

Title	Sn-Ag系はんだ組織に与える微量添加AIの効果とその接合性に関する研究
Author(s)	鈴木, 直人; 田中, 順一; 成田, 敏夫
Citation	11th Symposium on Microjoining and Assembly Technology in Electronics, 3(4), 61-66
Issue Date	2005-02
Doc URL	http://hdl.handle.net/2115/944
Туре	article (author version)
File Information	11SMATE3-4(2).pdf

Sn-Ag 系はんだ組織に与える微量添加 Al の効果とその接合性に関する研究

Study of Effect of Al Addition into Sn-Ag Solder on Microstructure and Bondability

鈴木直人 田中順一 成田敏夫

北海道大学工学研究科

by Naoto SUZUKI, Junichi TANAKA, Toshio NARITA Graduate School of engineering, Hokkaido University, Japan

Abstract

We researched the effect of Al addition into Sn-Ag solder alloys. Addition of small amount of Al into Sn-Ag alloys made sub-grains in the β -Sn phase finer. And many Ag₂Al particles were dispersed. Both primary phase and eutectic phase in Sn-Ag-Al alloys were almost evenly deformed against tensile stress. Ag₂Al particles obstructed the propagation of crack during thermal cycle, so propagation rate was delayed. Sn-2Ag-0.05Al and Sn-2Ag-0.1Al showed better mechanical property and thermal cycle property than Sn-3Ag-0.5Cu.

Key words: Al addition, sub-grain, Ag₂Al particles, hardness, deformation, thermal cycle, crack propagation

1. 緒言

世界的な環境に対する意識の高まりの中で、有害物質の 規制が法的に広く施行されるようになった。欧州では RoHSの施行に伴い、家電製品を対象として、85wt%Pb以 上の高温はんだを除いた鉛含有はんだの使用が禁止され ることが決定している¹⁾。日本国内においても、電機メ -カ・が主体的に逐次鉛フリ - はんだに移行している。現在 まで、大学、企業等の努力により、数多くの組成の鉛フリ ーはんだが開発されてきた。しかしながら、開発されたい ずれのはんだも、融点低下、濡れ性向上、機械特性向上の、 はんだの三要素全ての特性を満足できず、完全な Sn-Pb 共 晶はんだの代替とはなっていない。従って、実装接合の要 求に応じて、求められる特性に適したはんだを選択して使 用することになる。

著者らは、これまで Sn-Ag-Cu 系共晶はんだと比較して、 接合信頼性に優れるはんだ合金の開発を目指して、亜共晶 Sn-Ag 系合金に Al を微量添加した Sn-Ag-Al 系合金の研究 を行ってきた²⁻⁴⁾。本論文では、Sn-Ag 系合金への Al 微量 添加が機械的特性及び熱疲労特性に与える影響を評価し、 はんだ組織形成との関連性について詳細に検討すること を目的とした。

2. Sn-Ag-Al 系合金の凝固組織

 Fig.1(a)(b)(c)に冷却速度 8K/sec における Sn-2Ag 合金、

 Sn-2Ag-0.5Al 合金、Sn-2Ag-0.1Al 合金の凝固組織を示す。

 いずれの組織も、初晶 -Sn 相を共晶相が取り巻く二相組

 織を形成し、巨視的にはそれほど大きな組織形態の違いは

 見られなかったが、初晶 -Sn 相内の組織形態に違いが見

Fig.1 Microstructure of (a) Sn-2Ag (b) Sn-2Ag-0.05Al (c) Sn-2Ag-0.1Al with air cooling.

Fig.2 Sub-grain structure in the primary β–Sn phase.(a) Sn-2Ag(b) Sn-2Ag-0.05Al(c) Sn-2Ag-0.1Al

られた。Fig.2(a)(b)(c)は Sn-2Ag 合金、Sn-2Ag-0.05Al 合金、 Sn-2Ag-0.1A 合金の凝固組織をエッチングし、拡大観察し た初晶相内部の組織である。いずれの合金でも、 -Sn 相 内に亜結晶粒が生成していることが確認できた。Sn-2Ag 合金では亜結晶粒の平均粒径は 20µm 以上であったが、 Sn-2Ag-0.05Al 合金、Sn-2Ag-0.1Al 合金では平均粒径は 5 µm 程度と微細化されていた。Al 添加量による亜結晶粒 の粒径に違いがないことから、一定量を越えた Al の添加 が粒径サイズに与える影響は少ないと考えられる。Fig.3 は Sn-2Ag-0.1Al 合金の初晶 -Sn 相内を FE-SEM で拡大観 察した結果である。初晶内の粒界上には数 10nm の微細な 化合物が多数分散して存在していることが確認できた。 Fig.4 は EPMA で初晶 -Sn 相内を線分析した結果である。 これより Sn-Ag 系合金に Al を微量添加すると、液相から 初晶 -Sn 相が晶出する過程で、Al は Ag と結びついて -Ag₂Al を形成していることが分かった。尚、Al を添加し ない Sn-2Ag 合金に晶出した亜結晶中の粒界には化合物の 存在は確認されなかった。

このように亜共晶 Sn-Ag 系合金に Al を微量添加するこ

Fig.3 Ag₂Al particles in the primary β -Sn phase.

Fig.4 Concentration of Ag and Al in the β -Sn phase.

Fig.5 Change of hardness caused by Al addition.

とにより、マトリックスの -Sn 相内に亜結晶粒は微細分 散し、亜結晶粒界には微細な -Ag₂Al が多数分散した組 織へと変化する。

3. Sn-Ag-Al 系合金の機械的性質

Fig.5 に Sn-2Ag 合金、Sn-2Ag-0.05Al 合金、Sn-2Ag-0.1Al 合金の初晶相内、共晶相内をビッカース硬さ試験により測 定した結果を示す。Al を微量添加すると、初晶相は亜結 晶粒の微細化及び、 -Ag2Al による粒界強化の効果によ り硬さが大きく増加した。共晶相も -Sn 相内の分散強化 によりわずかながら硬さは増加する傾向を示した。この結

Fig.6 Stress-strain curves with elongation rate of 7mm/min.

Fig.7 Total length of crack for C-BGA during thermal cycles. (-40 125 , 1cycle:1hr)

果から、AIの微量添加により初晶相と共晶相との硬度差は、AIの添加しない Sn-2Ag 合金に比較して狭まることがわかった。

Fig.6 に Sn-2Ag 合金、Sn-2Ag-0.05Al 合金、Sn-2Ag-0.1Al 合金及び Sn-3Ag-0.5Cu 合金の引張試験結果を示す。応力-歪曲線より、最大応力に達した後の塑性変形域は、応力が 緩やかに減少する領域、応力が大きく減少し破断に至るま での領域とに分割できる。Sn-3Ag-0.5Cu 合金は、塑性変 形初期で応力負荷は硬い共晶相に集中するため、初期の塑 性変形は共晶相の変形の負うところが大きい。共晶相が変 形により破壊されていくと、応力は初晶相にも大きく負荷 されるようになる。この変形モードの変化を境にして破断 に至るまで、初晶相の大きな伸びを伴いながら応力が急激 に減少して破断に至ると考えられる。Sn-2Ag 合金は Sn-3Ag-0.5Cu 合金と同様に、初晶相と共晶相との硬度差 が大きいので二段階の塑性変形が見られるが、共晶量が少 ないため変形初期においては、初晶相の変形の寄与も同時 に大きくなる。その後初晶相が大きく伸ばされ、急激に応 力が減少する領域が大きくなったと考えられる。Sn-2Ag 合金に Al を添加した合金系では、初晶相と共晶相の硬度 差が狭まるので、変形が初晶相、共晶相とに一律に働く

Fig.8 Cross-section of solder bump after 500 thermal cycles. (a) Sn-2Ag-0.1Al (b) Sn-3Ag-0.5Cu

ことが予測される。その結果、Sn-2Ag 合金と比較して緩 やかに応力が減少する領域は大きく増加する。従って Sn-2Ag-0.1Al 合金は、初晶相と共晶相との硬度が非常に近 似し、変形モードが変化することなく一律に塑性変形して 破断に至るような挙動を示す。一方、Sn-2Ag-0.05Al 合金 は Sn-2Ag-0.1Al 合金と比較して初晶が軟化しており、初 晶相の変形量が多くなったため、破断歪み量は大きくなっ たと考えられる。Al を添加したいずれの合金でも、緩や かに応力が低下する領域が著しく増加することは、試料全 体が均一に塑性変形している結果であると考えられる。

4 Sn-Ag-Al 系合金の熱疲労特性 4-1 C-BGA

実装された基板が電気機器に使用される際には、半導体 チップの発熱、冷却及び使用環境の温度変化により、実装 部は温度サイクルに曝される。熱膨張係数の異なる材料同 士を接合する場合においては、はんだ接合部に熱応力が負 荷される。その熱応力を原因としてはんだ接合部にクラッ クが発生し、三次元的にクラックが貫通すると、熱抵抗の 増加に伴う半導体素子の温度上昇や、電気的な導電不良が 発生する。はんだ材料の熱疲労特性は電気機器の信頼性を 大きく左右する特性である⁵⁾。本実験では、熱膨張係数差 の大きい C-BGA 接合について、熱サイクル試験を実施し た結果について示す。

Fig.7 は 40 125 の条件下での熱サイクル試験の結 果である。Sn-2Ag-0.1Al 合金ではクラックの進行速度は直 線的に増加したが、500 サイクル到達時においても破断

Fig.9 Morphology of crack propagation. (a) Sn-2Ag-0.1Al (b) Sn-3Ag-0.5Cu

には至ってはいなかった。Sn-3Ag-0.5Cu 合金はサイクル 初期においてクラックの進行速度は遅延したが、後に急激 にクラックは進行し、500 サイクル到達時では破断に至っ ていた。Fig.8 に 500 サイクル経過後のバンプの断面組織 を示す。Sn-2Ag-0.1Al 合金のクラックはバンプの変形を伴 いながら、電極界面からはんだバンプの変形方向に向かっ て進展していた。一方で Sn-3Ag-0.5Cu 合金は、はんだバ ンプが変形することなく、クラックは電極界面及び界面近 傍のはんだ内を進行していた。Fig.9 にクラック近傍を FE-SEM にて観察した結果を示す。クラックはいずれの合 金においても金属間化合物を巻き込みながら進展してい るのが確認された。

いずれの合金においても、クラックは熱応力が最も集中 するはんだバンプのくびれの位置から発生するが、その後 の進展経路や長さは、はんだ合金の特性により決定される。 Sn-2Ag-0.1Al 合金はクラックの進行方向にバンプが変形 することで、はんだバンプ内に発生した熱応力をより緩和 したと考えられる。Sn-3Ag-0.5Cu 合金は、はんだバンプ の変形が小さく、電極界面及び界面近傍のはんだ内をクラ ックは進展している。界面は元々熱応力が最も集中する箇 所であるので、はんだバンプの変形による応力緩和のよう に、バンプ内の応力分布を変化させる機構が働かない限り、 界面近傍でクラックは進展すると予測される。このクラッ クの進展経路の違いが、クラックの進行速度の違いとなっ たと考えられる。また Sn-2Ag-0.1Al 合金は亜結晶粒の粒 径が細かく、微細な -Ag₂Al が多数分散している組織形 成であることから、クラックは微細な金属間化合物を巻き

Fig.10 Total length of crack for power module during thermal cycles. (-40 125 , 1cycle:1hr)

込みながら進展することになり、微細な化合物はクラック の進展に対してピン止め効果の役割を発揮したと考えら れる。この結果、多数分散した -Ag₂AIの働きにより、1 サイクルあたりのクラックの進展距離は短くなり、熱疲労 特性が向上したと考えられる。

4-2 パワーモジュール基板

環境問題への対応策として、高度な電子制御により省エ ネルギーを実現するパワーモジュールが輸送機器や家電 製品の分野で普及しつつある。パワーモジュール基板接合 は、絶縁基板のセラミック基材とベース基板との熱膨張係 数の差が大きいことに加え、はんだ接合面積が大きいため 構造的にも応力の集中が多大となる⁶。作成したパワーモ ジュール基板の、熱サイクル試験を実施した結果について 示す。

Fig.10 12 - 40 125 の条件下で熱サイクル試験を行 った結果である。Sn-2Ag-0.05Al 合金、Sn-2Ag-0.1Al 合金、 Sn-2Ag、Sn-3Ag-0.5Cu 合金の順にクラックの進展速度は 遅くなっていた。Fig.11 に 300 サイクル経過時の接合部の 断面観察結果を示す。Sn-2Ag-0.1Al 合金ではクラックは枝 葉状に分岐して蛇行しながら進行していたが、 Sn-3Ag-0.5Cu 合金ではクラックの分岐があまり見られず、 電極界面とほぼ平行にクラックが進行していた。またクラ ックの進展位置にも違いが見られ、Sn-2Ag-0.1Al 合金は、 はんだ内中心部近くを進行しているのに対して、 Sn-3Ag-0.5Cu合金ではCu/はんだ界面及び界面近傍で進行 していた。Fig.12 は Sn-2Ag-0.1Al 合金のクラック位置の拡 大観察結果である。クラックは微細な -Ag2Al を巻き込 みながら、亜結晶粒の粒界を廻りこんで進展していた。ま た Sn-2Ag-0.1Al 合金、Sn-3Ag-0.5Cu 合金いずれの合金に おいても、クラックは Ag₃Sn、Cu₆Sn₅等の金属間化合物を 巻き込みながら進展しているのが確認できた。

パワーモジュール接合でも、クラックは化合物を巻き込

Fig.11 Cross-section of joint after 500 cycles. (a) Sn-2Ag-0.1Al (b) Sn-3Ag-0.5Cu

みながら進展している。C-BGA 接合の場合と同様に、 Sn-Ag-Al 系合金では微細な -Ag₂Al がクラック進展のピ ン止め効果として機能し、クラックの進行速度を低下させ たことが示唆される。また、パワーモジュール接合では特 に Sn-2Ag-0.1Al 合金でクラックに数多くの分岐が見られ るのが特徴的である。分岐の発生原因としては、粗大な化 合物の晶出や分散粒子の密集により硬化した領域におい て生じた残留応力の開放などが考えられる。この多方向へ のクラックの分岐は、結果として主軸となるクラックの複 雑経路を辿った進展を促し、直線換算でクラックの進展速 度を遅らせることになると考えられる。Sn-3Ag-0.5Cu 合 金では以前に報告したように³⁾、Cu 基板からの溶解によ ってはんだ内の Cu 濃度が増加し、共晶量が増すことで硬 い領域が反応層近傍に晶出したため、クラックは電極界面 近傍を直線的に進行したと考えられる。そのため Sn-2Ag-0.1Al と比較してクラックの進展速度はより速く なったと考えられる。

4-3 熱疲労特性を支配する組織特性

Sn-Ag-Al 系合金の組織は、Sn-Ag 系合金、Sn-Ag-Cu 系 合金と比較して、(1)微細な Ag₂Al が多数分散する、(2)亜 結晶粒の粒径が微細化する特徴を有していることが挙げ られる。微細粒子分散、結晶粒微細化は強度、靭性の向上 を目的として広く材料開発で採られている手法である。反 面、高温応力下においては結晶粒微細化により粒界すべり を促進し、また粒界に分散した化合物を起点とした粒界空 隙の発生を促進するので、クリープによる材料の破壊速度

Fig.12 Morphology of crack propagation in Sn-2Ag-0.1Al.

を速める懸念がある^{7.8}。熱サイクル試験の結果より、 Sn-Ag-Al 系合金では低サイクル側においてクラックの発 生、進行が比較的速いことから、これらの要因がクラック の発生、進行を促進している可能性があることを示唆して いる。しかし、化合物を微細に分散させた材料では、分散 粒子がない材料と比較してクリープ速度を低下させると 言われており、実際 Sn-Ag-Al 系合金ではサイクル数が大 きくなると、Sn-Ag 系合金や Sn-Ag-Cu 系合金と比較して クラックの進展速度が遅延している。 -Sn 相内に微細分 散した -Ag₂Al が熱応力により発生したクラックの進展 に対するピン止めとなり、結果として熱疲労特性を向上さ せたと予想される。

また Sn-Ag-Al 系合金は、 -Sn 相内の亜結晶粒が初晶相、 共晶相において微細に晶出するために、巨視的に見てほぼ 均一な組織を持つ合金として見なすことができる。このよ うな組織の均一性は、例えば C-BGA 接合でははんだバン プの変形といった形で、応力の局部集中を防ぎ、応力を全 体に分散させる機能を果たしていると考えられる。

さらに、Sn-2Ag-0.05Al 合金は Sn-2Ag-0.1Al 合金と比較 して、 -Sn 相に分散する -Ag₂Al 量が減少するが、これ により、機械的特性と熱疲労特性の双方で良好な結果が得 られた。 -Ag₂Al 量の減少に伴い初晶相は延性を増し、 また高温応力下における粒界空隙の発生サイトも減少す る。これらの要因が諸特性に影響を与えていると予想され、 Al と Ag 添加量の最適組成を構築することが疲労特性を より向上させると予想できる。

4. 結言

これまで当研究室にて得られた Sn-Ag-Al 系合金に関する知見を以下にまとめる。

- Sn-2Ag 合金への Al 微量添加により、亜結晶粒が微細 化し、微細な Ag₂Al が多数分散した組織へと変化する。
- Sn-2Ag 合金への AI 微量添加により硬度は高くなり、 初晶相と共晶相の硬度差が狭まることで、応力負荷に 対して初晶相、共晶相が一律変形する形態を示すよう になる。

- Sn-Ag-Al 系合金では微細に分散した Ag₂Al がクラック進展の障害として機能し、クラックの進展速度を遅らせる。
- Sn-2Ag-0.05Al 合金、Sn-2Ag-0.1Al 合金は Sn-3Ag-0.5Cu 合金と比較して、機械的特性、熱疲労 特性に優れた合金である。

参考文献

- 1) 菅沼克昭, "鉛フリーはんだをめぐる欧州規制と技術 の現状," 金属, vol.73 (2003), pp. 648-659
- 田中順一,鈴木直人,高島敏行,成田敏夫, "Sn-Ag-Al ソルダ合金の凝固組織と機械的特性," Mate2003, Yokohama, vol.9 (2003), pp213-218
- 3) 鈴木直人,水野宏紀,田中順一,高島敏行,成田敏夫, "Sn-Ag-Al 系合金/Cu 接合による界面溶解反応と熱疲 労サイクル特性," Mate2004, Yokohama, vol.10 (2004), pp. 149-154

- 5) 信頼性解析技術委員会,"信頼性解析技術の現状と動 向,"エレクトロニクス実装学会誌, vol.7 (2004), pp.13-16
- 藤野純司,河嶋康夫,北村洋一,"高信頼性ボイドレス ダイボンドプロセス," Mate2003, Yokohama, vol.9 (2003), pp. 99-102
- 7) 丸山公一,中島英治,"高温強度の材料科学,"内田老 鶴園,(1997)
- 8) 平修二,大谷隆一,"材料の高温強度論,"オーム社, (1980)

E-mail: jtanaka@eng.hokudai.ac.jp