HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Agriculture / Faculty of Agriculture >
Peer-reviewed Journal Articles, etc >

New Inventories of Global Carbon Dioxide Emissions through Biomass Burning in 2001-2020

Creative Commons License

Files in This Item:

The file(s) associated with this item can be obtained from the following URL: https://doi.org/10.3390/rs13101914


Title: New Inventories of Global Carbon Dioxide Emissions through Biomass Burning in 2001-2020
Authors: Shiraishi, Tomohiro Browse this author
Hirata, Ryuichi Browse this author
Hirano, Takashi Browse this author →KAKEN DB
Keywords: CO2 emissions
biomass burning
fire map
land cover map
above-ground biomass map
Issue Date: May-2021
Publisher: MDPI
Journal Title: Remote Sensing
Volume: 13
Issue: 10
Start Page: 1914
Publisher DOI: 10.3390/rs13101914
Abstract: Recently, the effect of large-scale fires on the global environment has attracted attention. Satellite observation data are used for global estimation of fire CO2 emissions, and available data sources are increasing. Although several CO2 emission inventories have already been released, various remote sensing data were used to create the inventories depend on the studies. We created eight global CO2 emission inventories through fires from 2001 to 2020 by combining input data sources, compared them with previous studies, and evaluated the effect of input sources on CO2 emission estimation. CO2 emissions were estimated using a method that combines the biomass density change (by the repeated fires) with the general burned area approach. The average annual CO2 emissions of the created eight inventories were 8.40 +/- 0.70 Pg CO2 year(-1) (+/- 1 standard deviation), and the minimum and maximum emissions were 3.60 +/- 0.67 and 14.5 +/- 0.83 Pg CO2 year(-1), respectively, indicating high uncertainty. CO2 Emissions obtained from four previous inventories were within +/- 1 standard deviation in the eight inventories created in this study. Input datasets, especially biomass density, affected CO2 emission estimation. The global annual CO2 emissions from two biomass maps differed by 60% (Maximum). This study assesses the performance of climate and fire models by revealing the uncertainty of fire emission estimation from the input sources.
Rights: https:// creativecommons.org/licenses/by/ 4.0/
Type: article
URI: http://hdl.handle.net/2115/82281
Appears in Collections:農学院・農学研究院 (Graduate School of Agriculture / Faculty of Agriculture) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University