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We try to resolve the longstanding controversy over the low-lying 1/2+ state in 9B. Experimentally, the
energies for this state show a gap between various measurements done by different groups and some of them
reported that the existence of the state is unclear. The situation is similar in the theoretical calculations. We
study the existence and structure of the 9B(1/2+) state based on our previous method for the α + α + N cluster
model with the complex scaling method that well explains the measured photodisintegration cross section for
the 9Be(1/2+). We find two resonances at the energies of E res

1 = 1.81 MeV with a decay width � = 1.98 MeV
and E res

2 = 2.38 MeV, � = 1.81 MeV in 9B. The charge radii and the three-body channel configurations are
calculated to see the properties of two resonances. We also calculate the level density of two resonances, which
indicates the difficulty to distinguish them in the energy distribution.
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I. INTRODUCTION

The low-lying 1/2+ states in the 9Be and 9B mirror nu-
clei have been studied with interests in nuclear structure
theoretically and experimentally. However, we have not yet
reached sufficient understanding. In 9Be [1], only the ground
state is bound with a small binding energy (E = −1.57 MeV
measured from the α + α + n three-body threshold) and
all the excited states are unbound. Thus, 9Be is a Bor-
romean system of α + α + n having no-bound state of any
two-body subsystem. In 9B [1], even the ground state is
unbound and observed as a resonant state at 0.277 MeV
measured from the α + α + p threshold (width � = 0.54 ±
0.21 keV). Such situations of 9Be and 9B nuclei seem to make
it difficult to settle the excited states experimentally and the-
oretically. In particular, the low-lying 1/2+ states bring about
great difficulties due to the problems of the possible virtual
states of an s-wave neutron in 9Be and broad resonance widths
because of the low centrifugal barrier potential of low angular
momenta.

The photodisintegration experiments [2,3] for 9Be show a
shape peak just above the 8Be +n threshold, which suggests
a resonant state [4]. However, the microscopic cluster model
calculation by Arai et al. [5] could not identify the 1/2+
resonance. Several years later, the same group [6] reported
that the 1/2+ state is a 8Be(0+) + n virtual state based on
the analytical continuation of the S-matrix method using the
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8Be +n and 5He +α coupled channel model. Because an s-
wave neutron in the two-body system has no resonance near
the neutron threshold energy but a virtual state near the neu-
tron threshold energy, we also investigated the 1/2+ state of
9Be using a three-body model [7] of α + α + n, and showed
that the observed photodisintegration cross section just above
the 8Be +n threshold is well reproduced by the virtual state
[8].

On the other hand, the 1/2+ problem of the 9B nucleus
seems to be more complicate due to no bound state in 9B.
Many experiments [9–16] of the charge exchange reactions
have been done to study low-lying states in 9B. However, there
is an inconsistency among the reported excitation energies
of the 1/2+ state, ranging from Eex = 1.16 ± 0.05 MeV by
the 9Be(3He, t) reaction [13] to Eex = 1.8 ± 0.2 MeV by the
10B(3He, α) reaction [14]. But in some experiments [17,18],
the 1/2+ state around Ex ≈ 1.6–1.7 MeV was not observed,
and the location and existence of the excited state have been
unclear. Theoretical results of the 1/2+ state in 9B are also
inconsistent [19]. The broad resonance in the 1/2+ state was
obtained in the coupled channel two-body calculation by Arai
et al. [6], but Garrido et al. [4] reported the existence of two
1/2+ resonance states around 2 MeV excitation energy by
the α + α + p three-body calculation applying the adiabatic
hyperspherical expansion method.

For the purpose to solve the 1/2+ state problem in 9Be
and 9B, in this paper we study the low-lying 1/2+ state of 9B
based on our previous methodology [7,8] for 9Be. The present
calculations are performed by using the α + α + p three-body
model with the orthogonality condition model (OCM) for the
Pauli principle and the complex scaling method (CSM) for the
correct boundary condition of resonant states.
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We are facing two problems in calculations of the 1/2+
resonance in 9B: One is how to identify a broad resonance
solution accurately, and another is how to clarify the struc-
ture of the resonant state. For the first problem, we look for
the stationary solution of the complex energy eigenvalue by
drawing the b and θ trajectories [20,21], where b and θ are
the parameters in the wave function, and then confirm the
stable resonance solution, which can show a small expectation
value of the radius in comparison with those of continuum
solutions. For the second, we attempt two analyses to see the
structures of the obtained resonances. One is the analytical
continuation for the valence proton charge of the Coulomb in-
teraction. It is expected from this result that we can clarify the
relationship between the 9B and 9Be resonance solutions. An-
other is the calculation of channel amplitudes to see dominant
components of configurations such as 8Be +p and 5Li +α in
the resonance solution.

From the results of these calculations and analyses, we
conclude that two broad 1/2+ resonances exist in 9B as
pointed out by Garrido et al. [4]. Also, regarding the structures
of the two 1/2+ resonances, it is found that the first state has a
mixed 8Be +p and 5Li +α structure and the second state has a
5Li +α structure. However, because these two 1/2+ resonant
states have a large overlap in the excitation energy due to small
energy gap and broad widths of the resonances, we show that
it is difficult to distinguish two resonant states in the energy
distribution calculating the level density of two resonances.

In the next section, we briefly explain the present method
for the α + α + p model and the complex scaling method. In
Sec. III, we show two resonance solutions of the low-lying
1/2+ states in 9B, and analyses of the analytical continuation
of the valence nucleon charge and the channel amplitudes. In
Sec. IV, discussions and a conclusion are given.

II. METHOD

A. Three-body model and complex scaling method

The Hamiltonian for the relative motion of the α + α + N
three-body system is given as

Ĥ =
3∑

i=1

ti − Tc.m. +
2∑

i=1

VαN (ri ) + Vαα + V3 + VPF, (1)

where ti and Tc.m. are kinetic energy operators for each par-
ticle and the center of mass of the system, respectively.
The interactions between the valence nucleon and the ith
α particle is given as VαN (ri ) [22], where ri is the relative
coordinate between them. For VαN , we employ the Kanada-
Kaneko-Nagata-Nomoto nuclear potential [22] in addition to
the folding-type Coulomb interaction with the density of the
s-wave α particle. The explicit form of the α − N Coulomb
potential is expressed as

V C
αN (ri ) = ZαZN

ri
erf(βri ), (2)

where β = 0.5972 fm−1, Zα = 2e, and ZN = 1e (proton) and
= 0e (neutron). For the α − α interaction Vαα , the folding po-
tential of the effective NN [23] and the Coulomb interactions
are used.

FIG. 1. Schematic illustration of three types of Jacobi coordinate
sets of the α + α + p system. We call (a)–(c) sets as Ya-, Yb-, and
T -coordinate systems, respectively.

As shown in [7], we introduce the three-cluster po-
tential V3 to reproduce the binding energy of the 9Be
ground state. The Pauli-forbidden states for α + α + N , which
are the states having zero eigenvalues of the microscopic
norm kernel, are projected out by using the pseudopo-
tential VPF = λ{|�αα

PF (r1)〉〈�αα
PF (r1)| + |�αN

PF (r2)〉〈�αN
PF (r2)| +

|�αN
PF (r3)〉〈�αN

PF (r3)|} with a large repulsive strength (λ = 106

MeV), where �αα
PF (r) and �αN

PF (r) are the Pauli-forbidden
states of α + α and α + N systems, respectively.

The complex-scaled Schrödingier equation is expressed by
using the complex-scaled Hamiltonian H θ as

H θ�J (θ ) = E θ�J (θ ). (3)

We expand the three-body wave function �J (θ ) with spin
J in the linear combination form of the different channels
of the Jacobi coordinate systems as shown in Fig. 1. In
the complex scaling, the relative coordinates of the three-
body system of α + α + N are transformed as ri → rieiθ

and Ri → Rieiθ with a real scaling angle θ , where ri and
Ri (i = 1, 2, 3) are the Jacobi coordinates shown in Fig. 1.
Solving the complex-scaled Schrödinger equation with appro-
priate L2-basis functions, we obtain the energy eigenvalues
and eigenstates [21]. In this calculations, we employ the Gaus-
sian functions with different size parameters b as the basis
functions for each relative motion of the Y - and T -type Jacobi
coordinate systems [7,8].

B. Channel amplitudes of resonance solutions
in the α + α + p model

The wave function of the 9B = α + α + p system is ex-
pressed as a sum of Y - and T -coordinate basis functions:

�J
k (θ ) =

∑

iY

Ck
iY (θ )

∣∣�Y
iY

〉 +
∑

iT

Ck
iT (θ )

∣∣�T
iT

〉
, (4)

where the basis state �Y
iY (c) is symmetrized with respect to the

exchange of α particles and given as

�Y
iY (c) = 1√

2

{
�

Ya
iY (c) + �

Yb
iY (c)

}
. (5)

The wave function �Y
iY (c) describes an ith basis state of the

channel c = (	1, 	2, 	) in the 5Li(α + p) + α configuration,
where 	1 and 	2 are the orbital angular momenta between
α and p in 5Li and between 5Li and α, respectively, for the
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total orbital angular momentum 	 = [	1 ⊗ 	2]. On the other
hand, the channel in the T -coordinate 8Be(α + α) + p system
is also described as c = (	1, 	2, 	), where 	1 and 	2 are the
orbital angular momenta between two α clusters in 8Be and
between 8Be and p, respectively, for the total orbital angu-
lar momentum 	 = [	1 ⊗ 	2]. We take into account the spin
coupling of a valence nucleon to the total spin J = [1/2 ⊗ 	].
Radial components of each relative wave function are ex-
panded using the Gaussian basis functions [24]. The number
of the basis functions is determined to reach the convergence
of the numerical results and we employ 23 Gaussian functions
for each coordinate and the range of the Gaussian is taken
from 0.15 fm to 60 fm. In Eq. (4), the coefficients Ck

iY (θ ) and
Ck

iT (θ ) are obtained by solving the complex-scaled equation in
Eq. (3) for the index k of eigenstates.

To calculate the channel amplitudes of 8Be +p and 5Li +α

in the eigenstates k, we introduce two kinds of the projection
operators:

P̂Y
c =

∑

iY (c)

∣∣�Ya
iY (c)

〉〈
�

Ya
iY (c)

∣∣, (6)

P̂T
c =

∑

iT (c)

∣∣�T
iT (c)

〉〈
�T

iT (c)

∣∣, (7)

where iY (c) (iT (c)) means to sum over iY (iT ) fixing the
channel c.

Using the projection operators, we define the correspond-
ing channel amplitudes of the wave function �J

k (θ ) as

ZY
c (k) = 〈

�J
k

∣∣P̂Y
c

∣∣�J
k

〉
,

ZT
c (k) = 〈

�J
k

∣∣P̂T
c

∣∣�J
k

〉
. (8)

It should be noticed here that the sum of these amplitudes is
not unity because the channel wave functions in Eq. (4) are
not orthogonal with each other. However, it is meaningful to
see the contributions of the specific channel of the Y - and T -
coordinate systems in the state �J

k .

III. RESULTS

A. The low-lying excited 1/2+ states in 9B

Using the same Hamiltonian used for 9Be and the Coulomb
potential between proton and 2α, we obtain the 9B(3/2−)
ground state energy of 0.277 MeV measured from the α +
α + p threshold energy, with the decay width 1.73×10−3

MeV, which agree well with the observed 0.277 MeV
and 0.54×10−3MeV [1], respectively. In Fig. 2, we show
the distribution of complex energy eigenvalues for the
9B(1/2+) state, solving the complex-scaled Schrödinger
equation Eq. (3) with the scaling angle θ = 20◦.

We find two resonances at energies E res
1 = 1.81 MeV and

E res
2 = 2.38 MeV with decay widths �1 = 1.98 MeV and

�2 = 1.81 MeV, respectively. The first and second resonances
are represented by filled and open triangles in Fig. 2, re-
spectively. The result of these two resonances also supports
the report of Garrido et al. [4]. In addition to the resonance
solutions, α + α + p three-body continuum (double line),
8Be(0+) + p (solid line), 5Li(3/2−) + α (dashed-dotted line),
and 8Be(2+) + p (dotted-line) two-body continuum solutions
are obtained separately. As shown in Fig. 2, the first resonance

FIG. 2. Distribution of energy eigenvalues of the 9B(1/2+) state
obtained by using the complex scaling with θ = 20◦. Open and filled
triangles show the resonance states. The continuum states of the
three- and two-body subsystems are given by double, solid, dashed-
dotted, and dotted black lines.

state is located in between the two-body continuum states of
8Be(0+) + p and 5Li +α and the second resonance state is
located at an energy between the two-body continuum states
of 5Li(3/2−) + α and 8Be(2+) + p. It should be noted that
we have confirmed that the first and second resonances take
a stationary solution of eigenenergies by performing b and θ

trajectories in the complex scaling method [20,21].
We can confirm that the resonance solutions are well sep-

arated from the continuum solutions and also distinguished
by calculating the expectation values of the root-mean-square
charge radius. As discussed in Ref. [26], the expectation val-
ues of the radius are given by complex numbers for resonance
and continuum solutions in CSM. When the imaginary part
is smaller than the real part, the real part value is expected
to describe the physical character of the corresponding state.
In Tables I and II, we show the calculated expectation values
of the charge radius for several solutions around the first and

TABLE I. Calculated eigenenergies (ReE , ImE ), and charge ra-
dius (ReR, ImR) of the first resonance (fourth state, R) of 9B(1/2+)
with its neighboring continuum solutions (C) for the valence proton
charge at 1.0e. Angle indicates the argument of the eigenvalue in the
complex energy plane.

Eigenenergies Angle Charge radius

ReE ImE ϕ ReR ImR

type [MeV] [deg] [fm]

C 1.789 −1.323 36.49 25.600 9.593
C 1.793 −1.362 37.22 31.245 17.814
C 1.806 −1.328 36.33 23.514 8.347
R 1.810 −0.989 28.65 8.672 5.011
C 1.815 −1.445 38.59 61.120 22.421
C 1.818 −1.327 36.13 23.697 8.820
C 1.838 −1.407 37.43 22.302 9.744
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TABLE II. The same results in Table I, but for the second reso-
nance of the 9B(1/2+) state. The fourth state is a resonance.

Eigenenergies Angle Charge radius

ReE ImE ϕ ReR ImR

type [MeV] [deg] [fm]

C 2.354 −1.789 37.23 76.635 40.004
C 2.358 −1.844 38.02 39.662 12.751
C 2.371 −1.916 38.94 37.367 7.556
R 2.377 −0.904 20.82 7.865 3.746
C 2.379 −1.845 37.80 15.389 10.378
C 2.380 −1.932 38.99 46.689 20.415
C 2.389 −1.734 35.96 19.354 7.073

second resonances. The calculated eigenenergies of the real
(ReE ) and imaginary (ImE ) parts are also presented together
with the angle [ϕ = tan−1(ImE/ReE )] on the complex energy
plane.

The angle ϕ of the resonance solution is smaller than
2θ = 40 degrees, while continuum solutions distribute along
2θ line. In Tables I and II, we marked resonance and contin-
uum solutions with R and C, respectively. From the results of
the charge radius, we can also confirm that the resonance solu-
tions have smaller values of ReR and ImR in comparison with
those of continuum solutions. For second resonance, although
the resonance energy is higher than the first resonance, this
resonance seems to be stable because the resonance width, the
imaginary part of the charge radius and the angle ϕ are smaller
than those of the first resonance.

We also calculate the 9B(1/2+) state without three-body
potential V3 (v3 = 0 in Eq. (6) of Ref. [7]), and obtain for
the first and second resonances E res

1 = 1.88 MeV with a de-
cay width �1 = 2.28 MeV and E res

2 = 2.56 MeV with �2 =
1.66 MeV, respectively. These results imply that the calculated
two 1/2+ resonances of 9B have a weak dependence on the
three-body potential [4]. The reason for this would come from
a spatially extended two-body cluster configuration but not a
compact three-body configuration.

B. Structures of the 1/2+ resonances

Here, we focus on the properties of the obtained two 1/2+
resonances in 9B based on two results of calculations.

First, to see the relationship between the 1/2+ states in 9Be
and 9B, we calculate 1/2+ resonances by gradually reducing
the charge of the valence proton. In the present calculation,
the 9Be and 9B systems are described with the same Hamil-
tonian except for the Coulomb interaction between valence
proton and two α’s. The Coulomb interaction V C

αN expressed
by Eq. (2) works in 9B with ZN = 1e for N = proton, but does
not in 9Be with ZN = 0e for N = neutron. Reducing ZN from
1e to zero, we can see 1/2+ resonances how to be changed
from 9B to 9Be.

Figure 3 shows the analytical continuation for the va-
lence proton charge in the Coulomb interaction. The open
circles show the calculated eigenvalues of the 1/2+ contin-
uum solutions of 9Be. The filled triangles show the energy

FIG. 3. Analytical continuation of pole trajectories obtained by
decreasing the point charge of a valence proton for the first (filled
triangles) and second (open triangles) resonance states in 9B(1/2+).
The open blue circles are the distribution of the eigenvalues of the
9Be(1/2+) state. The open diamonds present the 5Li +α continuum
solutions for 9B. θ = 20◦ is used.

eigenvalues of the first resonance obtained by reducing the
point charge of the valence proton to 70 percent (ZN = 0.3e).
The open triangles show the energy eigenvalues of the sec-
ond resonance in the same way as the first resonance, but to
75 percent (0.25e) of 9B(1/2+). Below 70 percent for the first
and 75 percent for the second states, the 1/2+ state solutions
could not be evaluated by the analytical continuation for the
valence proton charge to 0e, because resonance eigenvalues
cannot be well separated from three-body and two-body con-
tinuum solutions.

From Fig. 3, the first resonance solution seems to approach
to the 2θ lines of 8Be +n and α + α + n continua, which
are almost degenerated energetically. On the other hand, the
second one comes closer to the 2θ line of 5He(3/2−) + α con-
tinuum. Thus, we suppose that two isolated resonances of the
1/2+ states in 9B are absorbed into the continuum solutions
and disappear when Zn → 0e in 9Be. This is consistent with
no-resonance result of the previous calculations [5,7,8] of 9Be.

Next, to see the structures of the two 1/2+ resonances,
we calculate the channel amplitudes ZY

c (k) and ZT
c (k) of

Eq. (8) for five and three channels of Y [(α + p) + α] and
T [(α + α) + p] configurations, respectively. In the Y config-
uration of 5Li +α, the 5Li cluster is described by p and sd
orbits of the proton around the α core, which correspond to
	 = 0 (s), 1 (p), and 2 (d ) and these states make five channels
(Y1 − Y5) for the total spin-parity Jπ = 1/2+. Similarly, in the
T configuration of 8Be +p, the 8Be cluster is described by the
0+ and 2+ rotational wave functions of the α + α dumbbell,
which correspond to 	 = 0 and 2 and make three channels
described by T1, T2, and T3.

The obtained channel amplitudes for the first and second
resonances are presented in Tables III and IV, respectively.
Although the channel amplitudes of resonances are given by
complex numbers, the real parts are larger than the imaginary
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TABLE III. The channel amplitudes ZY
c (k) and ZT

c (k) of the first
resonance of 9B(1/2+).

Channel amplitude
Configuration 	1, 	2, 	 Re Im

Y1 1,1,0 0.4529 −0.2846
Y2 1,1,1 −0.0016 −0.0406
Y3 0,0,0 0.7199 0.2468
Y4 2,2,0 0.0784 0.0703
Y5 2,2,1 −0.0025 −0.0204
T1 0,0,0 1.0014 0.1173
T2 2,2,0 −0.0394 −0.0981
T3 2,2,1 −0.0010 −0.0302

ones and we discuss the properties of channel amplitudes by
seeing their real parts.

From Table III for the first 1/2+ resonance, we see that
the T1 configuration of (	1, 	2, 	)=(0,0,0) has the largest am-
plitude (1.0014 + i0.1173) compared to the other channel
amplitudes. This means that the first 1/2+ resonance has a
8Be(0+) + p configuration dominantly, and it is consistent
with the analytical continuation behavior of the first reso-
nance. However, the channel amplitudes of Y3 and Y1 are not
small. Such results suggest that the first 1/2+ resonance has
a strong mixing of 8Be(0+) + p and 5Li +α configurations.
The Y3 configuration, having the secondly largest channel
amplitude, consists of an 1s-shell proton configuration in the
5Li cluster.

The channel amplitudes ZY
c (k) and ZT

c (k) of the second
1/2+ resonance are shown in Table IV, and the dominant
amplitude is seen in the Y1 configuration with a p-wave pro-
ton in 5Li. This result is also consistent with the analytical
continuation of the second resonance presented in Fig. 3.
Thus, the second 1/2+ resonance is considered to have the
5Li(3/2−) + α configuration dominantly.

IV. DISCUSSIONS AND CONCLUSION

According to our previous studies [7,8], the 1/2+ state
of 9Be is a virtual state of the s-wave neutron around the
8Be(0+) cluster. However, we obtain two 1/2+ resonances
for 9B using the same Hamiltonian as used for 9Be and the

TABLE IV. The same results in Table III, but for the second
resonance of 9B(1/2+).

Channel amplitude
Configuration 	1, 	2, 	 Re Im

Y1 1,1,0 1.0033 0.1629
Y2 1,1,1 0.2334 0.0221
Y3 0,0,0 −0.1821 −0.0308
Y4 2,2,0 0.098 −0.1924
Y5 2,2,1 0.0731 −0.0119
T1 0,0,0 0.2266 0.0422
T2 2,2,0 0.3860 −0.0976
T3 2,2,1 0.1209 −0.0138

FIG. 4. The calculated level density of the two resonances of
9B(1/2+) measured from the α + α + p threshold energy. The
dotted-dashed line is the contribution of the first broad resonance
state, the dashed line is the contribution of the second resonance
state, and the solid line is the sum of the two resonance states.

Coulomb potential of the valence proton. This is consid-
ered as an indication of the mirror symmetry breaking due
to the Coulomb interaction on the valence nucleon in 9Be
and 9B.

The long-range Coulomb potential acts as a barrier that
confines the s-wave proton around the 8Be(2α) cluster. As a
result, this Coulomb potential barrier causes 9B to have two
1/2+ resonances. The first 1/2+ resonance in 9B appears as
an α + α + p three-body state with mixed configurations of
8Be +p and 5Li +α. The mixing of the 5Li +α configuration is
also due to the open 5Li −α threshold in 9B as shown in Fig. 2,
unlike that of 9Be. Furthermore, the 5Li +α configuration
dominates at the second resonance in 9B, which does not exist
in 9Be.

Finally, we consider the observability of the two reso-
nances in 9B, because the positions of the two resonances are
close to each other. For this purpose, we calculate the level
density [21,25] of the 1/2+ resonances:

ρ(E ) = δ(E − E1) + δ(E − E2) = ρ1(E ) + ρ2(E ), (9)

where Ei = E res
i − i�i/2 and

ρi(E ) = − 1

π
Im

1

E − E res
i + i�i/2

. (10)

In Fig. 4, we show the calculated level densities of the first
and second resonances, ρ1(E ) and ρ2(E ), respectively, and the
sum [ρ(E )] of them. We see that the level densities of the
two resonances largely overlap and then it become difficult to
distinguish these states in the observation.

In conclusion, we confirmed two resonances of 9B(1/2+)
at the energies E res = 1.81 MeV with a decay width � =
1.98 MeV and E res = 2.38 MeV, � = 1.81 MeV. The present
results are consistent with the results in Ref. [4], which first
demonstrated two resonances, but our calculated energies
are slightly different from those in Ref. [4]. Garrido et al.
[4] calculated two 1/2+ resonances at (E res, �) = (2 MeV,
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1.3 MeV) and (2.05 MeV, 1.6 MeV). The energy difference
between two resonances is 0.05 MeV, which is smaller than
our case (0.57 MeV). These resonances are calculated to have
large widths, though our results are a little bit larger than
those in Ref. [4], in both the cases. The first resonance shows
a two-body 8Be +p structure in the result in Ref. [4], but a
mixed structure of 8Be +p and 5Li +α configurations in our
result. The second resonance is commonly predicted to have a
5Li +α cluster structure in both calculations.

From the level density calculations of two resonances, we
confirm that two resonances largely overlap due to their close
resonance energies and wide decay widths. Therefore, it is

difficult to observe low-lying two 1/2+ resonances separately
in 9B.
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