law
and described as

2𝑑sin𝜃 = 𝑛𝜆. (2.1)

Next, let us consider the Bragg’s law on a reciprocal space. The reciprocal space is represented
by three independent basis reciprocal vectors b1, b2, and b3 and is defined by

b1 =
a2 × a3

𝑉
, (2.2)

b2 =
a3 × a1

𝑉
, (2.3)

b3 =
a1 × a2

𝑉
, (2.4)

𝑉 = a1 · (a2 × a3), (2.5)

for three independent basis real vectors a1, a2, and a3. From these definition, the relationship
between reciprocal vectors and real vectors is expressed as

a𝑖 · b 𝑗 = 𝛿𝑖 𝑗 . (2.6)

In general, reciprocal vectors are described as

G = ℎb1 + 𝑘b2, +𝑙b3, (2.7)
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Figure 2.7: (a) The photo of Laue photograph apparatus. (b) The schematic of back-scattering
Laue method. (c) Laue pattern and analysis process.

using the Miller index ℎ, 𝑘, and 𝑙, whose direction is perpendicular to (ℎ𝑘𝑙) planes, and length
is equal to the reciprocal of spacing of (ℎ𝑘𝑙) planes.

The x-rays incident on and reflected from a certain Miller plane are represented by an unit
vector s𝑖 and s as shown in Fig.2.6 (b). Then the scattering vector s − s𝑖 is perpendicular to the
reflecting surface, i.e., the Miller plane (ℎ𝑘𝑙), and its length is 2 sin 𝜃. Here, the length of the
reciprocal vector 𝐺 is the reciprocal of spacing 𝑑 of (ℎ𝑘𝑙) planes, expressed as

|G| = 1
𝑑
=

2 sin 𝜃
𝜆

=
���s − s𝑖
𝜆

��� . (2.8)

Since both G and s − s𝑖 point the same direction along perpendicular to (ℎ𝑘𝑙) planes, Eq.3.5 is
transformed to

G =
s − s𝑖
𝜆

. (2.9)

As Eq.2.9 implies, the scattering vector is associated with the reciprocal vector.

2.2.2 Laue method

The Laue method is one of the most useful way to determine the crystal symmetry and axial
directions by taking Laue photographs using continuous x-rays. Figure2.7 (a) and (b) shows
the Laue photograph apparatus and its schematic, respectively. The continuous x-rays incident
on a sample through a film are scattered on certain Miller planes, and detected on the film as
Laue spots. Figure 2.7(b) shows the back-scattering Laue method, where the film is on the
incident x-ray side, whereas the transmission Laue method is utilized for observing the scattered
x-rays transmitted through the sample. The former can be applied for various samples, and the
latter is suitable for measuring high transmission or thin samples. Also common to both, the
scattering intensity can be improved by polishing the sample surface. The crystal symmetry and
axial directions of samples can be determined by checking the correspondence between Laue
spots and Miller plane reflection from the obtained Laue photograph, as shown in Fig.2.7 (c).
Although one analysis method is to use a Greninger/Leonhardt chart, recently more convenient
free analysis software (X-ray Laue Backscattering Pattern Simulator) is widely used [Fig.2.7 (c)
bottom photo].
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Table 2.1: Relationships between interplanar spacing, lattice constant, and Miller indices for
each crystal system.

Monoclinic
1
𝑑2 =

1
sin2 𝛽

(
ℎ2

𝑎2 + 𝑘
2 sin2 𝛽

𝑏2 + 𝑙2

𝑐2 − 2ℎ𝑙 cos 𝛽
𝑎𝑐

)
Orthorhombic

1
𝑑2 =

ℎ2

𝑎2 + 𝑘
2

𝑏2 + 𝑙2

𝑐2

Tetragonal
1
𝑑2 =

ℎ2 + 𝑘2

𝑎2 + 𝑙2

𝑐2

Cubic
1
𝑑2 =

ℎ2 + 𝑘2 + 𝑙2
𝑎2

Hexagonal
1
𝑑2 =

4
3

(
ℎ2 + ℎ𝑘 + 𝑘2

𝑎2 + 𝑙2

𝑐2

)

2.2.3 Diffractometer method

In the diffractometer method, characteristic x-rays are adopted to study crystal structure of
powder samples. Figure 2.8 (a) and (b) display a Powder x-ray diffraction (PXRD) machine,
MiniFlex (Rigaku), and a schematic of diffractometer method, respectively. The diffraction
process is shown as following. At first, the incident x-rays pass through a solar slit (S1) and a
divergent slit (DS) to extract parallel components of x-rays and narrow them down. Then, the x-
rays enter to the sample and are scatted, followed by passing through a scattering slit (SS), solar slit
(S2), and receiving slit (RS) to exclude the secondary diffraction and unnecessary components.
Finally, the extracted scattered x-rays are detected. During the PXRD measurements, the sample
rotates on a goniometer and a detector revolves around a center of the goniometer while satisfying
the Bragg’s law. In other words, when the sample rotates𝜃, the detector revolves 2𝜃.

Since a x-ray wavelength 𝜆 is given in the diffractometer method, the spacing of the Miller
plane, 𝑑 = 𝜆/sin 𝜃, where the Bragg reflection occurs is obtained by observing the Bragg peaks
and its angle 𝜃. Here, 𝑑 is associated to a lattice constant via Miller indices, as shown in Table
2.1. Therefore, the lattice constant is calculated by determining the Miller indices corresponding
to each Bragg peak. For example, in the case of a cubic system, the Bragg angle is expressed
using the Miller indices as

sin 𝜃 =
𝜆

2𝑑
=
𝜆
√
ℎ2 + 𝑘2 + 𝑙2

2𝑎
. (2.10)

From Eq.2.10, the Bragg peak appears at the smallest angle when ℎ2 + 𝑘2 + 𝑙2 has the smallest
value.
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Figure 2.8: (a) The photos of a PXRD machine, MiniFlex, and its inside view. (b) The schematics
of diffractometer method.

2.3 Physical property measurements

To determine the chemical and physical properties and performance changes of synthesized
samples, various measurements are carried out as following.

2.3.1 Magnetic measurements

Magnetic measurements are performed by a pull-put method using a SQUID magnetometer
MPMS3 (Quantum Design, Inc.) as depicted in Fig.2.9 (a). In this method, when a magnetized
sample is passed through a single-turn pickup coil as shown in Fig.2.9 (b), the spatial distribution
of the magnetic flux Φ along z-axis direction generated around the pickup coil is described as

Φ(𝑧) = −𝜇𝑧
2

[
𝑧2

(𝑅2 + 𝑧2)3/2 − 1
(𝑅2 + 𝑧2)1/2

]
. (2.11)

Simultaneously, an induced electromotive force is generated in the coil, transferred via the flux
transformer to the SQUID (Superconducting Quantum Interference Devise), and then output as
a voltage

𝑉 (𝑧) = 𝐶Φ(𝑧) = −𝐶𝜇𝑧
2

[
𝑧2

(𝑅2 + 𝑧2)3/2 − 1
(𝑅2 + 𝑧2)1/2

]
, (2.12)

proportional to the magnetic flux. Here, C is the calibration factor depending on the device.
By subjecting the acquired voltage so called a SQUID curve to fitting to Eq.(2.11), the exact
value of magnetization can be obtained. The MPMS utilizes a second-derivative coil combined
with a single-turn pickup coil to remove the effects of spatially uniform magnetic fields, such as
geomagnetism and fluctuations in the applied magnetic field, as magnetic noise. Figure 2.9 (c)
displays schematics of a second-derivative coil and a waveform of SQUID curve obtained by the
second-derivative coil.

The measurement requires the preparation of a straw to be inserted inside the chamber of the
MPMS. Generally, for powder samples, the sample is wrapped in plastic film, inserted into the
straw, and then fixed within the straw. For single crystal samples, use a quartz rod instead of a
straw to fix the sample with varnish. The MPMS3 in Fig.2.9 (a) has a measurement temperature
range of 1.8 to 350 K (350 to 1000 K: using oven mode) and a magnetic field range of −7 to 7 T.
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Figure 2.9: (a) A photo of MPMS3. (b) The schematics of pull-out method and a single-turn
pickup coil. The process where a magnetized sample passes through the pickup coil and is
detected as a signal through the SQUID is represented. (c) The second-derivative coil and a
waveform of SQUID curve obtained by the second-derivative coil.

2.3.2 Heat capacity measurements

Heat capacity measurements are carried out by a relaxation method using a PPMS (Quantum
Design Inc.) as depicted in Fig.2.10 (a). In the relaxation method, first of all, consider the case in
Fig.2.10 (b) where the sample, sample stage, and the heat bath with 𝑇 = 𝑇0 are in contact through
a material with thermal conductivity of 𝜅. Here, the sample and sample stage are regarded as
one unit due to a good thermal contact each other. When the temperature on the sample side is
increased to 𝑇s by slightly heating with a heater, and wait enough until settle into equilibrium
state, heat conduction equation is expressed as

𝐶
𝑑𝑇s(𝑡)
𝑑𝑡

= −𝜅(𝑇s(𝑡) − 𝑇0) +𝑊, (2.13)

where 𝐶 represents the heat capacity of a sample and a sample stage. Then, the heater is turned
off again from the equilibrium state (𝑊 = 0), and the sample side temperature (𝑇s) relaxes to the
heat bath side temperature (𝑇0) as shown in Fig.2.10 (c)). The temperature variation during the
relaxation process, the sample temperature 𝑇s is given as

𝑇s(𝑡) = 𝑇0 + (𝑇s − 𝑇0) exp
( 𝜅
𝐶
𝑡
)
, (2.14)

by solving the heat conduction equation using the initial condition 𝑇 = 𝑇s(0) at 𝑡 = 0. In this
way, the relaxation constant (𝜏 = 𝐶/𝜅) can be determined from the measurements, and the heat
capacity of the sample and sample stage is acquired from the value of thermal conductivity 𝜅.

Typically, in the heat capacity measurements, APIEZON N (H), a grease with high thermal
conductivity, is used to fix the sample on the stage. When fixing the sample to the stage, the
wire is very easy to break, therefore the pack is set on a special tool as displayed in Fig.2.10 (b)
and a diaphragm pump is used to hold the stage. In addition, a sample heat capacity is obtained
by subtracting one of sample stage, heater, and thermometer (addenda measurements) from the
total one. The PPMS in Fig.2.10 (a) has a measurement temperature range of 1.8 to 350 K and a
magnetic field range of −9 to 9 T.
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Figure 2.10: (a) A photo of PPMS and sample pack for heat capacity measurements. Set a
sample on the stage while fixing the stage with a diaphragm pump. (b) The system in the sample
pack. (c) The time dependence of system temperature.
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2.3.3 Electrical resistivity measurements

Longitudinal resistivity (𝜌xx) and Hall resistivity (𝜌yx) were measured using a four-prove
technique in transport option of a PPMS. The four-prove method consists of current and voltage
terminals, and the former (𝐼+, 𝐼−) and latter (𝑉+, 𝑉−) are contacted with a sample as shown in the
Fig.2.11 (a). Although current is applied to the sample, almost no current flows to the voltage
terminal side due to the high input impedance of the voltmeter. Therefore, the sample resistance
can be accurately measured without lead wire resistance and contact resistance. In addition,
the row voltage data includes a thermal electromotive force 𝑉T generated by the temperature
gradient of the sample and an offset voltage 𝑉0 of the measurement system. To remove these
contributions, the data should be measured while reversing the current, such as

𝑉+ = 𝑅𝐼 +𝑉T +𝑉0, (2.15)
𝑉− = −𝑅𝐼 +𝑉T +𝑉0, (2.16)

for the forward current flow and the reverse current flow, respectively. By dividing the difference
between the two obtained by the applied current value, the electrical resistance 𝑅 is calculated to

with 𝑉+ as the voltage when the current is applied in the forward direction and 𝑉− as the
voltage when the current is applied in the reverse direction. Dividing the difference of these
voltage values by the applied current value, the electrical resistance 𝑅 is calculated to be

𝑅 =
𝑉+ −𝑉−

2𝐼
. (2.17)

Under a magnetic field, the itinerant electrons responsible for conductivity are exposed to
the Lorentz force 𝑞(v ×B), leading a Hall voltage perpendicular to the direction of current flow.
Such a Hall effect, which is proportional to the magnetic field, is called a normal Hall effect.
On the other hand, that caused by the magnetization 𝑀 of the sample and that caused by the
topological properties of topological insulators and skyrmions are called abnormal Hall effect
and topological Hall effect, respectively. These are observed in the Hall resistivity measurement
as the total Hall resistance described as

𝑅H = 𝑅0 + 𝑅A + 𝑅T, (2.18)

where 𝑅H, 𝑅0, 𝑅A, and 𝑅T are the Hall coefficients of the observed Hall resistance, normal Hall
effect, anomalous Hall effect, and topological Hall effect, respectively. They can be classified
into their respective components by measuring the the magnetic field dependence of longitudinal
resistance and magnetization.

In the resistivity measurements, Au wires are reinforced with silver paste for electrical
contacts on the sample as displayed in Fig.2.11 (b). To eliminate mixing of 𝜌xx and 𝜌yx, the
magnetic field dependence measurements are carried out in positive and negative fields, and
experimental signals 𝜌exp

xx and 𝜌exp
yx are symmetrized and antisymmetrized to obtain true 𝜌xx and

𝜌yx, respectively, as following equations

𝜌xx(𝐻) =
𝜌

exp
xx (𝐻) + 𝜌exp

xx (−𝐻)
2

, (2.19)

𝜌yx(𝐻) =
𝜌

exp
yx (𝐻) − 𝜌exp

yx (−𝐻)
2

. (2.20)

The temperature and magnetic field ranges that can be measured are the same as for heat capacity
measurements.

33



V

x

sample

0

I+ I-

V+ V-

V

(a) (b)

Hall resistivity measurement

Figure 2.11: (a) The schematics of four-prove resistivity measurements. When measuring Hall
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pack for AC transport option and a sample preparation. The samples are fixed on the pack using
tape and vanish.
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Chapter 3

Crystal growth of centrosymmetric
skyrmion magnets

In this chapter, I summarize the crystal growth of Gd-based intermetallic compounds, syn-
thesis of new materials, and their physical properties as a good candidate of centrosymmetric
skyrmion compounds. Recently, starting with Gd2PdSi3, a number of centrosymmetric skyrmion
compounds have been reported. On the other hand, there are only a few examples of actual ma-
terials, and there is still potential for more experimental verification and discussion of changes
in the physical properties of each compound. I have been working on material synthesis and
physical property measurements with the aim of 1) development of new materials and 2) clarify-
ing the effects of substitution effects on the magnetic phase diagram and Hall resistivity through
elemental substitutions of previous compounds Gd2PdSi3 and GdRu2Si2. The magnetism of
these skyrmion compounds is attributed to the RRKY interaction of Gd ions, and this RRKY
interaction varies depending on the distance between two Gd ions. Therefore, changes in the
distance between ions due to elemental substitutions are expected to affect the electrical conduc-
tivity associated with magnetism and magnetic structure. Here, as an example, the relationship
between the RKKY interaction and the distance of each Gd ion in Gd3Os4Al12 is shown in
Fig.3.1. This result can be estimated in a simplified manner from

HRKKY = −9𝜋
𝐽2

𝜖𝐹

(
𝑁𝑒

𝑁

)2
𝑆(𝑟)S1 · S2, (3.1)

𝑆(𝑟) =
[
−cos(2𝑘𝐹𝑟)

𝑟3 + sin(2𝑘𝐹𝑟)
𝑟4

]
, (3.2)

where 𝑘𝐹 = 3.5888nm−1 is Fermi wavenumber. Futhermore, the RKKY interaction is induced
by the hybridization of localized spins and itinerant electrons, and is therefore responsive to a
band structure near the Fermi surface. In Gd2PdSi3 and GdRu2Si2, the 4𝑑 orbitals of Pd and Ru
contribute significantly to the electrical conductivity. Thus, RKKY interaction can be controlled
through a change in the band structure by substituting these elements with 3𝑑 or 5𝑑 elements.
Based on this background, in this study, I have focused on elemental substitution except Gd cite
which is responsible for magnetism.
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Figure 3.1: The calculated RKKY interaction as a function of distance of two Gd ions.

3.1 Exploring the magnetic phase diagram and unusual Hall resis-
tivity suppression in centrosymmetric GdOs2Si2 single crystal

In this section, I focus on GdOs2Si2 [60, 82], an osmium-substituted variant of GdRu2Si2.
While the magnetic properties of GdOs2Si2 remain unresolved, it shares the centrosymmetry
and layered structure stacking along the c-axis with GdRu2Si2. Given slight variations in lattice
constants and energy levels in the 4𝑑 and 5𝑑 electron bands between GdOs2Si2 and GdRu2Si2,
one can reasonably anticipate differences in the nature of the Gd-spin interaction in these two
compounds. Consequently, the magnetic phase diagram of GdOs2Si2 may also exhibit some
alterations. I have meticulously summarized my measurements of GdOs2Si2 single crystals,
including electrical resistivity, magnetization, and specific heat capacity. These results were
compiled into a temperature-field phase diagram and juxtaposed with the phase diagram obtained
for GdRu2Si2. The results show that there is a new magnetic phase in GdOs2Si2, which has not
been observed before, and that the Hall resistivity is significantly suppressed there.

3.1.1 Experimental

A single crystal was grown by the Czochralski (CZ) method using a tetra-arc furnace from
a mixture of Gd, Os, and Si metals with a stoichiometric composition under an Ar atmosphere
of approximately 75 kPa. Although I expect single crystals can be grown by the floating zone
method as well, the Os-based evaporation products generated during the crystal growth process
are toxic. Therefore, the CZ method (tetra-arc furnace) was used this time to confine them. The
ingot containing the crystal was annealed at 900 ◦ C for one week to improve its homogeneity
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Figure 3.2: (a) A single crystal of GdOs2Si2. The arrows show the directions of the crystal-
lographic axes and the bar indicates the 1 mm scale. (b) Crystal structure of GdOs2Si2. The
line-drawing box illustrates the tetragonal unit cell.

and relieve possible structural distortions. The crystal separated from the ingot [Fig.3.2 (a)]
was confirmed to be GdOs2Si2 with a ThCr2Si2-type structure with body-centered tetragonal
symmetry (𝐼4/𝑚𝑚𝑚, #139), using Laue X-ray diffraction. The crystal axes were determined
using the same Laue method. The lattice constants were 𝑎 = 4.1549(2) Åand 𝑐 = 9.8117(8) Å,
which were slightly shorter and considerably longer than those of GdRu2Si2 [𝑎 = 4.164(2) Å, 𝑐
= 9.616(5) Å] [60], respectively.

I conducted measurements of magnetic, thermal, and transport properties across a temper-
ature range spanning from 2 K to 300 K, as well as varying magnetic fields (𝐻), utilizing a
single crystal sample. Initially, a slender plate-shaped crystal with approximate dimensions of
1.1 mm × 0.50 mm × 0.23 mm was chosen for the study. Additionally, to explore sample
dependence, another crystal underwent similar investigations. A SQUID magnetometer, specifi-
cally the MPMS3 model from Quantum Design Inc., was utilized to collect magnetic data. The
temperature-dependent magnetization (𝑀) was recorded under field cooling conditions, and the
magnetic susceptibility was calculated as 𝜒 = 𝑀/𝐻. To determine the specific heat capacity
(𝐶p), the heat relaxation method was employed, with a magnetic field applied parallel to the
c-axis. This measurement setup employed a commercially available system, specifically the
PPMS model from Quantum Design Inc.

For the assessment of longitudinal resistivity (𝜌xx) and Hall resistivity (𝜌yx) (equal to −𝜌yx),
a magnetic field parallel to the c-axis was applied using the transport option of the PPMS system.
To secure the gold wires onto the crystal, silver paste was utilized, with the distance between the
voltage terminals of the crystal set at 0.35 mm for 𝜌xx and 0.38 mm for 𝜌yx (for the first crystal).
Throughout these measurements, an excitation current of 20 mA was passed along the crystal’s
[100] direction.

3.1.2 Results and discussion

Figure 3.3 displays the 𝜒-𝑇 curves for 𝜇0𝐻 = 1 T with 𝜇0𝐻//[100], [110], and [001]. Each
curve exhibits Curie-Weiss behavior at high temperatures, and a clear peak at 𝑇1 = 26.6 K
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Figure 3.3: Temperature dependence of magnetic susceptibility under a magnetic field of 1 T
along [100], [110], and [001]. The solid black line represents the Curie-Weiss fitting. The inset
shows the crystal structure of GdOs2Si2. All measurements were carried out using the single
crystal shown in this photograph.
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indicates the antiferromagnetic ordering of the Gd3+ ions. The Curie constant 𝐶 and Weiss
temperature 𝜃W were estimated from the linear temperature dependence of the inverse magnetic
susceptibility above 100 K. For 𝜇0𝐻//[100] and 𝜇0𝐻//[110], 𝐶 was determined to be 8.39 emu
K mol−1 and 𝜃𝑟𝑚𝑊 to be +25.0 K, while for 𝜇0𝐻//[001], 𝐶 was found to be 8.20 emu K mol−1

and 𝜃W to be +25.5 K. The calculated effective magnetic moment from the Curie constant was
8.18 𝜇B for 𝜇0𝐻//[100] and [110], and 8.10 𝜇B for 𝜇0𝐻//[001], in agreement with the theoretical
value of 𝜇eff = 7.94 𝜇B for Gd3+ ions. These results suggest that the 4 𝑓 electrons of Gd3+ ions
are well localized, while the 5d electrons of Os ions behave as itinerant and Pauli paramagnetic.
Similar behavior has been reported in GdRu2Si2 [62]. Despite the antiferromagnetic ordering,
similar to GdRu2Si2 [83], the dominant interaction between Gd3+ ions is considered to be
ferromagnetic because the Weiss temperature is positive. Additionally, the paramagnetic state
is almost isotropic, but the magnetic susceptibility below 𝑇1 is highly anisotropic, with the
susceptibility for 𝜇0𝐻//[001] significantly lower than that for 𝜇0𝐻//[100] or [110]. This suggests
that the Gd3+ moment is ordered along the c-axis, as observed in GdRu2Si2 [83].

Figure 3.4 illustrates the temperature dependence of 𝜒 curves (left) and their differentials
d𝜒/d𝑇 curves (right) measured at various magnetic fields below 40 K. For the case of 𝐻//[001] as
shown in Fig.3.4 (a), distinct features labeled as 𝑇1 (arrow), 𝑇2 (triangle), and 𝑇3 (diamond) were
observed at different temperatures, corresponding to the peak positions in the d𝜒/d𝑇 curves.
While the change at 𝑇1 seems relatively smaller compared to the more pronounced peak-like
changes at 𝑇2 and 𝑇3 in the differential curves, it becomes evident from the data at 𝜇0𝐻 = 2.4
T and 3 T that 𝑇1 and 𝑇2 are indeed clearly separated at elevated magnetic fields. 𝑇2 displays a
more pronounced decrease than 𝑇1 as the magnetic field increases from 25 K (at 𝜇0𝐻 = 1 T) to
6 K (at 3 T). Moreover, an anomaly emerges around 13 K at 𝜇0𝐻 = 2 T (𝑇3), which fades as the
magnetic field is further increased.

Regarding the situation where 𝐻//[100], a minimum of two distinct changes were identified,
as portrayed in Fig.3.4 (b). Although the overall profile of alterations appears to display a more
gradual and uniform trend, qualitatively similar associations with temperature and magnetic field
can be observed. For the sake of convenience, I label the temperatures corresponding to these
distinctive changes as 𝑇4 and 𝑇5.

The upper portion of Fig. 3.5 (a) illustrates the isothermal magnetization curve and its
derivative curve obtained at 1.8 K while applying a magnetic field perpendicular to the crystal’s c-
plane (𝐻//[001]). Within this depiction, the magnetization process demonstrates swift alterations
at specific magnetic field strengths: 𝜇0𝐻1 = 2.5 T, 𝜇0𝐻2 = 2.8 T, and 𝜇0𝐻3 = 3.2 T, along with
a gradual kink manifesting at 𝜇0𝐻4 = 6.5 T. These variations manifest more prominently within
the differential curves. Notably, the transformations at 𝐻1, 𝐻2, and 𝐻3 exhibit hysteresis in
response to the magnetic field, underscoring their connection with first-order phase transitions.
Conversely, the absence of noticeable hysteresis is evident at 𝐻4, where the magnetization of
Gd3+ ions achieves saturation at a value of 7 𝜇B.

The outcomes of the measurements capturing magnetic transitions driven by varying tem-
peratures and magnetic fields are presented in the lower section of Fig.3.5 (a). Notably, all
transition fields designated as 𝐻1, 𝐻2, 𝐻3, and 𝐻4 shift towards lower magnetic field strengths as
the temperature increases. Specifically, 𝐻3 diminishes around 10 K, while 𝐻1 either merges with
𝐻2 or vanishes entirely around 20 K. As for 𝐻4, it becomes progressively less distinguishable at
elevated temperatures and is indiscernible beyond 20 K. This behavior can be attributed to the
fact that, as elucidated later, the phase boundaries above 20 K align nearly perpendicular to the
temperature axis.
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Figure 3.4: Temperature and field dependence of 𝜒 and its derivative (d𝜒/d𝑇) for GdOs2Si2
measured with a magnetic field aligned along (a) [001] and (b) [100] directions. The arrows
and different symbols denote characteristic magnetic transition temperatures: 𝑇1, 𝑇2, and 𝑇3 for
𝐻//[001], and 𝑇4 and 𝑇5 for 𝐻//[100]. The data have been shifted for clarity.

At the upper section of Fig.3.5 (b), I present the 𝑀-𝐻 and d𝑀/d𝐻-𝐻 curves at 1.8 K,
considering an external magnetic field aligned with 𝐻//[100]. When examining the 𝐻//[100]
configuration, distinct anomalies are observed in the d𝑀/d𝐻 curve at specific magnetic fields:
𝜇0𝐻5 = 1.1 T, 𝜇0𝐻6 = 2.5 T, 𝜇0𝐻7 = 5.7 T, and 𝜇0𝐻8 = 6.8 T. Notably, the anomaly at 𝐻5
exhibits hysteresis. Moreover, a broader peak anomaly is noticeable in the d𝑀/d𝐻 curve at 𝐻6.
In contrast, a well-defined peak manifests at 𝐻7, positioned just slightly below the saturation field
𝐻8. This peak’s prominence increases with rising temperature, as illustrated in the lower portion
of Fig.3.5 (b). With increasing temperature, these critical fields shift towards lower magnetic
field values.

The phase diagram for 𝐻//[001] (left) and 𝐻//[100] (right) was established based on 𝜒-𝑇 and
𝑀-𝐻 measurements, as illustrated in Fig.3.6. The diagram features notable points such as 𝑇1, 𝑇2,
𝑇3, 𝐻1, 𝐻2, 𝐻3, and 𝐻4, along with 𝑇4, 𝑇5, 𝐻5, 𝐻6, 𝐻7, and 𝐻8. In the 𝐻//[001] phase diagram,
it is evident that four distinct magnetic phases (I, II, II’, and III) exist before reaching saturation,
contingent upon temperature and magnetic field conditions. The overall structure of this phase
diagram closely resembles that of GdRu2Si2 [84], except for the possible inclusion of the phase
II’.

To better understand the magnetic structure, Hall resistivity measurements were performed,
and the results are shown in Fig.3.7. Clear changes are observed at 𝐻1, 𝐻2, 𝐻3, and 𝐻4,
indicating a robust interaction between the local moment of Gd3+ and the conduction electrons.
The magnetic field dependence is similar to that of GdRu2Si2 [58], except for the phase II’. In
particular, the sharp increase in 𝜌yx observed in the phase II’ closely resembles the topological
Hall effect observed in the double-𝑄 square skyrmion lattice state of GdRu2Si2.

On the other hand, 𝜌yx just above 𝐻2 converges to an extrapolated value obtained from the
slope of 𝜌yx in phase I. Consequently, the characteristic aspect of GdOs2Si2 is the II’ phase,
representing a magnetic state with an undisclosed spin configuration. Recent theoretical studies
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Figure 3.5: Isothermal magnetization curve (left axis) and its derivative d𝑀/d𝐻 (right axis)
measured at 1.8 K, with increasing and decreasing magnetic fields up to 7 T applied (a) parallel
to [001] and (b) parallel to [100]. The symbols represent critical fields: 𝐻1, 𝐻2, 𝐻3, and 𝐻4 for
𝐻//[001] and 𝐻5, 𝐻6, 𝐻7, and 𝐻8 for 𝐻//[100]. The thermal evolution of dM/dH is shown at the
bottom. The data have been shifted for clarity.
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have suggested the existence of a topologically trivial double-𝑄 state in the immediate vicinity of
the double-𝑄 square lattice state [85]. The phase II’ observed here may reflect such a state, but
further microscopic techniques are needed to accurately evaluate the exact magnetic structure.

In the study for 𝐻//[100], the existence of four magnetically ordered phases is suggested,
namely phases I, III’, IV, and V, which are qualitatively similar to those reported for GdRu2Si2
[84]. In GdRu2Si2, these phases are associated with anisotropic double-𝑄 states (screw +
sinusoidal), anisotropic double-𝑄 states associated with a double-𝑄 square vortex lattice, single
𝑄-screw states, and single 𝑄-fan states [84]. While it remains to be confirmed whether these
states directly apply to GdOs2Si2, it is suggested that phase I of GdOs2Si2 extends closer to the
boundary of the paramagnetic region and is potentially more stable than phase I of GdRu2Si2 [84].
In contrast, phase V only exists in the high-field part of the phase diagram and ceases well below
the zero-field antiferromagnetic transition temperature. This persists even when the magnetic
field is no longer small, continuing almost up to the zero-field transition temperature. The
differences in these quantitative changes are likely attributed to variations in the strength of the
magnetic interaction between the respective Gd3+ moments in GdRu2Si2 and GdOs2Si2.

The temperature dependence of 𝐶p at zero magnetic field is shown in Fig.3.8 (inset), where
a distinct 𝜆-type anomaly is observed at 𝑇1. Since the isostructural nonmagnetic compounds
usually used to separate the lattice contribution from the 𝐶p data were not available, I attempted
to analyze the data using the Einstein and Debye models: 𝐶p = 𝛾𝑇 + 𝐶E + 𝐶D. In this equation,
the first term represents the conduction electron contribution and 𝛾 is the Sommerfeld coefficient.
The second and third terms correspond to the phonon contribution according to the Einstein and
Debye models and are given by:

𝐶E = 3𝑛E𝑅
𝑥𝑒𝑥

(𝑒𝑥 − 1)2 , (3.3)

and

𝐶D = 9𝑛D𝑅

(
𝑇

𝜃D

)3 ∫ 𝜃

D0

𝑦4𝑒𝑦

(𝑒𝑦 − 1)2 , (3.4)

where 𝑥 = 𝜃E/𝑇, 𝑦 = 𝜃D/𝑇, 𝜃E and 𝜃D are the Einstein and Debye temperatures, respectively.
The scale factors 𝑛E and 𝑛D correspond to the number of vibrational modes per formula unit for
the Einstein and Debye models, respectively, so I applied the constraint 𝑛E + 𝑛D = 5. Fitting
using these equations yielded 𝛾 = 24.4(9) mJ mol−1, 𝑛E = 2.44(5), 𝑛D = 2.55(5), 𝜃E = 142(2) K,
and 𝜃D = 609(9) K.

Furthermore, the magnetic specific heat (𝐶mag) of GdOs2Si2 was obtained by subtracting
the contributions of conduction electrons and lattice vibrations from the 𝐶p data, as shown in
Fig.3.8. The behavior of𝐶mag decreases rapidly as the temperature passes𝑇1. A broad hump then
appears, and eventually, 𝐶mag approaches zero in the low-temperature limit. Similar humps have
been observed in other Gd compounds in the temperature range below the magnetic transition
temperature [86]. It has been argued that a peak like this appears at approximately 1/4 of magnetic
transition temperatures, based on a mean-field model, originating from the splitting of the Gd3+

ground-state multiplet due to an internal field [87–89].
It is important to note that in the 𝜌xx vs 𝑇 measurements, negative magnetoresistance,

indicative of magnetic precursor effects, was observed above 𝑇1 (discussed later). However, the
broad peak of 𝐶mag at high temperatures, characteristic of the magnetic precursor effect [90,91],
was not clearly observed. The calculated magnetic entropy 𝑆mag = 15.7 J mol−1 K−1 is slightly
smaller than the theoretical value 𝑅ln(2𝐽+1) = 17.3 J mol−1 K−1 (𝐽 = 7/2). This discrepancy
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𝜇0𝐻 = 0 T. The inset displays the 𝐶p-𝑇 data and the fitting curve (solid blue light line) obtained
using the Einstein and Debye formula.

may have been due to the limited temperature range in the analysis, which may have affected the
fitting process.

Temperature dependence of electrical resistivity is presented in Fig.3.9. The 𝜌xx vs 𝑇 curves
exhibit anomalies at characteristic temperatures of 𝑇1, 𝑇2, and 𝑇3, which correspond to the
temperatures determined in the magnetization measurements. At 𝜇0𝐻 = 0 and 1 T, 𝜌xx decreases
as the temperature is lowered below 𝑇1. However, at 𝜇0𝐻 ≥ 2 T, a significant change in the
temperature dependence of 𝜌xx is observed. Specifically, at 𝜇0𝐻 = 2 T, 𝜌xx experiences an abrupt
increase near 𝑇2 during cooling, followed by a subsequent decrease with further cooling. For
𝜇0𝐻 ≥ 2.4 T, 𝜌xx shows a weak kink at 𝑇1 and a subsequent slight increase, followed by a further
increase below 𝑇2. Interestingly, as shown in the inset of Fig.3.9, a negative magnetoresistance is
observed not only below 𝑇1 but also at high temperatures, specifically below 40 K. This finding
suggests the presence of the magnetic precursor effect, a phenomenon observed in isostructural
Gd-based compounds [91, 92].

3.1.3 Conclusion

This study presents the results obtained from investigating GdOs2Si2 using a single crystal,
leading to the construction of a magnetic phase diagram along 𝐻//[100] and 𝐻//[001], revealing
notable similarities with the phase diagram of GdRu2Si2. Of particular interest is the distinct
Hall resistivity anomaly observed in phase II, reminiscent of the topological Hall effect seen
in the skyrmion state of GdRu2Si2. This intriguing parallel suggests the potential occurrence
of skyrmion formation in phase II of GdOs2Si2. Additionally, my investigation unveils an
unrecognized phase (phase II’) absent in GdRu2Si2. The appearance of this phase coincides with
a distinct recovery pattern in the Hall resistivity, implying a significant shift in the spin structure.
In-depth understanding of the complex magnetic configurations in GdOs2Si2 could be facilitated
by future endeavors involving advanced microscopic techniques like resonant X-ray diffraction
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measurements and the direct observation of possible skyrmions through electron microscopy.
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3.2 The topological Hall effect in Gd2NiSi3 with triangular lattice

Gd2PdSi3 has a layered structure with triangular lattice of Gd3+ ions, and dominant RKKY
interaction among nearest-neighbor Gd3+ ions is antiferromagnetic, thus this system exhibit
magnetic frustration. Due to this frustration, a variety of temperature- and magnetic field-
dependent magnetic phase diagrams including a skyrmion phase with topological Hall effect has
been reported in Gd2PdSi3 [53]. From the similarity to Gd2PdSi3, an Ni-substituted intermetallic
compound, Gd2NiSi3 is expected to show skyrmion phase and topological Hall effect; some
theoretical studies suggest the emergence of skyrmions in frustration system [44, 49]. Although
there have been reports on the synthesis and properties of powder samples of Gd2NiSi3 [93,94],
no reports on single crystals growth and physical properties have been reported. Here, I succeeded
in growing a single crystal of Gd2NiSi3 by the floating zone method for the first time, and report
the results of structural and physical property measurements of the single crystal sample.

3.2.1 Experimental

Single crystals of Gd2NiSi3 were grown by optical floating zone (OFZ) method under argon
pressure. First, a stoichiometric mixture of reagents, Gd, Ni, and Si was melted in the mono-
arc furnace under reduced pressure in argon atmosphere. The obtained polycrystalline sample
identified as Gd2NiSi3 by powder x-ray diffraction measurements was subsequently grinded,
transferred to rubber forms, evacuated, and pressed into rod shape at around 700 bar. The rod
divided into two pieces was installed in a high-pressure high-temperature optical floating zone
furnace (Model HKZ, SciDre GmbH, Dresden), followed by a growth under 30 bar argon pressure.
The growth velocity was between 10 and 20 mm/h. Finally, the gray and shiny single crystals
were obtained by crashing the product as depicted in Fig.3.10 (b).　 In this furnace, crystals can
be grown under positive Ar pressure, which prevents decomposition and evaporation of materials
at high temperatures and enables stoichiometric synthesis. The OFZ method was used in this
experiment because crystal growth in a tetra-arc furnace requires maintaining negative pressure
inside the furnace, which leads to increased evaporation of materials with low vapor pressure.
　 The crystallographic data of selected single-crystal sample [Fig.3.10 (a)] were acquired using
Rigaku XtaLab mini II diffractometer, utilizing Mo K𝛼 radiation. Furthermore, the crystal axial
direction was determined using Laue reflection method, and obtained Laue photo is shown in
Fig.3.10 (c).

Magnetic susceptibility and magnetization measurements were carried out in a temperature
range of 1.8 K to 300 K, as well as magnetic field (𝜇0𝐻) range of 0 T to 7 T using SQUID
magnetometer (MPMS3, Quantum Design, Inc.). Longitudinal resistivity (𝜌xx) and Hall resis-
tivity (𝜌yx) were measured using four-prove method in transport option of the PPMS (Quantum
Design Inc.). To eliminate mixing of 𝜌xx and 𝜌yx, measurements were performed in positive
and negative fields and experimental signals 𝜌exp

xx and 𝜌
exp
yx were symmetrized and antisym-

metrized to obtain true 𝜌xx and 𝜌yx respectively: i.e., 𝜌xx(𝐵) = (𝜌exp
xx (𝐵) + 𝜌exp

xx (−𝐵))/2, and
𝜌yx(𝐵) = (𝜌exp

yx (𝐵) − 𝜌
exp
yx (−𝐵))/2. Au wires were reinforced with silver paste for electrical

contacts on the crystal, and an excitation current of 50 mA and magnetic field were applied along
a-axis and c-axis direction of the crystal, respectively.
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Figure 3.10: (a) Schematic representation of the crystal structure of Gd2NiSi3, displaying its
hexagonal structure (𝑃6/𝑚𝑚𝑚). (b) Photograph and (c) the Laue photo depicting a Gd2NiSi3
sample grown by OFZ method. The vertical direction of the paper represents the c-axis.

3.2.2 Results and discussion

The 𝜒–𝑇 curves for zero-field cooling (ZFC) and field cooling (FC) at 𝐻 = 0.1 T for 𝐻 ‖
[0001] are shown in Fig.3.11. Both ZFC and FC susceptibility have a clear peak at 𝑇N = 13.6
K, indicating that local magnetic moments of Gd3+ ions order antiferromagnetically at 𝑇N, while
the ZFC and FC curves start to diverge below 𝑇f = 10.3 K. This difference between ZFC and FC
at 𝑇f becomes insignificantly small under magnetic field of 1 T (see the inset of Fig.3.11).

In the paramagnetic region above 50 K, reciprocal susceptibility follows the Curie-Weiss
low1/𝜒 = (𝑇 −𝜃W)/𝐶 (Fig.3.12), where𝐶 and 𝜃W are the Curie constant and Weiss temperature.
Their values are estimated to 𝐶 = 7.90 emu K mol−1 and 𝜃W = +11.3 K, assuming the linear
function. The positive value of 𝜃W denotes the presence of a ferromagnetic exchange interaction
in the systems. The effective moment is calculated from the Curie constants to be 𝜇eff = 7.95
𝜇B, which well agree with 𝜇eff = 7.94 𝜇B of the theoretical value for Gd3+ ion. Thus, the 4 𝑓
electrons of Gd3+ ions are localized, while the 3𝑑 electrons from Ni ions are itinerant causing
Pauli paramagnetic behavior. The similar behavior has been reported in previous study on
Gd2NiSi3 [93,94] and Gd2PdSi3 [51,52]. Note that the Weiss temperature is positive despite the
antiferromagnetic ordering, as in the case of Gd2PdSi3, Gd3Ru4Al12, and GdRu2Si2 [55,62,93],
implying Gd2NiSi3 is highly expected to emerge a skyrmion lattice.

Table 3.1: Gd-based skyrmion intermetallics and their Weiss temperatures.
Gd2NiSi3 Gd2PdSi3 [93] Gd3Ru4Al12 [55] GdRu2Si2 [62]

𝜃W +11.3 K +14.3 K +63.8 K +43 K

Isothermal magnetization curve at 2 K for 𝐻 ‖ [0001] and its differential curve are shown
in Fig.3.13 (a), exhibiting slight anomaly at 𝐻c = 1.2 T, and this anomalous behavior can be

49



1.0

0.5
  

[e
m

u
/G

d
m

o
l]

3020100

T [K]

 0.1 T

 0.1 T

 1 T

 1 T

1.0

0.5

0.0


  

[e
m

u
/G

d
m

o
l]

3002001000

T [K]

1.0

0.5
  

[e
m

u
/G

d
m

o
l]

3020100

T [K]

ZFC FC

1.0

0.5
  

[e
m

u
/G

d
m

o
l]

3020100

T [K]

 0.1 T

 1 T

 0.1 T

 1 T

1.0

0.5
  

[e
m

u
/G

d
m

o
l]

3020100

T [K]

 0.1 T

 1 T

 0.1 T

 1 T

H // [0001]

H = 0.1 T

TN

Tf

Figure 3.11: The temperature dependence of magnetic susceptibility under magnetic field of 0.1
T along [0001] direction. Black and red curves exhibit ZFC and FC data, respectively. The inset
shows the magnetic dependence of 𝜒-𝑇 behavior.
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more clearly seen by extrapolation line (red line) or in the differential curve. The magnetization
process show isotropic behavior regardless of the sweep direction of the magnetic field. Since
the magnetization curve reaches 7 𝜇B, the maximum magnetization for Gd3+ ions, nothing
anomalous will occur any more at higher fields than 7 T. The field-induced transitions occur also
at other temperatures as shown in Fig.3.13 (b). The transition fields (𝐻c) shift to lower fields
with increasing temperature, and disappears above approximately 10 K.

The phase diagram for 𝐻 ‖ [0001] is depicted by plotting 𝑇N, and 𝐻c, as shown in Fig.3.14.
It is classified into 3 magnetic phases, depending on temperature and magnetic field. The overall
structure of the phase diagram is quite similar to that of Gd2PdSi3 [52], and Phase X corresponds
to the phase in which a skyrmion lattice and topological Hall effect are observed [53]. The phases
I and II likely correspond to the a certain ellipticity of the spin-spiral structure, and a fan-like
or a transverse conical structure, respectively [53]. To give a further discussion what magnetic
structure is emerged in each phase, I apply the Hall resistivity measurements.

Field-dependent Hall resistivity 𝜌yx at 2 K is shown in Fig.3.15 (a). It shows drastic changes
at 𝐻c, suggesting strong coupling between the Gd3+ local moments and conducting electrons.
This field dependency is similar to that of Gd2PdSi3, and considering that a skyrmion lattice tends
to greatly enhance 𝜌yx, the phase X may indicate skyrmion phase. In addition, topological Hall
resistivity 𝜌T

yx, considered as a good probe for the existence of skyrmions or related topological
spin textures is extracted by subtracting the normal Hall resistivity 𝜌N

yx and anomalous Hall
resistivity 𝜌A

yx determined from magnetization measurements, as shown in Fig.3.15 (b). 𝜌T
yx

exhibits a pronounced anomaly in Phase X, with a clear topological Hall effect observed. The
anomaly is sharply suppressed in Phases I and II, suggesting that both phases are not skyrmion
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Figure 3.14: The magnetic field-temperature phase diagram of Gd2NiSi3 along 𝐻 ‖ [0001].
Circles and triangles corresponds to anomalies for 𝑀𝐻 and 𝑀𝑇 measurements (𝐻c and 𝑇N),
respectively. The red area (Phase X) is highly expected to skyrmion phase due to the similarity
to Gd2PdSi3.

or topological spin structure, as discussed above.
The temperature dependent longitudinal electrical resistivity, 𝜌xx indicates minimum and

maximum values at 𝑇min and 𝑇max under zero-field as shown in Fig.3.16. The resistivity just
below 𝑇min sharply increases, while it slightly decreases below 𝑇max. The 𝑇min behavior is
gradually collapsed by increasing magnetic field and completely suppressed at 7 T. Besides,
𝑇max also get blurry. It is important to mention that a negative magnetoresistance indicative of
the magnetic precursor effect above 𝑇min was observed. However additional measurements to
confirm the characteristic feature of the magnetic precursor effect [52], such as a broad peak in
𝐶mag at higher temperatures is required.

3.2.3 Conclusion

Temperature dependence of magnetic susceptibility 𝜒 and longitudinal resistivity 𝜌xx, and
field dependence of magnetization 𝑀 and Hall resistivity 𝜌yx were measured along 𝐻 ‖ [0001],
using a single crystal of Gd2NiSi3, to establish a magnetic phase diagram. The phase diagram is
quite similar to Gd2PdSi3, suggesting that the skyrmion lattice is realized on the Gd3+ triangular
lattice in Phase X. Field dependence of Hall resistivity and topological Hall resistivity 𝜌T

yx also
shows the similarity with that of Gd2PdSi3, supporting the existence of the triangular skyrmion
lattice. In addition, longitudinal resistivity exhibits characteristic feature of the magnetic precur-
sor effect. These similarity will lead to a further understanding of the existence conditions of a
skyrmion lattice.
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3.3 High-pressure synthesis and magnetic properties of Gd2Rh3Al9
with a distorted honeycomb lattice

The majority of magnetic skyrmions recently discovered in material systems with inversion
symmetry are found in layered compounds [51–56,95,96]. This is because multiple propagation
vectors are energetically equivalent and become degenerate due to rotational operations. For
instance, the single-𝑄 magnetic state in Gd2PdSi3 [51–53] and Gd3Ru4Al12 [54–56, 95, 96]
exhibits triple degeneracy on a triangular lattice, which facilitates the formation of triangular
skyrmion lattices. Similarly, in GdRu2Si2 [57–59,83,84], square skyrmion lattices emerge due to
quadruple degeneracy on the square lattice. Consequently, multi-𝑄 states demonstrate enhanced
stability in lattices with high rotational symmetry.

While the high rotational symmetry of layered structures suggests the stabilization of
skyrmion lattices, skyrmion lattices have also been observed in distorted lattices. For example,
tetragonal EuAl4 exhibits a structural transition to an orthorhombic lattice at low temperatures.
This transition results in Eu2+ layers breaking their four-fold rotational symmetry, yet a rhombic
skyrmion lattice still emerges [66]. Additionally, theoretical studies have been conducted on the
effects of orthorhombic distortion on skyrmion stabilization [97]. Experimental verification is
needed to support these theoretical findings.

In this chapter, my emphasis lies in the quest for intermetallic compounds featuring distorted
crystal structures, aiming to uncover potential magnetic skyrmions. A notably auspicious candi-
date in this context is a Gd-based intermetallic compound of Y2Co3Ga9-type, wherein Gd takes
the place of Y, existing within a subtly distorted honeycomb lattice. This suggests its viability
as a host material for magnetic skyrmions [98–100]. As a stride towards this objective, I syn-
thesized Gd2Rh3Al9 by substituting Rh for Co and Al for Ga. This paper provides an account
of the synthesis of this Gd2Rh3Al9 compound of Y2Co3Ga9-type, detailing its crystal structure,
essential magnetic properties, and electrical conduction behavior. The findings provide insights
into the characteristics of this compound and its potential as a platform for investigating distinct
magnetic states.

3.3.1 Experimental

Polycrystals and single crystals of Gd2Rh3Al9 were synthesized using the Al self-flux method
under high-pressure and high-temperature conditions. The raw materials, Gd, Rh, and Al, were
combined in a molar ratio of 2:3:9.9 and encapsulated within a BN capsule. This assembly was
then enclosed in an outer capsule made of Ta. The entire capsule arrangement was placed within a
multi-anvil high-pressure apparatus (CTF-MA1500P; C&T Factory Co., Ltd., Tokyo, Japan) and
subjected to heating at 1600 ◦C for 1 hour. Subsequently, a gradual cooling process occurred over
2 hours, reaching 900 ◦C, while maintaining a pressure of 6 GPa. The high-pressure synthesis
method was adopted because the expensive Rh powder was not applicable to synthesis methods
such as the FZ and CZ methods, which require a large amount of starting materials. I believe
that the FZ and CZ methods can be used to grow Gd2Rh3Al9 crystals in the same way, given the
fact that Gd2Rh3Al9 powder samples can be synthesized by arc-melting method.

Following the heating steps, rapid cooling procedures brought down the capsule’s temperature
to below 100 ◦C in less than 30 seconds. Subsequently, the pressure was methodically released
over a 2-hour period. The resulting product comprised gleaming grey crystals clustered at
the lowermost section of the BN capsule, alongside a polycrystalline segment that formed in
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Figure 3.17: (a) Photograph depicting a Gd2Rh3Al9 sample synthesized under high pressure.
The dotted ellipse delineates a clustered area of single crystals formed at the bottom of the BN
capsule. Adjacent to the sample are crystal fragments detached from this area. The region
above the dotted area is polycrystalline. (b) Schematic representation of the crystal structure
of Gd2Rh3Al9, displaying its orthorhombic structure (𝐶𝑚𝑐𝑚). (c) View of the didstorted Gd-
honeycomb lattice and Rh-triangular lattice from the c-axis direction. The numbers indicate
interatomic distances, revealing slight distortions from the ideal lattice.

the major region of the sample. The crystals from the former category underwent physical
fragmentation, yielding minute crystals akin to single domains, with dimensions not exceeding
0.2 mm [Fig.3.17 (a)]. Maintaining high-pressure conditions was essential in this synthesis.
Without such conditions, achieving the desired chemical phase would not have been possible.

Crystallographic data were obtained from a carefully selected crystal, which had been pol-
ished and cleaned to eliminate any potential residue of Al flux. These data were analyzed using
a Rigaku XtaLab mini II diffractometer, employing Mo K𝛼 radiation. The crystal structure was
elucidated using a dual-space algorithm approach (SHELXT) [101], and further refinement was
conducted utilizing a full-matrix least-squares technique with SHELXL [102]. The refinement
process was managed through the Olex graphical user interface. The comprehensive results
obtained from this intricate process are meticulously compiled and documented in Tables 3.2
and 3.3.

Additionally, we conducted Scanning Electron Microscope-Energy Dispersive X-ray Spec-
troscopy (SEM-EDX) measurements on a polished surface of the selected specimen, mounted
on carbon tape as shown in Fig3.18. This analysis, performed using a TESCAN Vega-e SBU
scanning electron microscope equipped with EDS and operating at an accelerating voltage of 15
kV, yielded the elemental ratio Gd:Rh:Al = 1.73(4):3.10(4):9.17(5). These results indicate that
the ratio of Gd is slightly lower than the stoichiometry of Gd2Rh3Al9, as further detailed in Table
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Table 3.2: Crystallographic parameters and refinement details of a single crystal of Gd2Rh3Al9
Empirical formula Gd2Rh3Al9
Formula weight 866.05

Temperature 293(2) K
Wavelength 0.71073 Å(Mo K𝛼)
Space group 𝐶𝑚𝑐𝑚

Unit cell dimensions 𝑎 = 13.0538(4) Å, 𝑏 = 7.6455(3) Å, 𝑐 = 9.5117(3) Å
Volume 949.29(6) Å3

𝑍 4
Density (calculated) 6.060 g cm−3

Absorption coefficient 19.649 mm−1

𝐹000 1520
Crystal size 0.066 × 0.056 × 0.024 mm3

2𝜃 for data collection 3.0710 - 30.4550 ◦

Index ranges −16 ≤ ℎ ≤ 18,−10 ≤ 𝑘 ≤ 10,−13 ≤ 𝑙 ≤ 13
Reflections collected 7294

Independent reflections 793 [𝑅(int) = 0.0313]
Completeness to 𝜃 = 25.242◦ 100 %

Absorption correction multi-scan
Max. and min. transmission 1.000 and 0.738
Data/restraionts/parameters 793/0/42

Goodness-of-fit on 𝐹2 1.064
Final 𝑅 indices [𝐼 > 2𝜎(𝐼)] 𝑅1 = 0.0147, w𝑅2 = 0.0285

𝑅 indices (all data) 𝑅1 = 0.0178, w𝑅2 = 0.0291
Extinction coefficient 0.00068(3)

Largest diff. peak and hole 1.088 and −0.721 e Å−3

3.4. However, we believe this discrepancy is more likely attributable to instrumental precision
issues rather than a significant deviation from the intended stoichiometry.

Magnetic susceptibility (𝜒) and isothermal magnetization (𝑀) measurements were carried
out across a temperature range spanning from 2 K to 300 K, employing magnetic fields up to 70
kOe. These analyses were performed using a SQUID magnetometer MPMS3 (Quantum Design,
Inc.). To assess specific heat capacity (𝐶p) and direct current electrical resistivity (𝜌), I employed
a relaxation method and a four-probe technique, respectively. These experimental procedures
were conducted utilizing a PPMS (Quantum Design Inc.).

It is important to emphasize that due to the constrained dimensions of the single-domain-
like crystals, it was not feasible to perform assessments of physical properties along a specific
crystal direction within my measurement apparatus. Consequently, with the exception of the
structural study, all measurements were conducted using polycrystalline samples. Powder X-ray
diffraction (XRD) analysis, the pattern of which is provided in the Fig.3.19, identified a small
amount of RhO2 as an impurity in the polycrystalline sample. However, given that RhO2 is
nonmagnetic and exhibits metallic electrical conductivity within our measurement temperature
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Table 3.3: Atomic coordinates and equivalent isotropic displacement parameters (𝑈eq; 10−3 Å2)
and anisotropic displacement parameters (𝑈ij; 10−3 Å2) as measured by X-ray diffraction on a
single-crystal Gd2Rh3Al9 at 293 K.

Site WP a Occp. 𝑥 𝑦 𝑧 𝑈eq
b

Gd 8𝑔 1 0.65998(2) 0.83145(2) 1/4 5.69(6)
Rh1 8𝑒 1 0.67087(2) 1/2 1/2 4.55(7)
Rh2 4𝑏 1 1/2 0 1/2 4.58(8)
Al1 8 𝑓 1 1/2 -0.1279(2) 0.0067(3) 6.7(3)
Al2 8𝑔 1 0.60687(9) 0.44226(14)) 1/4 7.2(2)
Al3 16ℎ 1 0.83185(6) 0.66700(11) 0.42572(9) 6.24(16)
Al4 8 𝑓 1 1/2 0.33228(14) 0.54338(12) 8.6(2)
Site 𝑈11 𝑈22 𝑈33 𝑈23 𝑈13 𝑈12
Gd 6.00(10) 5.95(9) 5.12(8) 0 0 0.51(7)
Rh1 3.76(15) 5.11(14) 4.77(13) -0.37(11) 0 0
Rh2 4.44(19) 4.56(18) 4.73(16) 0.89(15) 0 0
Al1 4.5(8) 9.1(8) 6.5(7) 0 0 0
Al2 7.5(6) 8.2(5) 5.9(5) 0 0 -1.1(4)
Al3 5.2(4) 6.9(4) 6.6(3) -0.5(3) 0.5(3) -0.3(3)
Al4 4.2(6) 6.1(5) 15.6(5) 0.1(5) 0 0

a Wyckoff positions
b 𝑈eq is defined as one third of the trace of the orthogonalized 𝑈ij tensor. The anisotropic
displacement factor exponent takes the form −2𝜋2 [ℎ2𝑎∗2𝑈11 + . . . + 2ℎ𝑘𝑎∗𝑏∗𝑈12].

range, we concluded that the intrinsic properties of Gd2Rh3Al9 are not significantly affected by
the presence of RhO2.

3.3.2 Results and discussion

The crystal structure of Gd2Rh3Al9 was confirmed by XRD analysis to possess a Y2Co3Ga9-
type structure (𝐶𝑚𝑐𝑚, #63), akin to Gd2Co3Al9 [103]. The Gd-honeycomb layers are aligned
along the c-axis (Fig.3.17 b). Within the intralayer structure, the hexagons constituting the
honeycomb network display subtle contractions along the a-axis. These hexagons are comprised
of edges with two distinct bond lengths, measuring 4.227 Å and 4.429Å, respectively (Fig.3.17
c, left side). Similarly, the triangles formed by Rh in the subsequent layers exhibit distortions,
encompassing four isosceles triangles and eight non-equilateral triangles within the unit cell
(Fig.3.17 c, right side). These minor deviations may stem from the overall structure of the
orthorhombic crystal, which exhibits a slight departure from trigonal or hexagonal symmetry.

The temperature-dependent behavior of 𝜒 under 𝐻 = 1 kOe is depicted in Fig. 2a. The
inverse of 𝜒 conforms well to the Curie-Weiss law, represented by 1/𝜒 = (𝑇 − 𝜃W)/𝐶, for
temperatures exceeding 50 K. The Curie constant, 𝐶, is calculated to be 7.973(5) emu K mol−1.
The corresponding effective moment, 𝑝eff = 7.984(2)𝜇B, closely aligns with the anticipated
value of 7.94 𝜇B for free Gd3+ ions with 𝑆 = 7/2. The Weiss temperature, 𝜃W, is determined to be
-32.0(1) K, indicating that the predominant interaction between the magnetic moments of Gd3+
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Figure 3.18: SEM image of the selected specimen with the marked area where EDX measure-
ments were performed.

Table 3.4: Crystallographic parameters and refinement details of a single crystal of Gd2Rh3Al9
Atomic [%] Spectrum 1 Spectrum 2 Spectrum 3 Spectrum 5∗ Average

Gd 1.727 1.742 1.680 1.787 1.73(4)
Rh 3.106 3.156 3.069 3.070 3.10(4)
Al 9.167 9.102 9.251 9.143 9.17(5)

Total 14 14 14 14

∗ Spectrum 4 was accidentally skipped.

59



100

50

0

In
te

n
si

ty

604020

2 / deg.

 Experimental
 Simulation (cif-data)
 Gd2Rh3Al9
 RhO2

Figure 3.19: Powder XRD diffraction pattern for the polycrystalline Gd2Rh3Al9 used in this study.
The simulation curve (blue) utilizes data obtained from the single crystal structural analysis.

ions is of an antiferromagnetic nature.
Upon lowering the temperature, a magnetic transition manifested at 𝑇1 in the 𝜒 vs 𝑇 mea-

surements, followed by another distinctive anomaly indicating an additional magnetic transition
at a lower temperature, labeled as 𝑇2. Notably, consecutive peaks were discerned at 𝑇1 = 13.6
K and 𝑇2 = 4.1 K at 𝐻 = 100 Oe. These transition temperatures exhibited minor shifts towards
the lower temperature range with the progressive increase of the magnetic field, extending up
to 𝐻 = 70 kOe, as illustrated in Fig.3.20. Considering 𝑇1 as a representative of a long-range
antiferromagnetic transition temperature, the corresponding frustration parameter |𝜃W |/𝑇1 was
calculated to be 2.34. This value aligns with the range (typically 1-3) often reported for Gd-based
intermetallic compounds known to accommodate skyrmions [98–100]. However, the negative
𝜃W observed here is in considerable contrast to the positive 𝜃W (20-64 K) reported for other
Gd-based intermetallic compounds [98–100].

Figure 3.21 (a) illustrates the isothermal 𝑀 curves acquired within the temperature range of
2 K to 20 K. Notably, two distinct anomalies are prominently observed at approximately 𝐻1 =
15 kOe and 𝐻2 = 30 kOe. These anomalies are clearly depicted in the differential curves of M
at 2 K, as showcased in the inset of Fig.3.21. The anomaly at 𝐻1 materializes below 𝑇1, while
the anomaly at 𝐻2 emerges beneath 𝑇2. This observation indicates that the former anomaly is
linked to the antiferromagnetic structure formed at 𝑇1, while the latter pertains to the magnetic
arrangement existing below 𝑇2. The 𝑀 value of 4.2 𝜇B recorded at 70 kOe under 2 K equates
to approximately 60% of the saturation moment exhibited by spins with 𝑆 = 7/2. However,
it is noteworthy that no distinctive step-like anomalies accompanied by magnetic hysteresis,
commonly observed in skyrmion compounds [96, 98–100], were discerned in this case. The
complex phase diagram depending on magnetic field and temperature derived from 𝑀𝑇 and 𝑀𝐻
measurements is shown in Fig.3.21 (b).
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The temperature-dependent behavior of 𝐶p is investigated under magnetic fields of 0 and
70 kOe, as depicted in Fig.3.22 (a). The 𝐶p/𝑇 data at zero-field reveals magnetic transitions
corresponding to T1 and T2. Notably, the peak associated with T1 shifts towards lower temper-
atures with the increment of magnetic fields, extending up to 70 kOe. The inset of Fig. 3.22
(a) illustrates a plot of 𝐶p/𝑇 versus 𝑇2, wherein a linear fitting is applied based on the equation
𝐶p/𝑇 = 𝛾 + 𝛽𝑇2. Here, 𝛾 represents the electronic specific heat coefficient, and 𝛽 is a constant
associated with the Debye temperature 𝜃D. The data above 𝑇1 are subjected to fitting, effectively
circumventing the influence of the magnetic phase transition. The Sommerfeld coefficient 𝛾 is
ascertained to be 328 mJ mol−1 K−2. While this value surpasses those observed in other Gd-
based intermetallic compounds, it remains comparable to the reported value of 500 mJ mol−1

K−2 in Gd2Co3Al9 [103]. The Debye temperature 𝜃D is calculated to be 168 K based on the
estimated 𝛽.

The inset of Fig. 5 shows the zero-field (𝐻 = 0 Oe)𝐶p curve and lattice contribution calculated
from the Einstein-Debye function, which exhibits great fitting for temperatures exceeding 40 K
except in the noisy region (250-300 K) due to the sample-fixing grease. The fitting function is
described as follows:

𝐶p = 𝛾𝑇 + 3𝑛E𝑅
𝑥2𝑒𝑥

(𝑒𝑥 − 1)2 + 9𝑛D𝑅

(
𝑇

𝜃D

)3 ∫ 𝜃D/𝑇

0

𝑦4𝑒𝑦

(𝑒𝑦 − 1)2 dy. (3.5)

Here, the first term represents a conduction electron contribution, where 𝛾 is the Sommerfeld
coefficient. The second and third terms correspond to a phonon contribution following Einstein’s
and Debye’s models, respectively. In the equations, 𝑥 = 𝜃E/𝑇, 𝑦 = 𝜃D/𝑇 , in which 𝜃E and 𝜃D
are the Einstein and Debye temperatures, respectively. The numbers of Einstein models (𝑛E) and
Debye oscillations (𝑛D) are constrained by 𝑛E + 𝑛D = 14 (the number of atoms per formula unit).

In this case, proper fitting is observed with the following parameters: 𝛾 = 16.7(17) mJ mol−1

K−2, 𝑛E = 3.1(1), 𝜃E = 148(3) K, 𝑛D = 10.9(1), and 𝜃D = 493(3) K. The estimated 𝛾 and 𝜃D are much
smaller and larger, respectively, than those reported for the isostructural compound Gd2Co3Al9
(𝛾 = 500 mJ mol−1 K−2, 𝜃D = 187 K) [103]. Previous studies on Gd2Co3Al9 relied solely on the
approximate formula 𝐶p/𝑇 = 𝛾 + 𝛽𝑇2 to estimate these values, potentially making it challenging
to accurately isolate the contribution from the magnetic transition. This discrepancy underscores
the critical role of fitting methods in precisely determining thermodynamic parameters.

To better understand the magnetic properties, the magnetic specific heat divided by 𝑇
(𝐶mag/𝑇) and magnetic entropy (𝑆mag), by subtracting lattice contribution from 𝐶p, are shown in
Fig.3.22 (b). The 𝐶mag/𝑇 data at zero-field reveals magnetic transitions corresponding to 𝑇1 and
𝑇2. Notably, the peak associated with 𝑇1 shifts towards lower temperatures with the increment
of magnetic fields extending up to 70 kOe. The 𝑆mag in zero field estimated by integrating the
𝐶mag/𝑇 data with respect to T reaches 96.6 % of the expected value 𝑅ln8 for 𝑆= 7/2 and saturates
to 𝑅ln8 at around 50 K.

Figure 3.23 illustrates the temperature-dependent behavior of 𝜌 under zero magnetic field and
at 70 kOe. Both curves depict a sudden decline just below 𝑇1, likely attributed to the influence
of the antiferromagnetic ordering process. While a distinctive hump in the 𝜌 curve has been
observed during the transition to a skyrmion phase in GdRu2Si2 [62], no such anomaly is evident
in Gd2Rh3Al9. The compound’s residual resistivity ratio (RRR) is calculated to be 5.1, implying
either a contribution from grain boundary scattering of the polycrystalline sample [104], or that
the sample quality may not be at optimal levels.
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Figure 3.22: (a) Temperature dependence of 𝐶p/𝑇 under 𝐻 = 0 and 70 kOe. Transition tem-
peratures, 𝑇1 and 𝑇2, are indicated by an arrow and a triangular symbol, respectively. The inset
displays the 𝐶p/𝑇 vs. 𝑇2 plot, with the blue line denoting the outcome of linear fitting. (b)
Temperature dependence of 𝐶mag/𝑇 under 𝐻 = 0 Oe (black) and 70 kOe (red), and magnetic
entropy (blue line). Transition temperatures, 𝑇1 and𝑇2, are indicated by an arrow and a triangular
symbol, respectively. The inset displays the 𝐶-𝑇 plot, with the green line denoting the fitting by
the Einstein-Debye formula.
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Figure 3.23: Temperature dependence of 𝜌 below 300 K under zero magnetic field. The inset
shows the 𝜌 curves under 𝐻 = 0 and 70 kOe.
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3.3.3 Conclusion

I have achieved a significant milestone in synthesizing the Gd-based intermetallic compound
Gd2Rh3Al9 through high-temperature and high-pressure synthesis. Crystal structure analysis
revealed an orthorhombic structure characterized by a distorted Gd-honeycomb network. A
comprehensive study of the temperature-dependent behavior of 𝜒,𝑀 ,𝐶p, and 𝜌, in polycrystalline
samples revealed sequential antiferromagnetic transitions occurring at 𝑇1 = 13.6 K and 𝑇2 = 4.1
K. These transitions are attributed to the antiferromagnetic interaction between the magnetic
moments of Gd3+ (𝑆 = 7/2) located within the distorted honeycomb layer. The established
magnetic phase diagram shows complex temperature and magnetic field dependence, suggesting
a various magnetically ordered states.

However, my study did not provide evidence for the existence of a skyrmion phase in this
compound. This may be attributed, at least in part, to the significantly stronger antiferromagnetic
interactions compared to other Gd-based skyrmion materials. Nevertheless, the data on the
magnetic and transport properties of Gd2Rh3Al9 obtained in this study offer valuable insights
into the intricate behavior of Gd-based intermetallic compounds and their potential as hosts for
unique magnetic phases. Furthermore, conducting detailed measurements using single crystals
is imperative to further explore the possibility of forming a skyrmion phase in this compound.
This remains a subject for future research.
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Chapter 4

Anomalous Hall effect in a noncollinear
antiferromagnet

4.1 Large anomalous Hall conductivity observed in the cubic-lattice
antiferromagnet Mn3Sb with kagome lattice

The anomalous Hall effect, typically observed in ferromagnetic metals, can also manifest in
certain noncollinear antiferromagnetic materials. However, studying the cubic kagome antifer-
romagnet Mn3𝑋 (𝑋 =Ir, Pt, Rh), which was theoretically predicted to exhibit the anomalous Hall
effect, has proven challenging due to the extremely small measured values. In this study, I validate
these theoretical predictions by successfully measuring a remarkable anomalous Hall conduc-
tivity in the cubic kagome antiferromagnet Mn3Sb, reaching up to 308Ω−1 cm−1. Combining
these results with those obtained from the hexagonal kagome antiferromagnet Mn3𝑍 (𝑍 =Sn,
Ge), my findings contribute to a comprehensive understanding of the anomalous Hall effect in
noncollinear antiferromagnetic materials, leading to further advancements in the research on the
functions and control of cluster multipoles.

4.1.1 Experimental

Materials preparation

Referring to the binary phase diagram of Mn-Sb, it is evident that only Mn2Sb and Mn1.1Sb
are stable, with no other binary alloys present [105]. Therefore, it is believed that cubic Mn3Sb did
not exist until its synthesis by Yamashita et al. using a high-pressure method in 2003 [106,107].
In this study, I successfully synthesized cubic Mn3Sb under similar conditions. Furthermore,
I expanded the synthesis pressure range up to 15 GPa and successfully synthesized hexagonal
Mn3Sb.

I synthesized cubic Mn3Sb under high-pressure conditions (6 GPa, 850 ◦C ) using a multianvil
press (CTFMA1500P, C&T Factory, Tokyo, Japan). Furthermore, employing a Kawai-type press
at Gakushuin University (UHP1000, Sumitomo Heavy Industries, Ltd., Tokyo, Japan), I expanded
the synthesis pressure range up to 15 GPa and successfully synthesized hexagonal Mn3Sb (15
GPa, 1000 ◦C). The samples were sintered polycrystals, and no single crystals were obtained.

The starting materials used for the synthesis of both cubic and hexagonal Mn3Sb were 10
wt.% excess Mn powder (99.9%, Aldrich) and Sb powder (99.9%, Rare Metal). The Mn powder
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was pretreated in a hydrogen atmosphere, but it was not possible to completely remove MnO in
my laboratory. The Sb powder was used as purchased from the manufacturer without any prior
heat treatment. Although a small amount of MnO was detected in the samples, I considered the
effect on the physical property measurement to be small since MnO is a Néel temperature 116
K antiferromagnetic material that is electrically insulating and does not have magnetic order at
room temperature [108].

Finely ground powders of both alloys were utilized in synchrotron x-ray diffraction (XRD)
experiments at temperatures ranging from 100 to 400 K. The XRD measurements were conducted
using a large Debye-Scherrer camera at the BL02B2 beamline at SPring-8, Sayo, Japan [109,110].
The synchrotron XRD wavelength used was either 0.42026 or 0.77598 Å, and it was calibrated
using CeO2 as the standard material. The difference in wavelength was not based on any scientific
rationale but rather on practical considerations I encountered. The synchrotron XRD data were
analyzed using the Rietveld method [111] with RIETAN-FP software [112].

Magnetic and transport properties measurements

The direct-current magnetic susceptibilities of the alloys were measured using a supercon-
ducting quantum interference device magnetometer (MPMS, Quantum Design, San Diego, CA,
USA). The measurements were performed in the temperature range of 2–550 K using an oven
(300–550 K) and an applied magnetic field of 1 T, under both zero-field-cooled (ZFC) and field-
cooled (FC) conditions. Isothermal magnetization loops were collected at different temperatures
within the magnetic field range of±1 T. The electrical resistivity (𝜌xx) and Hall resistivity (𝜌xy) of
a polycrystalline material were measured as a function of temperature and magnetic field using a
conventional lowfrequency alternating-current four-probe method in a 4He variable temperature
insert with a superconducting magnet. Au wires were spot welded and reinforced with silver
paste for electrical contacts on the plate-shaped material. To ensure accurate measurements,
both positive and negative magnetic fields were applied to eliminate any mixing of 𝜌xx and 𝜌xy.
The experimental signals, 𝜌xx−exp and 𝜌xy−exp, were symmetrized and antisymmetrized to obtain
the true 𝜌xx and 𝜌xy, respectively. Specifically, 𝜌xx(𝐻) = [𝜌xx−exp(𝐻) + 𝜌xx−exp(−𝐻)]/2, and
𝜌xy(𝐻) = [𝜌xy−exp(𝐻) − 𝜌xy−exp(−𝐻)]/2.

Theoretical calculations

First-principles calculations of cubic Mn3S and its related materials were carried out using the
projector augmentedwave method within the Vienna 𝑎𝑏𝑖𝑛𝑖𝑡𝑖𝑜 Simulation Package (VASP) [113].
The calculations employed the generalized gradient approximation (GGA) of density-functional
theory with the Perdew-Burke-Ernzerhof exchange functional [114]. Structure optimizations
were performed using an 8 × 8 × 8 uniform 𝑘-point grid, and Gaussian broadening with a width
of 0.1 eV was applied. The final electronic structure was obtained using tetrahedron methods.
Maximally localized Wannier functions [115,116] were then constructed using the WANNIER90
program package [117]. The anomalous Hall conductivity was calculated based on the Berry
curvature [5] of the energy bands derived from the tight-binding model using the Wannier
functions [75, 118, 119].

The intrinsic anomalous Hall conductivity was determined using the Berry curvature method.
Initially, the maximally localized Wannier functions (MLWFs) were generated using the WAN-
NIER90 program code [117], utilizing the energy bands obtained from 𝑎𝑏𝑖𝑛𝑖𝑡𝑖𝑜 calculations for
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Table 4.1: Atomic positions, occupancies, and thermal displacement parameters of cubic and
hexagonal Mn3Sb obtained using synchrotron XRD

Mn3Sb Atom Site 𝑥 𝑦 𝑧 Occupancy 𝐵iso (Å2)
Cubica Mn 3𝑐 0 0.5 0.5 1 0.491(4)

Sb 1𝑎 0 0 0 1 0.366(5)
Hexagonalb Mn 6ℎ 0.16117(13) 0.322235 (= 2𝑥) 0.5 1 0.503(18)

Sb 2𝑑 0.33333 0.66667 0.5 1 0.184(16)

a Space group: 𝑃𝑚-3𝑚 (No. 221). 𝑎 = 3.99744(1)Å, 𝑉 = 63.8773(4)Å3, and 𝑍 = 1. 𝐷cal = 7.461 g/cm3;
Residuals: 𝑅wp = 7.18%, 𝑅p = 5.23%, 𝑆 = 2.33; Mass fractions of Mn3Sb, MnO, Mn2Sb, and Sb were
0.897, 0.067, 0.023, and 0.013, respectively; Sample temperature was 296 K.
b Space group: 𝑃63/𝑚𝑚𝑐 (No. 194). 𝑎 = 5.63434(9)Å, 𝑐 = 4.53434(6)Å, 𝑉 = 124.661(3)Å3, and 𝑍 = 2.
dcal = 7.635g/cm3; Residuals: 𝑅wp = 10.94 %, 𝑅p = 8.14%, 𝑆 = 1.60; Mass fractions of Mn3Sb and MnO
other than unknown phase were 0.943 and 0.057, respectively; Sample temperature was 300 K.

the experimental structure. A total of 144 energy bands located above EF-8 eV were employed
as input for WANNIER90, where EF represents the Fermi energy. The 𝑠, 𝑝, and 𝑑 projectors
were utilized for all atoms. To ensure disentanglement [117], the energy range from EF-8 to
EF+1.8 eV was selected as the frozen energy region. Subsequently, a tight-binding model was
constructed based on the MLWFs. The Berry curvature was then computed for this tight-binding
model, employing an adaptive 𝑘-point mesh of up to 200×200×200. The specific configuration
of the adaptive 𝑘-point mesh [117] chosen was 5 × 5 × 5.

4.1.2 Results

Crystal structure

I investigated the crystal structures of Mn3Sb in cubic and hexagonal phases using synchrotron
XRD data and Rietveld refinement methods. The results are shown in Figs.4.1 (a) and (b). First, I
focused on the analysis of the cubic Mn3Sb. Based on the structural model of Mn3Sb synthesized
under high-pressure conditions reported in 2003 [106], I attempted to refine the structure using
a cubic-ordered model (𝑃𝑚-3𝑚). I also examined a disordered model, such as that observed in
Mn2.8Ir1.2 (𝑃𝑚-3𝑚) [120], but in this study, analysis using a perfectly ordered model was found
to be optimal. Ultimately, the analysis proceeded with a complete occupancy for each site of
Mn and Sb atoms. The obtained structural parameters yielded reasonable values, as summarized
in Table 4.1. A structural image of the cubic Mn3Sb was drawn based on these results and is
presented as an inset in Fig.4.1 (a).

In this study, it was not possible to directly reference past models for hexagonal Mn3Sb as
there were no examples available. Therefore, structural models of Mn3Sn and Mn3Ge were
referred to Refs. [121–123]. In previous studies of the hexagonal model (𝑃63/𝑚𝑚𝑐), structures
with disorders, including antisite disorder, were observed. However, during the preliminary
analysis of my sample, the degree of disorder was estimated to be quite small. Therefore, in the
final analysis, an ordered structure model with no antisite disorder was assumed, and all element
occupancy factors were set to 1. Despite this assumption, I believe that reasonable results were

68



(a)

(b)

(c)

(d)

(e)

Figure 4.1: Synchrotron XRD patterns of (a) cubic and (b) hexagonal Mn3Sb at room temperature,
showing observed (crosses) and calculated (solid red lines) patterns. Differences are shown as
solid blue lines at bottom. Bragg reflections are indicated by vertical ticks, with upper row
representing main phase reflections (red) and lower row representing impurity phase reflections
(green). Impurity phases include MnO (6.7 wt.%), Mn2Sb (2.3 wt.%), and Sb (1.3 wt.%) for cubic
Mn3Sb, and MnO and unidentified phases for hexagonal Mn3Sb. Unit cells are shown as insets,
with Mn and Sb denoted by red and gray balls, respectively. (c)–(e) Temperature dependence of
the lattice parameters (𝑎 and 𝑐) and volume (𝑉) of the cubic (𝑃𝑚-3𝑚) and hexagonal (𝑃63/𝑚𝑚𝑐)
unit cells of Mn3Sb obtained using synchrotron XRD. Error bars are smaller than each symbol.
Coefficient of thermal expansion (𝛼V) is calculated from the 𝑉 data.
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obtained. Therefore, I conclude that hexagonal Mn3Sb has the same type of structure as Mn3Sn
and Mn3Ge, and the degree of disorder in the arrangement of elements can be quite small. The
x-ray diffraction pattern of the analyzed hexagonal Mn3Sb is shown in Fig.1(b), and detailed
crystallographic data are presented in Table I. A structural image drawn based on the parameters
obtained here is also shown as an inset figure.

In addition, synchrotron XRD patterns were collected at various temperatures ranging from
100 to 500 K to investigate the temperature dependence of the structural properties of Mn3Sb
in cubic and hexagonal phases. However, no changes in symmetry or additional features were
observed. Only monotonic changes in the structural parameters were observed in response to
temperature variations [Fig.4.1 (c)-(e)]. Magnetic measurements taken at high temperatures,
which will be discussed later, suggested signs of thermal decomposition above 400 K. However,
even at temperatures above 400 K, the synchrotron XRD studies did not observe complete
decomposition.

Magnetization

I investigated the magnetic properties of both cubic and hexagonal Mn3Sb. Figure 4.2 (a)
shows the temperature dependence of the magnetic susceptibility of cubic Mn3Sb at an applied
magnetic field of 1 T. As the magnetic transition temperature exceeded 300 K, I employed the
oven mode of MPMS3 for the measurements. However, I were unable to determine the precise
transition temperature due to the partial decomposition around 450 K. This phenomenon has been
reported in prior studies [124]. Therefore, I could only conclude that the magnetic transition
temperature of cubic Mn3Sb was higher than the thermal decomposition temperature of 450
K. Similarly, the magnetic transition temperature of hexagonal Mn3Sb could not be precisely
determined due to the partial decomposition [Fig.4.2(b)]. I just found that the magnetic transition
temperature was higher than the thermal decomposition temperature of approximately 420 K.
The remarkable upturn observed at high temperatures may be attributed to the formation of
MnSb, which is FM and has a Curie temperature of ∼550 K [125,126].

In the cubic Mn3Sb, a divergence between the ZFC and FC curves was observed at tempera-
tures below 25 K. This divergence may indicate the formation of magnetic domains related to the
thermal history. However, more precise studies are necessary to accurately assess this possibility.

Figures 4.2 (c) and (d) summarize the results of measuring the magnetic field dependence
of the magnetization of cubic and hexagonal Mn3Sb at various temperatures, respectively. The
magnetization of cubic Mn3Sb shows hysteresis loops from low temperatures to room tempera-
ture, but the magnitude is quite small, with a residual magnetization (𝜇0𝐻 = 0) of about 0.004
𝜇B/Mn at 300 K. Therefore, it is not FM or ferrimagnetic, but rather close to characteristics of
antiferromagnetism. It is thought that a slight spontaneous magnetization was observed because
the AFM cancellation was not complete. On the other hand, the magnetic field dependence of
the magnetization of hexagonal Mn3Sb is very linear regardless of temperature and behaves like
typical antiferromagnetism. The measurement result of hexagonal Mn3Sb is qualitatively differ-
ent from that of Mn3Sb with the same crystal structure, showing a small residual magnetization
and hysteresis loop.
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Figure 4.2: (a) Temperature dependence of magnetic susceptibility measured at 𝜇0𝐻 = 1 T.
(b) Isothermal magnetization curves at various temperatures for cubic Mn3Sb. (c) Temperature
dependence of magnetic susceptibility and (d) isothermal magnetization curves for hexagonal
Mn3Sb. Measurements were carried out using oven mode of MPMS3 for temperatures above
300 K. Black arrow denotes temperature at which Mn3Sb partially decomposes into Mn2Sb and
Mn.
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Figure 4.3: (a) Temperature dependence of electrical resistivity of cubic and hexagonal Mn3Sb
under various magnetic fields. Inset shows magnetoresistance of cubic Mn3Sb at 4 K. (b) Hall
resistivity of cubic and (c) hexagonal Mn3Sb at various temperatures.

Transport properties

Figure 4.3 (a) shows the temperature dependence of 𝜌𝑥𝑥 for Mn3Sb with both cubic and
hexagonal structures. Both materials exhibit metallic conduction behavior from 4 to 300 K at
𝜇0𝐻 = 0 and ±3 T, despite being sintered bulk materials. The resistivity at room temperature
is relatively low, at around 1 × 10−4 cm, and decreases further as the temperature decreases.
Therefore, the impact of grain boundaries and impurities is quite small in the longitudinal
direction. Little magnetic field dependence is observed for hexagonal Mn3Sb, whereas slight
magnetic field dependence is observed for cubic Mn3Sb at low temperatures. The measurement
results at 4 K, defined by the magnetic resistivity, MR(𝐻) = 100 × [𝜌xx(𝐻) − 𝜌xx(0)/𝜌xx(0)],
are also presented in the figure. Even at 𝜇0𝐻 = 4 T, the maximum change observed is only -1%,
suggesting that the suppression of spin fluctuations in an external magnetic field has only a minor
effect on the decrease in magnetic resistivity.

The results of measuring the Hall resistivity at several typical temperatures for cubic and
hexagonal Mn3Sb are shown in Figs.4.3 (b) and (c), respectively. Clear AHE was observed in
cubic Mn3Sb. Since sintered samples were used for both measurements, the dependence on
crystal orientation could not be studied. However, at 300 K, the absolute value of the Hall
resistivity at zero magnetic field (𝜇0𝐻 = 0) was as large as 1.68× 10−6 cm, which is comparable
to that of a FM material [5, 127]. Although a direct comparison is difficult due to the difference
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in measurement conditions (not single-crystal measurements), the value observed in hexagonal
Mn3Sb and Mn3Ge (1 ∼ 4 × 10−6 cm) is similar [80,128–131]. In addition, in the measurement
of hexagonal Mn3Sb, which has the same crystal structure as hexagonal Mn3Sn and Mn3Ge,
no AHE was observed at either low or room temperature [Fig.4.3 (c)]. Therefore, the AHE
in cubic Mn3Sb is particularly noteworthy. Furthermore, the AHE of cubic Mn3Sb decreases
monotonically with a decrease in sample temperature and is almost eliminated in the measurement
at 4 K. Such thermal behavior of AHE is usually not observed in FM materials, indicating that
the observed AHE reflects the inherent properties of cubic Mn3Sb.

Magnetic structure

The magnetic structure of cubic Mn3Sb was initially determined by Ryzhkovskii et al. using
neutron diffraction in 2011 [124]. However, a subsequent Mössbauer study contradicted the
originally proposed collinear AFM spin structure [132]. Instead, the noncollinear triangular AFM
model on the kagome lattice, proposed for Mn3𝑋 (𝑋 = Ir, Pt, Rh), was considered [133–135]. In
2020, the magnetic structure model for cubic Mn3Sb was revisited, and the triangular AFM model
was reintroduced based on neutron-diffraction experiments [136]. Despite the limited clarity in
determining the magnetic structure through symmetry analysis of powder neutron-diffraction
data [137], further experimental progress remains challenging. In this study, I reevaluate the
proposed magnetic structure models using first-principles calculations.

Table 4.2 presents the results of theoretical calculations for the possible magnetic structure
models of cubic Mn3Sb. The collinear AFM model demonstrated in the initial neutrondiffraction
experiment was not stable, and the noncollinear AFM structure, as observed in the isostructural
cubic Mn3𝑋 (𝑋 = Ir, Pt, Rh), was found to be the most energetically stable. These theoretical
results are consistent with the revisited neutron-diffraction experiments [136]. After optimizing
the crystal structure, the numerical results were similar, and the noncollinear AFM model was
once again suggested to be the most energetically stable. Attempts were also made to predict the
magnitude of magnetization per unit cell using this magnetic structure model. However, technical
challenges prevented an accurate quantitative evaluation of the magnitude of magnetization.

The proposed magnetic structure in this study is supported by a combination of experi-
mental evidence from neutron diffraction [136], symmetry analysis [137], Mössbauer spec-
troscopy [132], first-principles calculations, and magnetization measurements. The nearly copla-
nar triangular magnetic structure, as shown in the inset of Fig.4.4, is highly likely to be the most
probable configuration. This magnetic structure model is also consistent with the model observed
in Mn3Ir [120,138]. It is important to note that the magnetic structure of hexagonal Mn3Sb was
not investigated in this study due to a technical difficulty caused by the limited sample quantity
(<10 mg) available for experimental studies.

4.1.3 Discussion

The Hall conductivity (𝜎𝑥𝑦) of cubic Mn3Sb was determined after removing the applied
magnetic field (> 1 T) using the equation𝜎𝑥𝑦 = −𝜌𝑥𝑦/(𝜌2

𝑥𝑦+𝜌2
𝑥𝑥), where 𝜌𝑥𝑦 is−1.68×10−6 cm

and 𝜌𝑥𝑥 is 1.07×10−4 cm (at 300 K with 𝜇0𝐻 = 0). The calculated value of𝜎𝑥𝑦 is 146Ω−1cm−1,
which is significantly larger than the room-temperature values of Mn3Sn (20Ω−1cm−1) [80] and
Mn3Ge (60Ω−1cm−1) [128,129] (see Table 4.3), but comparable to the maximum value of Mn3Sn
(130Ω−1cm−1 at 50 K) and approximately 40% of the maximum value of Mn3Ge (380Ω−1cm−1
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Figure 4.4: Temperature dependence of 𝜎xy in polycrystalline cubic Mn3Sb. Data used for
comparison with other isostructural materials were obtained from Refs. [75,139,140] for Mn3Ir
and from Ref. [141] for Mn3Pt, but unfortunately, experimental data could not be obtained for
Mn3Rh [142]. Inset figure is a schematic of noncollinear AFM structure proposed for Mn3Sb.
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Table 4.2: Relative total energies (eV/cell) calculated within the GGA+SOC scheme for cubic
Mn3Sb

Cubic Mn3Sb 𝑎(Å) 𝑀(𝜇B/cell) Δ𝐸(eV/cell)
Nonmagnetic 3.997a 0 0
Ferromagnetic 3.997a 8.48 −2.08
Collinear AFM 3.997a 2.10 −2.47
Noncollinear AFM 3.997a ∼ 0 −2.57

After structure optimization:
Nonmagnetic 3.742 0 0
Ferromagnetic 3.805 6.07 −1.46
Collineaar AFM 3.840 2.06 −1.51
Noncollinear AFM 3.909 ∼ 0.04 −1.61

a Experimental value obtained in this study.
In noncollinear antiferromagnetic (AFM) scheme, magnetic moments are oriented triangularly within
[111] plane of cubic cell, as proposed in a neutron-diffraction study [136].

below 50 K) [128, 129] (see Table 4.3). To compare the AHE of cubic Mn3Sb with other cubic
Mn3𝑋 (𝑋 = Ir, Pt, Rh) that possess the same spin structures, the 𝜎𝑥𝑦 at zero magnetic fields
(𝜇0𝐻 = 0) was plotted as a function of temperature in Fig.4.4.The value of 𝜎𝑥𝑦 increased as
the temperature decreased, reaching a peak of approximately 300Ω−1cm−1 around 150 K. This
value significantly surpasses the experimental values observed for other cubic Mn3𝑋 throughout
the entire temperature range, whether they are single crystals or polycrystals. It should be noted
that the data for Mn3Sb used in this study are from polycrystalline materials, and the value of 𝜎𝑥𝑦

may be somewhat underestimated compared to theoretical values for single-domain crystals due
to angle averaging. However, the observed AHE in polycrystalline Mn3Sb remains significant
and provides valuable information about the AHE behavior in this material.

The observed discrepancy between Mn3𝑋 (𝑋 = Ir, Pt, Rh) and Mn3Sb may potentially be
attributed to differences in the magnitude of the magnetic anisotropy among these materials, as
suggested by thin-film studies on Mn3Ir [140]. However, even with some alignment of domains
at a high magnetic field of 24 T to the Mn3Ir film, the measured 𝜎𝑥𝑦 remains significantly lower
than the theoretical value, being an order of magnitude smaller [139].

It is noteworthy that the 𝜎𝑥𝑦 of cubic Mn3Sb gradually decreases below 150 K, unlike
the behavior observed in ferromagnets [5] and hexagonal Mn3Ge [129], which converge to a
constant value in the low-temperature limit. In an attempt to elucidate this behavior, I employed
the universal scaling approach proposed for magnetic metals (Fig.4.5) [129, 143]. The analysis
reveals that the anomalous Hall conductivity of cubic Mn3Sb at around room temperature exhibits
a behavior that is highly consistent with the expected properties of the intrinsic AHE, which
demonstrates a weak dependence on the longitudinal conductivity. However, the pronounced
decrease in anomalous Hall conductivity at low temperatures deviates from universal scaling but
still falls within the range of intrinsic behavior. Furthermore, I have carefully examined magnetic
susceptibility data and crystal structure parameters, but I have not observed any anomalies that
could suggest the causes for the pronounced decrease in 𝜎𝑥𝑦 at low temperatures. Additionally,
it is worth noting that a significant decrease in 𝜎𝑥𝑦 at low temperatures has also been observed
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Table 4.3: Comparison of experimentally observed anomalous Hall effects at 298-300 K in cubic
Mn3𝑋 and hexagonal Mn3𝑍 materials. The second-to-last column quantifies the anomalous Hall
conductivity relative to the material’s magnetization.

|𝜎xy | (𝜇0𝐻 = 0) 𝑀 (𝜇0𝐻 = 0) |𝜎xy |/𝑀r
Materials Space group 𝑇N (K) (Ω−1 cm−1) (𝜇B ion−1) (103 Ω−1 cm−1𝜇−1

B ion)
Mn3Ir 𝑃𝑚-3𝑚 960 ± 10 2.6/30 0.01 0.3
Mn3Pt (Cubic) 473 1.5 0.0003 5
Mn3Rh 853
Mn3Ga 400 0 0
Mn3Sb∗ > 450 146 0.0032 46
Mn3Sn 𝑃63/𝑚𝑚𝑐 430 20 0.003 6.7
Mn3Ge (Hexagonal) 380 60 0.007 8.6
Mn3Ga 470 ± 10 17 0.07 0.2
Mn3Sb∗ > 400 0 0

∗ This work

in Mn3Sn, which is associated with amagnetic structure transition. However, neutron-diffraction
studies of cubic Mn3Sb by Ryzhkovski et al. did not detect any indications of different magnetic
features emerging at 77 K [124, 136]. The underlying cause of the decrease in 𝜎𝑥𝑦 at low
temperatures remains unclear based on my present investigation.

In this study, the anomalous Hall resistivity and remanent magnetization showed continuous
variations with temperature (Figs.4.2, 4.3), without displaying any abrupt changes. To summarize
the temperature-dependent behaviors, the anomalous Hall conductivity per remanent magneti-
zation was plotted against temperature, as depicted in Fig.4.6. |𝜎𝑥𝑦 |/𝑀r = 46000(Ω−1cm−1𝜇−1

B
ion) near room temperature, gradually increased with decreasing temperature, reaching a maxi-
mum at around 150 K, and then exhibited a slow decrease at lower temperatures. No clear abrupt
change can be observed, and the underlying reason for the decrease in 𝜎𝑥𝑦 at low temperatures
still remains unclear. Further analysis of the anomalous Hall conductivity at low temperatures
will be necessary in future studies.

The experimental values of 𝜎𝑥𝑦 obtained in this study quantitatively agree with the theoreti-
cal values calculated from the Berry curvature using the Wannier function for the cubic kagome
antiferromagnet Mn3Sb, as indicated by the arrow in Fig.4.4. It should be noted that the data
presented in Fig.4.4 are angle-averaged values in polycrystals, which may result in some under-
estimation compared to theoretical values for single-domain crystals due to angular averaging.
Nevertheless, the agreement between the experimental and theoretical values provides strong
evidence for the presence of a significant anomalous Hall effect in the cubic Mn3Sb material.

It is worth mentioning that when the same method is applied to the cubic kagome antifer-
romagnet Mn3Ir, it accurately reproduces the previously reported theoretical values (the band
dispersion for Mn3Ir is also essentially identical to the previous report, as shown in Fig.4.7) [118].
Moreover, a comparative analysis of the calculated Fermi energy dependence of 𝜎𝑥𝑦 between
cubic Mn3Sb and cubic Mn3Ir (Fig.4.8) reveals that 𝜎𝑥𝑦 is nearly identical at the Fermi level
for both materials. However, the behavior of 𝜎𝑥𝑦 in Mn3Ir exhibits a sharp transition as the
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Figure 4.5: Universal scaling relation between the Hall conductivity (𝜎H) and the longitudinal
conductivity (𝜎) of magnetic metals (taken from reference [129]). The red circled dots in the
black frame correspond to the measured points of cubic Mn3Sb in the current study. The leftmost
data point represents the measurement taken at a temperature of 300 K. As the temperature
decreases, the data point moves toward the right. The rightmost measurement point, taken at 5
K, is considerably far from the theoretical curve.

Figure 4.6: Temperature dependence of the Hall conductivity normalized by the remanent
magnetization of cubic Mn3Sb.
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Figure 4.7: Band structures of cubic Mn3Sb (left) and Mn3Ir (right) are shown. The upper
and lower panels show the band structures calculated with and without SOC, respectively. The
spin moments of Mn atoms are assumed to be non-collinear. The results for Mn3Ir are in close
agreement with those in the literature [10]. The modification of the band structure by SOC
is smaller for Mn3Sb than that for Mn3Ir. For comparison, the band structure without SOC is
shown with thin red lines in the lower left panel. At several k points, the energy bands near the
Fermi energy split due to SOC. This splitting generates non-zero Berry curvature, resulting in
anomalous Hall conductivity.

Fermi energy varies, while in Mn3Sb, 𝜎𝑥𝑦 changes gradually over a relatively wide range of
energy. For instance, in the case of Mn3Ir, it is predicted that the sign of 𝜎𝑥𝑦 will reverse with
a decrease in Fermi energy of approximately 0.04 eV. In contrast, for Mn3Sb, the sign of 𝜎𝑥𝑦 is
expected to remain unchanged even with a decrease in Fermi energy of 0.2 eV or more. These
findings suggest that the anomalous Hall conductivity of cubic Mn3Sb exhibits greater robust-
ness compared to cubic Mn3Ir against various perturbations that influence the Fermi energy.
This unique characteristic of cubic kagome antiferromagnet Mn3Sb may prove advantageous for
the development of novel AFM spintronic materials, as it indicates a more stable and reliable
behavior of the AHE in this compound.

For comparison, I performed theoretical calculations using the same approach for Mn3Rh
and Mn3Pt. However, the calculated values of 𝜎𝑥𝑦 for these materials are significantly smaller
than those for Mn3Ir and Mn3Sb (Table 4.4). Furthermore, the calculated 𝜎𝑥𝑦 exhibits a sharp
transition near the Fermi energy, indicating their susceptibility to changes in energy. These
findings suggest that Mn3Rh and Mn3Pt are not as robust as Mn3Sb in terms of the anomalous
Hall conductivity against variations in energy.
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Figure 4.8: (a)–(d) Theoretical calculation of anomalous Hall conductivity for cubic Mn3𝑋 (𝑋
= Ir, Pt, Rh, and Sb) using Wannier functions and Berry curvature.

4.1.4 Conclusion

This study has made significant progress in observing the AHE in the cubic kagome an-
tiferromagnet Mn3Sb. The measured anomalous Hall conductivity of up to 308Ω−1cm−1 in
polycrystalline cubic Mn3Sb is a remarkable achievement. This value not only agrees well with
theoretical calculations based on Berry curvature but also compares favorably to experimental
observations in the hexagonal kagome antiferromagnet Mn3𝑍 (𝑍 = Sn, Ge). The absence of AHE
in the hexagonal Mn3Sb phase, although not fully understood, does not impact the conclusions
drawn in this study. The primary focus of this research is on investigating the AHE in the cubic
Mn3Sb, where significant AHE behavior is observed.

I acknowledge the limitations of comparing AHE and Berry curvature fields in polycrystalline
materials. While the anomalous Hall conductivity in polycrystalline materials may be underesti-
mated compared to theoretical values for singledomain crystals due to angular averaging, it still
provides important insights into the overall behavior of the AHE. Additionally, I believe Berry
curvature calculations offer valuable theoretical insights and help interpret experimental results,
even in polycrystalline materials.

I recognize the challenges in accurately determining the contributions of intrinsic and extrin-
sic factors in polycrystalline materials. The analysis of scaling relations in this study supports
the presence of intrinsic AHE in cubic Mn3Sb, exhibiting the expected behavior with a weak
dependence on longitudinal conductivity (Fig.4.5). The observed decrease in anomalous Hall
conductivity at low temperatures, while deviating from universal scaling, is still within the range
of intrinsic behavior. Further investigations will be pursued once single-domain crystals become
available to gain a more comprehensive understanding of these phenomena.

These findings demonstrate that the experimental challenges encountered in studying cubic
kagome antiferromagnets, such as Mn3Ir, Mn3Pt, and Mn3Rh, are not inherent limitations of
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Table 4.4: Comparison of anomalous Hall effects from firstprinciples calculations in cubic Mn3𝑋
materials.

𝜎xy (cm−1Ω−1) 𝜎xy (cm−1Ω−1) By Zhang et al. By chen et al.
Materials (z//[111]) (z//[001]) [118] [75]
Mn3Ir 277 160 −312 218
Mn3Pt 33 19 98
Mn3Rha −152 −88 −284
Mn3Sb 296 171

aFor Mn3Rh, calculated value deviates from previous calculations. Deviation could be due to differences
in lattice constants or other conditions, as calculated anomalous Hall conductivity is sensitive to position
of Fermi energy, as shown in Fig.4.8 (a).

the system itself. This contributes to a deeper understanding of the AHE in both cubic kagome
antiferromagnets Mn3𝑋 and hexagonal kagome antiferromagnets Mn3𝑍 , advancing research on
the functions and control of cluster multipoles. Furthermore, the substitution of expensive and
scarce noble metals Ir, Pt, and Rh with Sb in this study showcases the potential for developing
innovative noncollinear AFM spintronic materials.
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Chapter 5

Conclusion

In this study, three skyrmion candidates of Gd-based intermetallic compounds and one
antiferromagnet indicating large anomalous Hall conductivity are investigated. The crystal
structures, magnetic properties, and transport properties based on spin textures are discussed in
detail. I summarize their novel suggestions for each compounds.

5.1 Skyrmion candidates

GdOs2Si2

Single crystals of GdOs2Si2, have successfully grown using Czochralski method, which
possesses centrosymmetric lattice (ThCr2Si2-type, 𝐼4/𝑚𝑚𝑚). Based on the physical property
measurements, the magnetic phase diagrams for 𝐻 ‖ [100] and [001] were established. They are
broadly similar to that of GdRu2Si2, an isostructural compound that exhibits a square skyrmion
lattice. In addition, a novel phase that does not exist in GdRu2Si2 just above the double-𝑄
skyrmion phase in the diagram (𝐻 ‖ [001]) is found. The topological Hall effect observed in the
skyrmion phase is completely suppressed in this new phase, which strongly suggests that it is a
theoretically anticipated double-𝑄 trivial phase. This finding emphasizes the singularity of the
topological skyrmion phase in a centrosymmetric lattice system.

Gd2NiSi3

Single crystals of Gd2NiSi3, substituting Pd to Ni in Gd2PdSi3 have successfully grown
using floating zone method. Gd2NiSi3 has a centrosymmetric crystal structure (AlB2-type,
𝑃63/𝑚𝑚𝑚) with Gd3+triangular lattice, which is a good candidate of magnetic frustration system
and censtosymmetric skyrmion compounds. Magnetization measurements revealed a positive
Weiss temperature 𝜃W = +11.3 K and an antiferromagnetic transition at 𝑇N = 13.6 K, certainly
manifesting the effects of magnetic frustration. The produced magnetic field-temperature phase
diagram is similar to that of Gd2PdSi3, with a pronounced anomaly in Hall resistivity observed
in the skyrmion phase. The topological Hall resistivity was extracted from this data, and a
clear topological Hall effect appeared, reflecting either the emergence of skyrmion lattices or
topological spin textures.

82



Gd2Rh3Al3

Single crystals of a new Gd-based intermetallic Gd2Rh3Al3 were successfully grown using
high-pressure and high-temperature method. The crystal crystallizes in orthorhombic Y2Co3Ga3-
type structure (𝐶𝑚𝑐𝑚) with alternating slightly distorted Gd-honeycomb and Rh-triangular
layers, which system is expected as a candidate for skyrmion-host materials. The successive
transitions at 𝑇1 = 13.6 K and 𝑇2 = 4.1 K under the field of 0.1 T, indicating the effective
antiferromagnetic interaction on the Gd3+ (𝑆 = 7/2) network is qualitatively similar to other
skyrmion materials, however the negative value of Weiss temperature 𝜃W = -31.8 K implies
the opposite property. In conclusion, Gd2Rh3Al3 did not provide evidence for the existence
of a skyrmion phase. This may be attributed, at least in part, to the significantly stronger
antiferromagnetic interactions compared to other Gd-based skyrmion materials. Anomalies
observed in specific heat and electrical resistivity consistent with antiferromagnetic transitions.

The characteristics of skyrmions

In this section, I discuss the size of the skyrmions and the characteristics of the induced
topological Hall effect in GdOs2Si2 and Gd2NiSi3. Currently, the world’s smallest skyrmion
lattice has a diameter of 1.9 nm and is formed on Gd ions in the c-plane of GdRu2Si2. Here,
a comparison of the lattice constants of GdOs2Si2 and GdRu2Si2 found in previous studies is
shown in Table 5.1. From Table 5.1, GdOs2Si2 is slightly shrunk in 𝑎 (= 𝑏) (blue) and stretched
in 𝑐 (red) direction compared to GdRu2Si2: in other words, the c-plane shrinks by pulling in
the c-axis direction. Hence, in GdOs2Si2, a skyrmion lattice of less than 1.9 nm is expected,
although this is only a guess. To identify the actual size of the skyrmion lattice, experiments
using resonant X-ray diffraction and electron microscopy such as Lorentz TEM are required, and
this is a future prospect.

Next, I discuss the characteristics of topological Hall effect in Gd2NiSi3. The topological
Hall effect observed in Gd2NiSi3 is 𝜌T

yx ∼ 2.6 𝜇Ω cm, which is much larger than other Gd-based
skyrmion compounds such as GdRu2Si2 and GdEu4. The nature of this difference is under
discussion at present, although it can be assured that the size of skyrmion lattice is different in
both: Gd2PdSi3 has a skyrmion size of several hundred nm and exhibits a larger topological
Hall resistivity. The topological Hall resistivity of Gd2NiSi3 revealed in this thesis is 𝜌T

yx ∼ 0.5,
which is a relatively small value, indicating that a smaller skyrmion lattice may be manifest.
However, electrical conductivity is affected not only spin textures but also impurity effects etc.,
thus, further measurements are required as with GdOs2Si2.

Table 5.1: The lattice constant and observed (expected) skyrmion size in GdOs2Si2 and
GdRu2Si2.

GdOs2Si2 GdRu2Si2
Space group 𝐼4/𝑚𝑚𝑚 𝐼4/𝑚𝑚𝑚

𝑎 (Å) 4.1549 4.1634
𝑐 (Å) 9.8117 9.6102

Skyrmion size (nm) <1.9 1.9
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5.2 Large anomalous Hall conductivity

Mn3Sb

The large anomalous Hall conductivity in a series of cubic antiferromagnet Mn3𝑋 have
successfully observed for the first time, using polycrystalline Mn3Sb, although such anomalous
Hall effect is typically observed in ferromagnetic metals or in certain non-collinear antiferro-
magnetic states. The measured value is comparable to the theoretical value and more than 50
times larger than the experimental observation for Mn3Ir (at 300 K). This result suggests that
the experimental issues reported so far in cubic antiferromagnet Mn3𝑋 (𝑋 = Ir, Pt, Rh) are not
essential, and further studies will enhance the possibility of developing new antiferromagnetic
spintronic materials characterized by cluster-multipole moments.

Comparison of Hall conductivity

The calculated value of 𝜎xy is 146 Ω−1 cm−1, which is significantly larger than the room
temperature values of Mn3Sn (20 Ω−1 cm−1) and Mn3Ge (60 Ω−1 cm−1), but is comparable to
the maximum value of Mn3Sn (130 Ω−1 cm−1 at 50 K) and nearly 40% of the maximum value of
Mn3Ge (380 Ω−1 cm−1 below 50 K). Despite having different magnetic structure, cubic Mn3Sb
exhibits nearly comparable 𝜎xy values with hexagonal Mn3Ge and Mn3Sn. Hence, exploring the
mechanism of the large anomalous Hall effect in cubic Mn3Sb is an important matter.

84



References

[1] F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer: Phys.
Rev. Lett. 43 (1979) 1892.

[2] S. Hayami, M. Yatsushiro, Y. Yanagi, and H. Kusunose: Phys. Rev. B 98 (2018) 165110.

[3] K. Inoue and J. Kishine: Journal of the Crystallographic Society of Japan 53 (2011) 339.

[4] K. Ohgushi, S. Murakami, and N. Nagaosa: Phys. Rev. B 62 (2000) R6065.

[5] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong: Rev. Mod. Phys. 82
(2010) 1539.

[6] M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong: Physical Review Letters 102
(2009).

[7] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Boni:
Physical Review Letters 102 (2009) 186602.

[8] H. Kusunose: Journal of the Physical Society of Japan 77 (2008) 064710.

[9] Y. Kuramoto, H. Kusunose, and A. Kiss: Journal of the Physical Society of Japan 78
(2009) 072001.

[10] T. Skyrme: Nuclear Physics 31 (1962) 556.

[11] A. N. Bogdanov and D. A. Yablonskii: Soviet Journal of Experimental and Theoretical
Physics 68 (1989) 101.

[12] A. Bogdanov and A. Hubert: Journal of Magnetism and Magnetic Materials 138 (1994)
255.

[13] N. Nagaosa and Y. Tokura: Nature Nanotechnology 8 (2013) 899.

[14] B. Berg and M. Luscher: Nuclear Physics B 190 (1981) 412.

[15] S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and
P. Boni: Science 323 (2009) 915.

[16] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and
Y. Tokura: Nature 465 (2010) 901.

[17] B. P and J. M, H: Journal of Physics C: Solid State Physics 13 (1980) L881.

85



[18] I. Dzyaloshinskii: Journal of Physics and Chemistry of Solids 4 (1958) 241.

[19] T. Moriya: Phys. Rev. 120 (1960) 91.

[20] U. K. Roessler, A. N. Bogdanov, and C. Pfleiderer: Nature 442 (2006) 797.

[21] B. Binz, A. Vishwanath, and V. Aji: Phys. Rev. Lett. 96 (2006) 207202.

[22] B. Senyuk, J. Aplinc, M. Ravnik, and I. I. Smalyukh: Nature Communications 10 (2019)
1825.

[23] E. H. Hall: American Journal of Mathematics 2 (1879) 287.

[24] E. Hall: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 10 (1880) 301.

[25] E. Hall: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 12 (1881) 157.

[26] N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai,
S. Ishiwata, and Y. Tokura: Phys. Rev. Lett. 106 (2011) 156603.

[27] Y. Li, N. Kanazawa, X. Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X. F. Jin,
F. Kagawa, and Y. Tokura: Phys. Rev. Lett. 110 (2013) 117202.

[28] E. M. Pugh and T. W. Lippert: Phys. Rev. 42 (1932) 709.

[29] E. M. Pugh and N. Rostoker: Rev. Mod. Phys. 25 (1953) 151.

[30] R. Karplus and J. M. Luttinger: Phys. Rev. 95 (1954) 1154.

[31] M. V. Berry: Proceedings of the Royal Society of London Series A 392 (1984) 45.

[32] J. Smit: Physica 21 (1955) 877.

[33] J. Smit: Physica 24 (1958) 39.

[34] L. Berger: Phys. Rev. B 2 (1970) 4559.

[35] Embedded Technology Lab. はじめての人でも分かるホールセンサーの原理と種類.
https://emb.macnica.co.jp/articles/10315/, 2020.

[36] S. Luo and L. You: APL Materials 9 (2021) 050901.

[37] Y. Wu, L. Kong, Y. Wang, J. Li, Y. Xiong, and J. Tang: Applied Physics Letters 118
(2021) 122406.

[38] W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson,
Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann: Science
349 (2015) 283.

[39] G. Yu, P. Upadhyaya, Q. Shao, H. Wu, G. Yin, X. Li, C. He, W. Jiang, X. Han, P. K. Amiri,
and K. L. Wang: Nano Letters 17 (2017) 261. PMID: 27966987.

86



[40] X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and
Y. Tokura: Nature Materials 10 (2011) 106.

[41] N. Kanazawa, J. H. Kim, D. S. Inosov, J. S. White, N. Egetenmeyer, J. L. Gavilano,
S. Ishiwata, Y. Onose, T. Arima, B. Keimer, and Y. Tokura: Physical Review B 86 (2012)
134425.

[42] M. Kakihana, D. Aoki, A. Nakamura, F. Honda, M. Nakashima, Y. Amako, T. Takeuchi,
H. Harima, M. Hedo, T. Nakama, and Y. Onuki: Journal of the Physical Society of Japan
88 (2019) 094705.

[43] S. Z. Lin and S. Hayami: Physical Review B 93 (2016) 064430.

[44] S. Hayami, R. Ozawa, and Y. Motome: Physical Review B 95 (2017) 224424.

[45] R. Ozawa, S. Hayami, and Y. Motome: Physical Review Letters 118 (2017) 147205.

[46] Z. Wang, Y. Su, S. Z. Lin, and C. D. Batista: Physical Review Letters 124 (2020) 207201.

[47] S. Hayami and Y. Motome: Physical Review B 103 (2021).

[48] A. O. Leonov and M. Mostovoy: Nature Communications 6 (2015) 8275.

[49] T. Okubo, S. Chung, and H. Kawamura: Physical Review Letters 108 (2012).

[50] P. A. KOTSANIDIS, J. K. YAKINTHOS, and E. GAMARI-SEALE: Journal of Magnetism
and Magnetic Materials 87 (1990) 199.

[51] R. Mallik, E. V. Sampathkumaran, P. L. Paulose, H. Sugawarat, and H. Sato: PRAMANA
journal of physics 51 (1998) 505.

[52] S. R. Saha, H. Sugawara, T. D. Matsuda, H. Sato, R. Mallik, and E. V. Sampathkumaran:
Physical Review B 60 (1999) 12162.

[53] T. Kurumaji, T. Nakajima, M. Hirschberger, A. Kikkawa, Y. Yamasaki, H. Sagayama,
H. Nakao, Y. Taguchi, T. Arima, and Y. Tokura: Science 365 (2019) 914.

[54] R. E. Gkandyshevskii, O. R. Strusievicz, K. Cenzual, and E. Parthe: Acta Crystal 49
(1993) 474.

[55] V. Chandragiri, K. K. Iyer, and E. V. Sampathkumaran: Journal of Physics Condensed
Matter 28 (2016).

[56] M. Hirschberger, T. Nakajima, S. Gao, L. Peng, A. Kikkawa, T. Kurumaji, M. Kriener,
Y. Yamasaki, H. Sagayama, H. Nakao, K. Ohishi, K. Kakurai, Y. Taguchi, X. Yu, T. hisa
Arima, and Y. Tokura: Nature Communications 10 (2019) 5831.

[57] Y. Yasui, C. J. Butler, N. D. Khanh, S. Hayami, T. Nomoto, T. Hanaguri, Y. Motome,
R. Arita, T. hisa Arima, Y. Tokura, and S. Seki: Nature Communications 11 (2020) 5925.

[58] N. D. Khanh, T. Nakajima, X. Yu, S. Gao, K. Shibata, M. Hirschberger, Y. Yamasaki,
H. Sagayama, H. Nakao, L. Peng, K. Nakajima, R. Takagi, T. hisa Arima, Y. Tokura, and
S. Seki: Nature Nanotechnology 15 (2020) 444.

87



[59] M. Slaski, A. Szytula, J. Leciejewicz, and A. Zygmunt: Journal of Magnetism and
Magnetic Materials 46 (1984) 114.

[60] K. Hiebl, C. Horvath, P. Rogl, and M. J. Sienko: Solid State Communications 48 (1983)
211.

[61] A. Garnier, D. Gignoux, D. S. A’, and T. Shigeoka: Physica B 222 (1996) 80.

[62] T. Samanta, I. Das, and S. Banerjee: Journal of Applied Physics 104 (2008) 123901.

[63] F. Jonietz, S. Muhlbauer, C. Pfleiderer, A. Neubauer, W. Munzer, A. Bauer, T. Adams,
R. Georgii, P. Boni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch: Science 330
(2010) 1648.

[64] T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor,
M. Garst, and A. Rosch: Nature Physics 8 (2012) 301.

[65] G. Kimbell, C. Kim, W. Wu, M. Cuoco, and J. W. A. Robinson: Communications Materials
3 (2022) 19.

[66] R. Takagi, N. Matsuyama, V. Ukleev, L. Yu, J. S. White, S. Francoual, J. R. Marde-
gan, S. Hayami, H. Saito, K. Kaneko, K. Ohishi, Y. Onuki, T. hisa Arima, Y. Tokura,
T. Nakajima, and S. Seki: Nature Communications 13 (2022).

[67] R. Ozawa, S. Hayami, K. Barros, G.-W. Chern, Y. Motome, and C. D. Batista: Journal of
the Physical Society of Japan 85 (2016) 103703.

[68] Y. Akagi, M. Udagawa, and Y. Motome: Phys. Rev. Lett. 108 (2012) 096401.

[69] M. A. Ruderman and C. Kittel: Physical Review 96 (1954).

[70] T. Kasuya: Progress of Theoretical Physics 16 (1956).

[71] K. Yosida: Physical Review 106 (1957).

[72] R. Shindou and N. Nagaosa: Phys. Rev. Lett. 87 (2001) 116801.

[73] G. Metalidis and P. Bruno: Phys. Rev. B 74 (2006) 045327.

[74] I. Martin and C. D. Batista: Phys. Rev. Lett. 101 (2008) 156402.

[75] H. Chen, Q. Niu, and A. H. MacDonald: Phys. Rev. Lett. 112 (2014) 017205.

[76] J. Kubler and C. Felser: Europhysics Letters 108 (2014) 67001.

[77] Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, and T. Sakakibara: Nature 463 (2010)
210.

[78] S. Tomiyoshi and Y. Yamaguchi: Journal of the Physical Society of Japan 51 (1982) 2478.

[79] P. J. Brown, V. Nunez, F. Tasset, J. B. Forsyth, and P. Radhakrishna: Journal of Physics:
Condensed Matter 2 (1990) 9409.

88



[80] S. Nakatsuji, N. Kiyohara, and T. Higo: Nature 527 (2015) 212.

[81] T. Nagamiya, S. Tomiyoshi, and Y. Yamaguchi: Solid State Communications 42 (1982)
385.

[82] H. Hayashi, H. K. Yoshida, H. Sakurai, N. Kikugawa, and K. Yamaura: Proceedings of
29th International Conference on Low Temperature Physics, 2022.

[83] A. Garnier, D. Gignoux, N. Iwata, D. Schmitt, T. Shigeoka, and F. Y. Zhang: Journal of
Magnetism and Magnetic Materials 140-144 (1995) 899.

[84] N. D. Khanh, T. Nakajima, S. Hayami, S. Gao, Y. Yamasaki, H. Sagayama, H. Nakao,
R. Takagi, Y. Motome, Y. Tokura, T. hisa Arima, and S. Seki: Advanced Science 9 (2022).

[85] O. I. Utesov: Physical Review B 103 (2021).

[86] R. Oishi, Y. Shimura, K. Umeo, T. Onimaru, and T. Takabatake: Journal of the Physical
Society of Japan 91 (2022).

[87] M. Bouvier, P. Lethuillier, and D. Schmitt: Physical Review B 43 (1991) 13137.

[88] J. A. Blanco, D. Gignoux, and D. Schmitt: Physical Review B 43 (1991) 13145.

[89] H. Hidaka, Y. Ikeda, I. Kawasaki, T. Yanagisawa, and H. Amitsuka: Physica B: Condensed
Matter 404 (2009) 3005.

[90] J. Barandiaran, D. Gignoux, D. Schmitt, J. Gomez-Sal, J. R. Fernandez, P. Chieux, and
J. Schweizer: Journal of Magnetism and Magnetic Materials 73 (1988) 233.

[91] R. Mallik and E. V. Sampathkumaran: Physical Review B 58 (1998) 9178.

[92] M. Shatruk: Journal of Solid State Chemistry 272 (2019) 198.

[93] S. Pakhira, C. Mazumdar, R. Ranganathan, S. Giri, and M. Avdeev: Phys. Rev. B 94
(2016) 104414.

[94] S. Pakhira, R. Ranganathan, and C. Mazumdar: Journal of Magnetism and Magnetic
Materials 512 (2020) 167055.

[95] S. Nakamura, N. Kabeya, M. Kobayashi, K. Araki, K. Katoh, and A. Ochiai: Physical
Review B 98 (2018).

[96] S. Nakamura, N. Kabeya, M. Kobayashi, K. Araki, K. Katoh, and A. Ochiai: Physical
Review B 107 (2023).

[97] S. Hayami: JPhys Materials 6 (2023).

[98] A. W. Leishman, R. M. Menezes, G. Longbons, E. D. Bauer, M. Janoschek, D. Honecker,
L. Debeer-Schmitt, J. S. White, A. Sokolova, M. V. Milosevic, and M. R. Eskildsen:
Physical Review B 102 (2020).

[99] M. He, G. Li, Z. Zhu, Y. Zhang, L. Peng, R. Li, J. Li, H. Wei, T. Zhao, X. G. Zhang,
S. Wang, S. Z. Lin, L. Gu, G. Yu, J. W. Cai, and B. G. Shen: Physical Review B 97 (2018).

89



[100] H. Y. Yuan, O. Gomonay, and M. Klaui: Physical Review B 96 (2017).

[101] G. M. Sheldrick: Acta Crystallographica Section A: Foundations of Crystallography 71
(2015) 3.

[102] G. M. Sheldrick: Acta Crystallographica Section C: Structural Chemistry 71 (2015) 3.

[103] T. P. Rashid, K. Arun, I. Curlik, S. Ilkovic, M. Reiffers, A. Dzubinska, and R. Nagalakshmi:
Journal of Magnetism and Magnetic Materials 466 (2018) 283.

[104] G. Reiss, J. Vancea, and H. Hoffmann: Physical Review Letters 56 (1986) 2100.

[105] I. material database (AtomWork-adv) Japan: https://atomwork-adv.nims.go.jp/, National
Institute for Materials Science .

[106] T. Yamashita, H. Takizawa, T. Sasaki, K. Uheda, and T. Endo: Journal of Alloys and
Compounds 348 (2003) 220.

[107] V. S. Goncharov and V. M. Ryzhkovskii: Inorganic Materials 41 (2005) 557.

[108] T. McGuire and R. Happel: J. Phys. Radium 20 (1959) 424.

[109] M. Tanaka, Y. Katsuya, and A. Yamamoto: Review of Scientific Instruments 79 (2008)
075106.

[110] M. Tanaka, Y. Katsuya, and A. Yamamoto: Review of Scientific Instruments 79 (2008)
075106.

[111] H. M. Rietveld: Journal of Applied Crystallography 2 (1969) 65.

[112] F. Izumi and T. Ikeda: European Powder Diffraction 6, Vol. 321 of Materials Science
Forum, 1 2000, pp. 198–205.

[113] G. Kresse and J. Furthmüller: Phys. Rev. B 54 (1996) 11169.

[114] J. P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865.

[115] N. Marzari and D. Vanderbilt: Phys. Rev. B 56 (1997) 12847.

[116] I. Souza, N. Marzari, and D. Vanderbilt: Phys. Rev. B 65 (2001) 035109.

[117] G. Pizzi, V. Vitale, R. Arita, S. Blugel, F. Freimuth, G. Geranton, M. Gibertini, D. Gresch,
C. Johnson, T. Koretsune, J. Ibanez-Azpiroz, H. Lee, J.-M. Lihm, D. Marchand, A. Mar-
razzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Ponce, T. Pon-
weiser, J. Qiao, F. Thole, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt,
I. Souza, A. A. Mostofi, and J. R. Yates: Journal of Physics: Condensed Matter 32 (2020)
165902.

[118] Y. Zhang, Y. Sun, H. Yang, J. Železný, S. P. P. Parkin, C. Felser, and B. Yan: Phys. Rev.
B 95 (2017) 075128.

[119] X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt: Phys. Rev. B 74 (2006) 195118.

90



[120] T. Yamaoka: Journal of the Physical Society of Japan 36 (1974) 445.

[121] S. Tomiyoshi and Y. Yamaguchi: Journal of the Physical Society of Japan 51 (1982) 2478.

[122] S. Tomiyoshi: Journal of the Physical Society of Japan 51 (1982) 803.

[123] E. Kren and G. Kadar: Solid State Communications 8 (1970) 1653.

[124] V. M. Ryzhkovskii, V. S. Goncharov, S. S. Agafonov, V. P. Glazkov, V. A. Somenkov, A. P.
Sazonov, and A. T. Senishin: Journal of Surface Investigation. X-ray, Synchrotron and
Neutron Techniques 5 (2011) 109.

[125] V. S. Goncharov and V. M. Ryzhkovskii: Inorganic Materials 47 (2011) 1298.

[126] M. Wilkinson, N. Gingrich, and C. Shull: Journal of Physics and Chemistry of Solids 2
(1957) 289.

[127] Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D.-s. Wang, E. Wang,
and Q. Niu: Phys. Rev. Lett. 92 (2004) 037204.

[128] N. Kiyohara, T. Tomita, and S. Nakatsuji: Phys. Rev. Appl. 5 (2016) 064009.

[129] T. Chen, T. Tomita, S. Minami, M. Fu, T. Koretsune, M. Kitatani, I. Muhammad, D. Nishio-
Hamane, R. Ishii, F. Ishii, R. Arita, and S. Nakatsuji: Nature Communications 12 (2021)
572.

[130] Y. Song, Y. Hao, S. Wang, J. Zhang, Q. Huang, X. Xing, and J. Chen: Phys. Rev. B 101
(2020) 144422.

[131] Z. H. Liu, Y. J. Zhang, G. D. Liu, B. Ding, E. K. Liu, H. M. Jafri, Z. P. Hou, W. H. Wang,
X. Q. Ma, and G. H. Wu: Scientific Reports 7 (2017) 515.

[132] M. Budzynski, V. S. Goncharov, V. I. Mitsiuk, Z. Surowiec, and T. M. Tkachenka: Acta
Physica Polonica A 125 (2014) 850.

[133] E. Krén, G. Kádár, L. Pál, J. Sólyom, P. Szabó, and T. Tarnóczi: Phys. Rev. 171 (1968)
574.

[134] A. Sakuma, R. Y. Umetsu, and K. Fukamichi: Phys. Rev. B 66 (2002) 014432.

[135] I. Tomeno, H. N. Fuke, H. Iwasaki, M. Sahashi, and Y. Tsunoda: Journal of Applied
Physics 86 (1999) 3853.

[136] V. S. Goncharov and S. V. Trukhanov: Vol. 56, Dec 2020.

[137] A. P. Vokhmyanin, A. S. Gritsai, and V. M. Ryzhkovskii: The Physics of Metals and
Metallography 113 (2012) 756.

[138] T. Yamaoka, M. Mekata, and H. Takaki: Journal of the Physical Society of Japan 36
(1974) 438.

[139] Y. Kobayashi, M. Kimata, D. Kan, T. Ikebuchi, Y. Shiota, H. Kohno, Y. Shimakawa,
T. Ono, and T. Moriyama: Japanese Journal of Applied Physics 61 (2022) 070912.

91



[140] H. Iwaki, M. Kimata, T. Ikebuchi, Y. Kobayashi, K. Oda, Y. Shiota, T. Ono, and
T. Moriyama: Applied Physics Letters 116 (2020) 022408.

[141] B. E. Zuniga-Cespedes, K. Manna, H. M. L. Noad, P.-Y. Yang, M. Nicklas, C. Felser, A. P.
Mackenzie, and C. W. Hicks: New Journal of Physics 25 (2023) 023029.

[142] O. Busch, B. Göbel, and I. Mertig: Phys. Rev. Res. 2 (2020) 033112.

[143] S. Onoda, N. Sugimoto, and N. Nagaosa: Phys. Rev. Lett. 97 (2006) 126602.

92


