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On the Logical Origin of the Laws Governing the Fundamental Forces
of Nature: A New Axiomatic Matrix Approach

Ramin Zahedi ~

Logic and Philosophy of Science Research Group, Hokkaido University, Japan
28 Jan 2015

The main idea of this article is based on my previous publications (Refs. [1], [2], [3], [4], 1997-1998). In this article
we present a new axiomatic matrix approach (and subsequently constructing a linearization theory) based on the ring
theory and the generalized Clifford algebra. On the basis of this (primary) mathematical approach and also the
assumption of discreteness of the relativistic energy-momentum (D-momentum), by linearization (and simultaneous
parameterization, as necessary algebraic conditions), followed by "first" quantization of the relativistic energy-
momentum relation, a unique and original set of the general relativistic single-particle wave equations are derived
directly. These equations are shown to correspond to certain massive forms of the laws governing the fundamental
forces of nature, including the Gravitational, Electromagnetic and Nuclear field equations (which based on this
approach are solely formulable in (1+3) dimensional space-time), in addition to the (half-integer spin) single-particle
wave equations such as the Dirac equation (formulated solely in (1+2) dimensional space-time). Each derived single-
particle field equation is in a complex tensor form, where in matrix representation (i.e. in the geometric algebra
formulation) it could be written in the form of two coupled symmetric equations — which assumedly have chiral
symmetry if the particle wave equation be source-free. We show that the massless cases of the complex relativistic
wave equations so obtained correspond to the classical fields including the Einstein, Maxwell and Yang-Mills field
equations. In particular, a unique massive form of the general theory of relativity — with a definite complex torsion — is
shown to be obtained solely by first quantization of a special relativistic algebraic matrix relation. Moreover, it is
shown that the massive Lagrangian density of the obtained Maxwell and Yang-Mills fields could be also locally gauge
invariant — where these fields are formally re-presented on a background space-time with certain (coupled) complex
torsion which is generated by the invariant mass of the gauge field carrier particle. Subsequently, in agreement with
certain experimental data, the invariant mass of a particle (that would be identified as massive photon) has been
specified (Mo ~ 1.4070696 x10™ kg), which is coupled with background space-time geometry. Assuming our
approach is the unique and principal way for deriving (all) the laws governing the fundamental forces of nature, then
based on the unique structure of general relativistic single-particle wave equations derived and also the assumption of
chiral symmetry as a basic discrete symmetry of the source-free cases of these fields, it is shown that the universe
cannot have more than four space-time dimensions. In addition, a mathematical argument for the asymmetry of left
and right handed (interacting) particles is presented. Furthermore, on the basis of definite mathematical structure of the
field equations derived, we also conclude that magnetic monopoles (in contrast with electric monopoles) could not
exist in nature.*

PACS Classifications: 04.20.Cv, 04.50.Kd, 04.90.+e, 04.62.+v, 02.10.Hh, 02.10.Yn, 02.20.Bb, 02.90.+p, 03.50.-z, 03.65.Pm, 12.60.-i, 12.10.Dm, 12.10.-g.

1. Introduction and Summary

Why do the fundamental forces acting on the Universe (i.e., the forces that appear to cause all the
movements and interactions) manifest in the way, shape, and form they do? This is one of the
greatest ontological questions that science can investigate. In this article, we are going to consider
this question by a mathematical axiomatic (matrix) approach.
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Eugene Wigner's foundational paper, “On the Unreasonable Effectiveness of Mathematics in the
Natural Sciences”, famously observed that purely mathematical structures and relations often lead to
deep physical insights, in turn serving as the basis of highly successful physical theories [50].
Referring to the Oxford English dictionary, a law of physics (or a scientific law) is: "A theoretical
principle deduced from particular facts, applicable to a defined group or class of phenomena, and
expressible by the statement that a particular phenomenon always occurs if certain conditions be
present [55]. In actual fact, laws of physics (including the fundamental laws) are typically
conclusions based on repeated scientific experiments and observations over many years and which
have become accepted universally within the scientific communities, and one of the most
fundamental and operational aims of the human race has been to acknowledge (as truths) and
formulate a summary description of the natural world in the form of such laws [56, 57]. In this
article, based on our axiomatic approach, we show that one of the most fundamental logical blocks of
the universe's structure are certain "matrices”, which their components are the quantized (discrete)
basic physical quantities (i.e. are "integer" multiples of the quantum of action "h"). Subsequently, we
provide a unique logical foundation to the most acknowledged fundamental (empirical) laws of
nature, i.e. the laws governing the fundamental forces of nature.

This article is based on my previous publications (Refs. [1], [2], [3], 1997-1998), and also my thesis
work [4] (but in a new generalized and axiomatized framework). We present a new axiomatic matrix
approach based on the algebraic structure of ring theory (including the integral domains [5]) and the
generalized Clifford algebra [40 - 47], and subsequently, we construct a linearization theory. On the
basis of this (primary) mathematical approach and the assumption of discreteness of the relativistic
energy-momentum (D-momentum), by linearization (and simultaneous parameterization, as
necessary algebraic conditions), followed by first quantization of the special relativistic energy-
momentum relation (defined algebraically for a single particle with invariant mass Mg), we
derive a unique and original set of the general relativistic (single-particle) wave equations directly.
These equations are shown to correspond uniquely to certain massive forms of the laws governing
the fundamental forces of nature, including the Gravitational, Electromagnetic and Nuclear field
equations (which are solely formulable in (1+3) dimensional space-time), in addition to the (half-
integer spin) single-particle wave equations (formulated solely in (1+2) dimensional space-time).

Each derived relativistic wave equation is in a complex tensor form, that in the matrix
representation (i.e. in the geometric algebra formulation) it could be written in the form of two
coupled symmetric equations — which assumedly have chiral symmetry if the particle wave equation
be source-free. In fact, the complex relativistic (single-particle) wave equations so uniquely obtained,
correspond to certain massive form of classical fields including the Einstein, Maxwell and Yang-
Mills field equations, in addition to the (half-integer spin) single-particle wave equations such as the
Dirac equation (where the Dirac spinor field is isomorphically re-presented solely by a tensor field in
three dimensional space-time [29, 31]).



In particular, a unique massive form of the general theory of relativity — with a definite complex
torsion — is shown to be obtained solely by first quantization of a special relativistic algebraic matrix
relation. Moreover, it is shown that the massive Lagrangian density of the obtained Maxwell and
Yang-Muills fields could be also locally gauge invariant — where these fields are formally re-presented
on a background space-time with certain (coupled) complex torsion, which is generated by the
invariant mass of the gauge field carrier particle. Subsequently, in agreement with certain
experimental data, the invariant mass of a particle (that actually would be identified as massive
photon) has been specified (Mg = 1.4070696 x10™* kg), which is coupled with background space-
time geometry (see Section 3-4-1).

Assuming our approach is the unique and principal way for deriving (all) the laws governing the
fundamental forces of nature, then based on the unique structure of general relativistic single-particle
fields derived and also the assumption of chiral symmetry as a basic discrete symmetry of the source-
free cases of these fields, it has been shown that the universe cannot have more than four space-time
dimensions. In addition, on the basis of definite structure of the field equations derived, we also
conclude that magnetic monopoles - in contrast with electric monopoles - could not exist in nature.
Furthermore, a basic argument for the asymmetry of left and right handed (interacting) particles is
presented.

1-1. The main arguments and consequences presented in this article (particularly in connection
with the logical origin of the laws governing the fundamental forces) follow from these three
basic and primary assumptions:

(1)- “Generalization of the algebraic axiom of nonzero divisors for integer elements (based on the
ring theory and the matrix representation of generalized Clifford algebra, and subsequently,
constructing a definite algebraic linearization theory);”

This is one of the new and principal concepts presented in this article (see Section 2-1, formula (23)).

(2)- “Discreteness of the relativistic energy-momentum (D-momentum);”

This is a basic and original quantum mechanical assumption. Quantum theory, particularly, tells us that
energy and momentum are only transferred in discrete quantities, i.e., as integer multiples of the quantum

of action (Planck constant) h.

(3)- “The general relativistic massive forms of the laws governing the fundamental forces of nature,
including the gravitational, electromagnetic and nuclear field equations, in addition to the
relativistic (half-integer spin) single-particle wave equations, are derived solely by first quantization
(as a postulate) of linearized (and simultaneously parameterized, as necessary algebraic conditions)
unique forms of the relativistic energy-momentum relation — which are defined algebraically for a

single particle with invariant mass Mg).”
We also assume that the source-free cases of these fields have “chiral symmetry”.



Following is a summary description of some notable consequences of the axiomatic matrix
approach presented in this article (note that the geometrized units, metric signature (+ — ... —) and
the sign conventions (97) will be used):

1-2. Two categories of the general relativistic (single-particle) wave equations are derived directly by
linearization (and simultaneous parameterization, as necessary algebraic conditions), followed by first

guantization (as a postulate) of the special relativistic energy-momentum relation (defined for a particle
with rest mass M), as follows:
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where (based on the assumption (3) in Section 1-1) these field equations are formulable solely in D <4
dimensional space-time. Moreover, in the above equations m{® and m{® are the invariant masses of the

(free and interacting) fields carrier single-particles, ih?y is the covariant kinetic energy-momentum
operator (generally defined on a background space-time with the complex torsion va generated by the
invariant mass (of the field carrier particle) and given by formula (3)), k* :(C/\/g_oo,O,...,O) is the
general relativistic velocity of a static observer (that is a time-like contravariant vector), and Jéﬁ,) and
J ) are the sources for these fields.

As an additional principal requirement, we show that we may also assume that the Lagrangian
density for the obtained general relativistic “massive” single-particle wave equations (2-1) — (2-3), be

locally gauge invariant as well — where these fields be still massive, and V , be equivalent to the

eneral relativistic (with torsion (3), which is compatible with the local gauge invariance condition
?9, 58, 60 - 63]) form of the (local) gauge-covariant derivative [67]. On this basis, in (1+3)
dimensional space-time, equations (2-1) — (2-3) not only would describe a certain massive form of
Maxwell’s (single-photon) field based on the Abelian gauge group U (1), but also would present a
certain massive form of Yang—Muills (single-particle) fields based on the (non-Abelian) gauge groups
SU(N). For the latter case, the field strength tensor, vector gauge potential and the current in
equations (2-1) - (2-3), are also written in component notation as: Fim Aaﬂ, J aLE’ , Where the Latin
index a=1,2,3, .., N°-1,and N?-1 is the number of linearly independent generators of the group
SU(N) (as a real manifold) [58]. Hence, by requiring the local gauge invariance for general

relativistic massive particle field equations (2-1) — (2-3), in Section 3-4, we show that the massive
Lagrangian density 3pecified for these fields could be locally gauge invariant — if these fields be
formally re-presented on a background space-time with certain complex torsion which is generated
by the Invariant mass of the gauge field carrier particle. Subsequently, in agreement with certain
experimental data, the invariant mass of a particle (that would be identified as massive photon) has

been specified (m{® = 1.4070696x10™*" kg), which is coupled with background space-time geometry.

It is noteworthy to recall that gauge symmetries can be viewed as analogues of the principle of
general covariance of general relativity in which the coordinate system can be chosen freely under
arbitrary diffeomorphism of space-time. Both gauge invariance and diffeomorphism invariance
reflect a redundanc?]/ in the description of the system. In point of fact, a global symmetry is just a
local symmetry whose group's parameters are fixed in space-time. The requirement of local
symmetry, the cornerstone o c};auge theories, is a stricter constraint [58]. However, our approach
could be also considered in the framework of the theories that lie beyond the Standard Model [71], as
it also includes new consequences such as a certain formulation for the gravitational particle field.

In addition, we should note that the field equations (|2-1 — (2-3) would correspond to two different
particle fields: they describe the spin-1/2 single-particle fields formulated solely in (1+2) dimensional

space-time — where we necessary have F,, =F,, =0 [29, 31]; these equations also describe the spin-1

single-particle fields formulated solely in (1+3) dimensional space-time [68, 69]. In the precisely same
manner, the field equations (1-1) — (1-2) describe the spin-3/2 single-particle field (gravitational)

formulated solely in (1+2) dimensional space-time — where R, is the Riemann curvature tensor, and

we necessary have Ry, ., =Ry, =0. The field equations (1-1) — (1-2) also describe the spin-2 single-

particle (gravitational) field formulated solely in (1+3) dimensional space-time. However, it should be
emphasize here that for single-particle field equations (1-1) — (2-3), the (quantum mechanical) solutions
are taken to be complex [29, 30, 31, 68, 69].

In particular, for massless cases (i.e. m{® =0, m{¥ =0), the field equations (1-1) — (2-3) turn into the
classical fields including the Einstein (with a cosmological constant), Maxwell and Yang-Mills field
equations, and only these fields. In the context of relativistic quantum mechanics, equations %1-1) - (2-3)

are subject to a process of 2" quantization anyhow; then these equations would describe the bosonic
fields in (1+3) dimensional space-time, and the fermionic fields in (1+2) dimensional space-time.



As it was mentioned above, in this article the geometrized units, metric signature (+ — ... —) and the sign
conventions (97) will be used. So particularly, we assume the speed of light ¢ =1. However, for clarity
and emphasis, in some essential relativistic relations "c" as a constant be restored and indicated formally.

1-3. The field equations (1-1) — (2-3) that are obtained straightforwardly by first quantization of
linearized (and simultaneously parameterized, as necessary algebraic conditions) unique forms of the
relativistic energy-momentum (matrix) relation, i.e. formulas (92) — (96), could be also written in matrix
representation, (or in the geometric algebra formulation, as we show in Section 3-4), as follows:
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Y., e are column matrices, f“and S'# are contravariant square matrices (corresponding to the

generalized Clifford algebra, see Sections 2-4, 3-3, 3-6, 3-7 and Appendix B); these matrices in (1+2) and
(1+3) dimensional space-time given by, respectively
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In relations (7) it is assumed that Ry, =Ry, =0, Fy, =F,; =0; in Section 3-7 we show that a

certain symmetric assumption yields these conditions.



For (1+3) dimensional space-time we have:
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1-4. In Section 3, we show that from the gravitational field equations (1-1) — (1-2), or their equivalent
matrix formulation, i.e. equation (1-A) (for méG’ =0), the Einstein field equations (including the

cosmological constant A, which emerges naturally via derivation process) are derived straightforwardly
as follows:

R, = —87z(TﬂV — BTgW) —-Ag,, (9)

where J\>) = —87(V T, -V T,)+8B(V,Tg,, -V ,Tg,,), T,,is the stress-energy tensor(T =T*,),

A is a cosmological constant,and B=0, 1 ,% for two, three and four dimensional space-time, respectively.



1-5. Based on the unique structure of general relativistic single-particle fields derived and also the
assumption of chiral symmetry as a basic discrete symmetry of the source-free cases of these fields, we
conclude (in Section 3-7) that the universe cannot have more than (1+3) space-time dimensions. In
addition, a basic argument for the asymmetry of left and right handed (interacting) particles is presented
(in Section 3-8). Furthermore, on this basis, we may conclude that the miscellaneous and various
relativistic wave equations (which has been written on the basis of experiments and so on) such as the
Majorana, Breit, Proca, Rarita—Schwinger, Bargmann-Wigner equations, etc. [12 — 14], should be
modified and/or replaced by the uniquely derived general relativistic (single-particle) wave equations (1-
A) — (2-A) (or their equivalent formulations, i.e. equations (1-1) — (2-3)).

1-6. According to the definite mathematical structure of derived field equations (2-1) — (2-3) that
correspond to the Maxwell’s equations (and also the Yang-Mills equations as the generalization of these
equations, see Sections 3-4 and 3-4-1), in Section 3-4-2 we conclude that magnetic monopoles (in
contrast with electric monopoles) could not exist in nature.

Let we emphasize again that the above noted results are direct outcomes of a new primary and
axiomatic mathematical approachl. In this article we try generally to present the main schemes of
applications of this new axiomatic approach in mathematics and particularly in fundamental
physics. Hence, in Section 2, we present and develop this new mathematical approach, where we
formulate a theory of linearization based on the ring theory (including the integral domains) and the
generalized Clifford algebra. In Section 3, we show one of the main applications of this (primary)
mathematical approach in the foundations of physics, where particularly in connection with the laws
governing the fundamental forces and their logical origin, we’ll focus on the direct “mathematical
derivation” of a definite set of the general relativistic (single-particle) wave equations which uniquely
represent these laws as the most fundamental laws of nature.

L Besides, we may argue that our presented axiomatic matrix approach (for a direct derivation and formulating the fundamental laws of nature
uniquely) is not subject to the Gddel's incompleteness theorems [51]. As in our axiomatic approach, firstly, we've basically changed (i.e. replaced
and generalized) one of the main Peano axioms (when these axioms algebraically are augmented with the operations of addition and
multiplication [52, 53, 54]) for integers, which is the algebraic axiom of nonzero divisors.

Secondly, based on our approach, one of the axiomatic properties of integers (i.e. axiom of nonzero divisors) could be accomplished solely by the
arbitrary square matrices (with integer components). This axiomatic reformulation of algebraic properties of integers thoroughly has been
presented in Section 2 of this article.



2. The Theory of Linearization: A New Axiomatic Matrix Approach

“Based on the Ring Theory (Including the Integral Domains) and the Matrix Representation
of Generalized Clifford Algebra”

Mathematical models of physical processes include certain classes of mathematical objects and relations
between these objects. The models of this type, which are most commonly used, are groups, rings, vector

spaces, and linear algebras. A group is a set G with a single operation (multiplication) axb=c;
a,b,c € G which obeys the known conditions [5]. A ring is a set of elements R, where two binary
operations, namely, addition and multiplication, are defined.

With respect to addition this set is a group, and multiplication is connected with addition by the
distributivity laws ax(b+c)=(axb)+(axc), (b+c)xa=(bxa)+(cxa); a,b,ceR. The rings
reflect the structural properties of the set R. As distinct from the group models, those connected with rings
are not frequently applied, although in physics various algebras of matrices, algebras of hypercomplex
numbers, Grassman and Clifford algebras are widely used. This is due to the intricacy of finding a
connection between the binary relations of addition and multiplication and the element of the rings [5, 2].

This article is devoted to the development of a rather simple approach of establishing such a connection
and an analysis of concrete problems on this basis.

I find out that if we axiomatically generalize the set of single-integer elements Z to the set of nxn
square matrix elements (as axioms’ elements with single-integer components, which we show itby Z_ ),

fruitful new relations and results hold. Thus in this Section, we present a matrix generalization of the
algebraic axiom of nonzero divisors for the ring of integers. Then, we axiomatically formulate a matrix
model for constructing a linearization theory over this ring. On this basis, we introduce the necessary and
sufficient conditions for transforming the homogeneous non-linear equations (of any order) to their
equivalent systems of linear equations (or matrix equations). These matrix equations definitely
correspond to the matrix representation of the generalized Clifford algebras. In Section 2-4, quadratic
forms (and relevant equations) are studied and analyzed on this basis explicitly.

2-1. The algebraic axioms of the domain of integers Z with binary operations (+,x), usually are
defined as follows [5]:

- a,8,,a,,..€ Z,

- Closure: a+a, ez, axae’l (10)
- Associativity: a +(@ +a,))=(a +a)+a,, a x(axa,)=(a xa)xa, (11)
- Commutativity: a +a =a +a, & xa =a xag, (12)
- Existence of an identity element: a,+0=a,, a xl=a (13)
- Existence of inverse element (for addition): @, +(-&a,) =0 (14)



- Distributivity: a, x(a +a,) =(a, xa)+ (g xa,), (&, +a)xa,=(a, xa,)+(axa,) (15)

- No zero divisors: (a =0va =0)<=a xa =0 (16)

It is easy to show that the axiom (16), equivalently, could be also presented as follows
(a,xm =0,m =20)<a, =0 (16-1)

In axioms (10) — (15), we may simply suppose that the single elements a, € Z are 1x1 matrices with

integer components:  [a,],,(=a,),[a,],,(=a,),[8;],,E &),...€ Z,,(=Z), then equivalently, the
axioms (10) — (15) could also be written by square matrices (with integer components) as follows:

- M, :[mk“] . my €Z, IneN: i,j=123..,n, M ,M, M,;,..eZ

nxn?

- Closure: M,+M,eZ ., M, xM, eZ . (17)
- Associativity: M, +(M; +M ) =(M, +M)+M , M, x(M;xM )=(M, xM)xM = (18)
- Commutativity (for addition): M, +M, =M, +M, (19-1)
- Property of the transpose for matrix multiplication:
M, xM)" =M," xM,’ (19-2)
where MkT is the transpose of matrix M, .
- Existence of an identity element: M, +0=M,, M, xI_ =M, (20)
- Existence of the inverse element (for addition):
M, +(-M,)=0 (21)
- Distributivity: M, x(M; +M ) =(M, xM,)+ (M, xM ),
(M, +M)xM, = (M, xM,)+ (M, xM_); 22)

Note that from the axioms (10) — (15), we can obtain the matrix-formulation axioms (17) — (22) and
vice versa.
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In this article, we principally take into account the set of matrix-formulation axioms (17) — (22) for
integers, and present the following new additional axiom (formulated “solely” via square matrices) as
a new algebraic property of the ring (or domain) of integers — which is a generalized matrix-
formulation of axiom (16-1), and be replaced by (16-1):

Axiom 2-1. <« Let F(b,,b,,b,,...,b;) be a homogeneous polynomial of degree r > 2 over the
integer elements b, € Z (= Z,,), we have the following axiom:

JAMeZ

nxn?

[(AxM =0, M %0) A (A" = F(b,b,,b,,...b)1.)] < F(by,b,,b,,...b,) =0 (23)

where A=[a;], a; => Hyb,, and b, eZ (=2,,), 3ns: i,j=123..n, p=123,..,5s,
p=1

H;, are coefficients, M (M =0)is a parametric arbitrary matrix, and 1, is the identity

matrix.”

In fact, axiom (16) (or its equivalent, i.e. axiom (16-1)) can be obtained from Axiom 2-1, but definitely
not vice versa. Only for special case n=1, the set of axioms (17) — (23) (formulated by square
matrices) become equivalent to the set of ordinary axioms (10) — (16-1) for integer elements. Axiom 2-1
is formulated “solely” by square matrices (with integer components), and definitely is a new axiom for
integers. In this Section and Section 3 we will demonstrate its main and direct consequences and fruitful
applications.

Remark 2-1. Note that in Axiom 2-1, according to the arbitrariness of all the parametric components of
nxn matrix M (M #0), without loss of generality, we may replace matrix M with a nx1 matrix
M., in equations AM =0 (with the same condition M # 0, but only with “n” number of arbitrary
parametric components).

Remark 2-2. Algebraic axiomatic relation (23) presents a new fundamental matrix structure and
framework for constructing a basic linearization theory in the ring theory (including the integral

domains), which will be described below. Also note that the elements &; are the “linear” homogeneous

forms of integer elements bpq. Furthermore, (using the definition A = [aij], a; = Z Hijpbp ), we may
p=1

S

simply represent matrix A by this linear formula: A:prEp , where E  are square matrices; then the
p=1

relation A" =F(b,,b,,b,,....b)1, will definitely express the standard definition of the generalized

Clifford algebra associated with homogeneous form F(b,,b,,b;,...,b,), and generated by matrices Ep

[43- 47]. Thus based on the definition of Axiom 2-1 (formula (23)) over the integer elements, the
Clifford algebra (and its matrix representation) as a very well known and studied
mathematical theory, is the main and central characteristic of the axiomatic approach
presented in this article. We use this essential property in Section 2-4, for a unique determination of
square matrices A that generate a generalized Clifford algebra associated with quadratic homogeneous
forms of the type (25) (defined below).
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2-2. Generally, there are standard and certain methods for solving homogeneous linear
equations over the ring of integers [7]. Moreover, on the basis of the Axiom 2-1, the necessary
and sufficient condition for solving an homogeneous equation of the r™ order such as

F(b,,b,,b;,....b,) =0, is the transforming or converting it (by “linearization” and simultaneous

parameterization, as necessary algebraic conditions) into an equivalent system of linear
equations of type AM =0 (where M =0, M : nx1 matrix with parametric components). On

this basis, below we’ll obtain merely the systems of linear equations that equivalently correspond to the
various homogeneous quadratic equations, and also systems of linear equations corresponding to some of
the higher order equations.

On the methodological standpoint, firstly, for obtaining and specifying a system of linear equations that
corresponds to a given equation F(b,,b,,b,,...,b,) =0, we definitely should assume and take the
minimum value for N (i.e. the size of nxn matrix A defined in (23)). Secondly, by replacing the

components of matrix A with the linear forms a; :Z:Hijpbp (defined in (23)), in the equation
p=1
A" =F(b,b,,b,,....b)1,, we basically should calculate the coefficients H,

of elements bp ), by ordinary and standard methods of solving certain equations over the ring of integers.

(which are independent

2-3. In particular, an arbitrary homogeneous quadratic form such as

S 2
F(C1C51Cy0nnnC) = D BiliZHcip (24)
iy,ip=1 p=1
could be transformed into a simpler quadratic form of the type
S 2
Q(bnv b21’ b12’ bzzv---’ b25) = Zprq (25)
g=1 p=1

by the following linear isomorphic transformations:

b11 =G, b21 = ZBlizciz’ b12 =Cy, bzz = ZBZiZCiZ’ S b15 =G, bzs = ZBSiZCiZ (24-1)

ip=1 ip=1 ip=1

Furthermore, as we’ll also show later, the following quadratic form could be transformed into quadratic
forms of the type (25) as well (by a similar isomorphic transformations):

S 2 S 2
Q(Cy,C;,C1eenr G, 0y, 0y, gy d ) = D BiliZHcip - BiliZHdip (26)
p=1

iy ip=1 iy i =1 p=1

12



Remark 2-3. In addition, concerning the formula (25), the following general relations could be proven
easily:

(ZprqC(Hl)q =0, Zprqd(Hl)q 0) = Zprq(C(rﬂ)q id(r+1)q)=0 ! (25'1)

q=1 p=1 g=1 p=1 g=l p=1

S

ZHquC(Hl)q 0 < Zprq (tc(r+l)q) 0 (25-2)

g=1 p=1 g=1 p=1

where the parameter t is an arbitrary non-zero integer.

2-4. According to the general forms of homogeneous quadratic equations (24) — (26), and the isomorphic
linear transformations (24-1), below we merely write the systems of linear equations that correspond to
the following gquadratic equation (moreover, as we mentioned in Section 2-2, according to the Axiom 2-1
(formula (23)), only one system of linear equations — with the minimum number of equations — for each
particular case is sufficient):

S 2

Q(byy, by, 015,055, 0,) = Zprq =0 (25-3)

gq=1l p=1

Now according to Axiom 2-1 (formula (23)), the following relation should be specified for equation (25-
3), which by to formulate its equivalent system of linear equations AM =0,

_(zszquq) = Q(by1, by, 0y5, 055, 0,) 1, (25-4)

p=1 g=1

where N=2"" and matrices qu generate a generalized Clifford algebra associated with form

Q(byy, By, B15,155,.1.,05) -

We should note here that the matrix equations, which will be obtained on this basis for the above
homogeneous quadratic equations, also could simply be modified to be hermitian (and we will do it for
these equations). The hermiticity is a necessary condition for these matrix equations (i.e. matrix equations
(32), (34), (36), (37), (38), corresponding quadratic equation (24)), which we will use to formulate the
relativistic wave equations of physics, in Section 3 (see Sections 3-3, 3-6, 3-7 and Appendix B).

13



Thus let we expand the equation (25-3) as follows, respectively:

12
Zprq =by by, =0, (27)
g=1 p=l

2 2
Zprq =b, b, +by,by, =0, (28)
g=1 p=1
3 2
Zprq =b,,by; +b,,b,, + by, =0, (29)
q=1 p=l
4 2
Zprq =by,b,, +by,b,, + b, +by b, =0, (30)
g=1 p=1
5 2

Zprq = by by +by50,, + 0505 + By by, + 1,50, =0; (31)

g=1 p=1l

Hence, based on the Axiom 2-1 (formula (23)), Remark 2-2 and our methodology mentioned in Section 2-
2, the equivalent matrix equations (here we mean a system of linear equations) corresponding (uniquely)
to the quadratic equations (27) — (31) are, respectively, as follows:

First, the equivalent matrix equation corresponding to quadratic equation (27) is given by

AxM = =0 (32)
f, 0fm,
where &, =b,,, f, =b,,, and we have
0 e 0 e
A% = ° °|=(e, )l 321
{fo O}{fo 0} (& fo)l, (32-1)

For (28) we have the following equivalent matrix equation

0 0 ¢ f|m
0 0 —-¢ f,[m
AxM = oYl =0 (33)
f, f, 0 O0fm,
-e ¢ 0 Ofm,

where &, =b,,, f, =b,,,e, =b,,, f, =b,,, and we have
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0 0 ¢ f 0 0 e f
0 0 -¢ f 0 0 -¢ f
A? = % L% =(e, f, +e I,
f,p, -f, 0 O f, —f, 0 0
e, € 0 O e, € 0 O

(33-1)

Notice that using (33) we get the following two separate and fully equivalent matrix equations for (28):

{eo fofm |

_el foJ m4

—h

f Tm ]|
0 1 1 =O
—e & | m,

(33-2)

(33-3)

As the matrix equations (33-2) and (33-3) are equivalent, we can choose the equation (33-2) as the system
of linear equations corresponding to quadratic equation (28) — where for simplicity we may also replace

the parameters m, and m, by parameters m, and m,, as follows
g f[m
0 1 1 — O
—& fo m,

The following system of linear equations corresponds to quadratic equation (29):

0 0 0 0 e O -e f |m]
0 0O 0 O 0 e —-¢ —f,[m,
0 o o o f, f f 0 ||m,
AxM = 0 0O 0 0 -e e O fo | m, 0o
f, 0O e -f 0O O O 0 |[mg
0 f, ¢ f, 0 0 O 0 |[mg
-f, - f, & O 0o 0 O 0 | m,
e -e 0 g 0 0 O 0 || mg |

where €, =b,, f, =b,,,e, =b,, f, =b,,,e, =b;, f, =b,,, and we have

15
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o 0 O O e O —-e f|]0 O O O e 0 -e f
0 0O 0 O 0 e -e -1 0 0O 0 O 0 e -e -f
o o o o f, f f, O o o o o f, f f, O
0o 0 O O -e¢ e 0 f 0 0 O 0O -e e 0 f
= X
f, 0 e —-ff 0 O O O f, 0 e —-ff 0 O O O
o f, ¢ f, 0 O O O o f, ¢ f, 0 0 O O
-f, —f ¢ O 0O 0 O 0 -f, —f ¢ O 0O 0 O 0
e, - 0 g 0 0 O O |]|e& -e O 0 0 0 O 0 |
:(eofo+e1f1+e2f2)ls
(35-1)
From (35) (similar to the (33)) the following two equivalent matrix equations are obtained,
&g 0 -—e, f | m]
0 e —-¢ —f,|m
0 1 2 6 -0, (35-2)
f, f f 0 ||m,
—-€ € 0 o__msj
f, 0 e —f|m]
0 f, e f,|m
0 1 2 21_0 (35-3)
-1, f, & 0 |m,
e - 0 e |m,)

So, we can choose equation (35-2), as the system of linear equations corresponding to the quadratic
equation (29) (where for simplicity here we also replace the parameters m,, m,, m, andm, by parameters

mg, Mg, M,and mg):

e, 0 —-e, f M
0 ¢ -¢ —-f,|m
0 1 2 2 — 0 (36)
f, £ f 0 ||m,
-e e O fo M,
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Similar to the matrix equations (34) and (36) that correspond to the quadratic equations (28) and (29), the
unique and equivalent matrix equations corresponding to the quadratic equations (30) and (31) are also

obtained as follows, respectively,

(37)

_fl
0

b14' f3 = b24;

b13’ fz = b23' €;

where €, =b,;, f, =b,,,e, =b,, f, =b,,,e,

and for (31) we obtain

o S o
E g €
o O o
o O o
o O o
o O o
o o o
O O «°
o +© o
— O O
..T_I_ ﬂb2 e3
| |

(V)
e
™ -
e 9

O O O O «©

O O O «« o

o O v o o

(38)

b14’ f3 :b24’e4 :b15’ f4 :bzs-

b13’ fz = b23,63

where € =By, fo =y, € =by,, f; =Dy €,
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In a similar manner, the systems of linear equations with larger sizes could be obtained for special cases
of general quadratic equation (25-3), where S =12,3,... . The size of the square matrices of these matrix
equations is 2°x2°. But, this size is reducible to 2°" x2°™ for the quadratic forms (as we had these
sizes for matrix equations (34), (36), (37) and (38) which correspond to the quadratic equations (29) —
(31)). In general, the size of the square matrices A that correspond to the homogeneous r™ order form
F(b,b,,b;,...,b,) defined in (23), is r®xr®, which for particular cases this size could be reduced.
Moreover, based on Axiom 1-2 (formula (23)), by obtaining (and solving) a system of linear equations

which corresponds to a r'" order equation, we may systematically show (or decide) whether this equation
has the integral solution.

We present below the systems of linear equations (defined_bal (23)) corresponding to some particular
higher (3", 4™ and 5") order homogeneous equations. For a third order equation of the type

F(e,, f,.e, f.e,, f,)=e2f, —e,f/ +e5f, —e,f7+e f g, =0 (39)

the following matrix equation is obtained

0 04 ™
AM=|4, 0 0 " =0, (40)
04, 0 )
where A is a 27x27 square matrix and we have
e, + f, 0 0 0 0 0 —e,+f, e 0]
0 -e,+f, 0 0 O 0 0 € 0
0 0 -e,+f, 0 O 0 f, 0o -f,
- f, e 0 e, O 0 0 0 0
A = 0 —e,+ f, g, 0 e 0 0 0 0 |
f, 0 e, 0 O e, 0 0 0
0 0 0 g € 0 - f, 0 0
0 0 0 0 —-f, g, 0 -f, 0
0 0 0 f, O e, + f, 0 0 -f,
[~ 1, 0 0 0 0 0 —e,+f, e 0 ]
0 - f, 0 0 0 0 0 e 0,
0 - f, 0 0 0 f, 0 —-f,
- f, € 0 -e+f, 0 0 0 0O O
A= 0 —-e+f 0 0 —-e,+f, 0 0 0 0 |
f, 0 €, 0 0 -e,+ f, 0 0 O
0 0 0 €, e 0 e, 0 O
0 0 0 0 - f, g, 0 e, O
| 0 0 0 f, 0 —e,+ f, 0 0 e |
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e, 0 0 O 0 0 —e,+ f, e 0
0 e, 0O O 0 0 0 €, g,
0 0 e, O 0 0 f, 0 - f,
- f, e o -f, O 0 0 0 0
A=l 0 -e+f, g 0 -—f, 0 0 0 0 (41)
f, 0 e, O 0 - f, 0 0 0
0 0 0 e e, 0 -e,+ f, 0 0
0 0 0o 0 -f, g, 0 -e,+f, 0
0 0 0 f, 0 -—-e+f, 0 0 -e,+f, |
Based on (23), the system of linear equations corresponding to the 3 order equation
F(a,b,c)=2(a®-c®+Bb®) =0, (42)
0 04| ™
is given by AM=|4, 0 0 el (43)
04 0 il
3
M7
where A is a 27x27 square matrix and we have:
[« 0 0 0 0 0 -2¢ b 0 [(2¢ 0 0 0 0 0 -2¢ b 0
0 -a 0 0 0 0O 0O ¢ 2b 0 2¢ 0 0 0 O O ¢ 2b
0 0 -a 0 0 0 b 0 ¢ 0 0 220 0 0 b 0 ¢
c b 0 -a0 0 0 0 O c b 0 -a 0 0 0 0 0
4= 0 -2¢2b 0 -a 0 0 0 0| 4,=/0 -2¢2b 0 -a 0 0 0 0
b 0 c -a 0 0 0 b 0 c 0 -a 0 0 0
0 0 0 0 2a 0 0 0 0 0 b 0 -a 0 0
0 0 0 2b 0 2a 0 0 0 0 2b 0 -a 0
0 0 0 0 -2¢ 0 0 2a] |0 0 0 0 -2¢ 0 0 -a
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-a 0
0 -a
0 0
c b
Ay=1 0 -2c
b 0
0 0
0 0
0 0

0 0 -2¢

0 0 0
-a 0 0 b
0 2a 0 O 0
2b 0 2a O 0
c 0 2a O
0 ¢ b O -a
0 0 ¢ 2b O
0 0 -2¢ O

For the 4" order homogeneous equation,

b 0
c 2b
0 ¢
0 0
0 o0
0 0
0 0
-a 0
0 -a

F(e.e,, f, f,, f,, f,)=—ee)+el,+f f,f, f, =0

the equivalent system of linear equations, that follow from Axiom 1-2, is

AM =

0 0 04 ™

m

_ 2
4,0 0 0
0 A4, 0 0
0 04,0

ol myg

where A is a 16x16 square matrix and matrices A, A,, A;, A, are

>e1+e2 0
hooe
4,= )
0 f3
0 0
—el-i-e2
5
A =
3 0
0

0 f1 | [ -e
0 0 f2
, Ay =
-e +ez 0 0
f4 -e, ‘ 7 0
0 0 f1 e
-e, 0 0 f2
A=
f3 e +e, 0 0
0 —f4 e 0

, 00
e + €, 0 0
3o 0
0 f4 —e; te, |
0 0 —f1
e + e, 0 0
5 e 0

20
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In addition, the obtained system of linear equations which corresponds to the 5™ order homogeneous
equation,

F(e.e,, f,, f,, f,, f,, f.)=¢le, —e’e’ —efel +ee; + f, f, f, f, f, =0 (48)
is:
00 0 04[]
A 0.0 0 0ff
AM=| 04, 0 0 0|l |=o, (49)
0 04, 0 0
0 0 045 O My

where A is a 25x25 square matrix and matrices A, A,, Ay, A,, A, are given by

e, —e, 00 0 fi —e,—e, 000 f
S e 0 0 0 5 e, —e 0 0 0
a=| 0 fie 0 I A L fi e 0 0 |
0 0 f, ¢ te 0 0 0 f,e 0
0 00 fs —e; — e, 0 0 0 /5 -¢ +e
e, +e, 0 0 0 f | e, 0 0 0
A -e,—e¢ 0 00 fy —e te 0 0 0
4,= 0 5 e, —e 0 0 4,= 0 /i -e,—e, 0 0 |
0 0 Jo ¢ 0 0 0 Ja e, —e 0
0 0 0 fie 0 0 0 fi e
e, 00 0 /,
fye 0 0 0
_ 50
A=| 0 fy e te 0 0 (50)
00 Ja e, —e 0
00 0 Js e —e,
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2-5. Because of particular applications of the obtained systems of linear equations corresponding to
the general quadratic equation (25-3)in Section 3 (concerning the derivation of the relativistic
single-particle field equations of physics and Lorentz transformations and so on), in this section we
analyze and solve the matrix equations (34), (36), (37), (38). However, it should be noted again that
these matrix equations (that are structurally unique) have been obtained not only on the basis of the
algebraic Axiom 2-1 (formula (23)), but also have been modified to be hermitian.

First, let we consider the following more general homogeneous quadratic equation

Zn:Bij(cicj—didj)zo (51)

i,j=0

where B = [BijJ is a symmetric matrix B; =B, and det[Bij J¢ 0.
For obtaining the systems of linear equations corresponding to (51) (for n=0,1,2,3,...;), we define the
following isomorphic linear transformations

n
j=0
which could also be represent as
I fo_ _Co - do_
fl Cl - dl
f, c,—d,
= . (52-1)
.l ¢, —d, ]
_eO_ _BOO BOl BOZ BOn__CO + dO_
el Blo Bll Blz Bln Cl + dl
e3 BZO BZl BZZ . . . BZn C2 + d2
= . . ; (52-2)
_en_ _Bno Bnl Bn2 Bnn__Cn + dn n
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where det B =0, and matrix B be invertible. Thus, by the above transformations, the systems of linear
equations corresponding to (51) are (34) (for n=1), (36) (for n=2), (37) (for N=3) and (38) (for
N =4). Hence, using (52-1) and (52-2), these matrix equations are represented as follows

[Boo(co + dO)][ml] =0, (53)

1

> By;(c;+d;) ¢ —d, {ml}

" =0 (54)
—2 Byj(c;+d;) ¢ —d, |2
j=0
- , _
D By(c; +d;) 0 ->B,(c;+d;) ¢ —d,
j=0 , J';O m,
0 D By;(c;+d;) —D.Bj(c;+d;,) —(c,—d,)|m, 0, (55)
i=0 j=0 )
c,—d, c,—d, c, —d, 0 M
2 2 m,
- > Bj(c;+d;) D.B,(c;+d)) 0 C, —d,
L -0 i=0 |
e, 0 0 0 O -e e f[m]
0 €, 0 0 e 0 -e f,|m,
0 0 e, 0 —e, g 0 fym,
0 0 0 ¢ —-f —-f, —f, O0fm, _o (56)
o -f, f, ¢ f 0 0 0fm
f 0 -f, e O f, 0 0| m
-f, f 0 e O 0 fo, O flm,
-e -e —-¢ 0 O 0 0 fy | mg]
where
3
& =Y By(c;+d;), fy=c,—d,,
j=0
3
e =Y B(c;+d;), f=c —d,
"0 (56-1)



@D
o

OTT O O O OO oo oo o

w

—_—n —h

N

D

0 0 0 0 O 0 o 0 O 0O -e 0 -e -e f [m
€ 0 0 0 O 0 0O 0 O e, 0 e, 0 -—-e -—f,|m,
0 € 0 0 O 0 0 0 -e¢ O 0 e, e 0 fo | mg
0 0 e 0 0 0 0O ¢ O 0 o -—-f f, —-f, 0 |m,
0 0 0 ¢ O 0 0O 0 -e -e -e O 0 0 —f,|m
0 0 0 0 g 0 0O e O f, -f, O 0 f, 0 || mg
0 0 0 0 O e, 0 e —-f O f, o -f, O 0 || m,
0 0 0 O 0O e ¢ f, —-f, 0 f, 0 0 0 | mg| 0
0 o -f, 0 —f, —f, f, f, O 0 0 0 0 0 0 | m
0 f, o f, O e e, 0 f, 0 0 0 0 0 0 [ my,
-f, 0 o f, -¢ 0 e 0 O f, 0 0 0 0 0 |my,
0 0 o f, e -e¢ 0 0 O 0 f, 0 0 0 0 |{mg,
-f, -f, ¢ 0 O 0 -e¢ 0 O 0 0 f, 0 0 0 || mg,
0 -f -e 0 O e, 0 0 0 0 0 f, 0 0 |[my,
f, 0 e, 0 -e O o 0 O 0 0 0 0 f, 0 |[mg
e, —-e 0 e 0 o 0 O 0 0 0 0 0 fo | My
)
where
ZBOJ(C +d;), f,=c¢,-d,,
j=0
4
e =Y B(c;+d;), f=c —d,
j=0
4
e, =Y B,(c;+d;), f,=c,—d,, (57-1)
J:O
e, = By(c;+d;), fy=c,—dj,
J:O
e4:ZB4j(cj+dj), f,=c,—d,.

—
Il
o

It is noteworthy here that there are not the similar isomorphic linear transformations such as (51-1) -
(51-2) (that were definable for quadratic equation (51)) for the third and the higher order equations of the
form:

> By (cc,c —dd,d)=0, > Byl(ccice—dddd)=0,... (58)

i,j.k=0 i,j.k,1=0
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Moreover, by the following choices

BOO BOl BOZ BOn
B10 Bll BlZ Bln
BZO BZl BZZ BZn
B= ,
_BnO Bnl Bn2 Bnn_
_CO_ _dO_ _eO_ _fO_
Cl dl e1 fl
C2 d2 e3 f3
C=|.|, D=| .| E=|.| F=| .} (59)
_Cn_ _dn_ _en_ _fn_
we can rewrite the transformations (52-1) and (52-2) as follows
E=B(C+D), F=C-D, (60)
From (60) we also get
C=4%(B'E+F), D=%(B'E-F) (61)

In (61) B~ is the inverse of matrix B . In Section 2-6, using the relations (60) and (61) and also the
solutions of matrix equations (34), (36), (37) and (38), we directly will determine the general solutions of
systems of linear equations (54) — (57), which will be the general solutions of quadratic equation (51) as
well, forn=01,2,3,... .
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2-6. Now utilizing the standard and specific methods of solving the systems of homogeneous linear
equations over the ring of integers [7], below we obtain the general parametric solutions for the systems

of homogeneous linear equations (34), (36), (37) and (38) for unknowns €, and f;.

First, let we write a definite parametric solution of general homogeneous linear equation of the type

Zn: ax =0 (62)

for unknowns Xx; , over the ring of integer elements [7, 8]:

n'Njos

n-1
Xj =a k (J :1!2131---!n_1)’ Xn :_Zajkj (63)
i1

where k. are arbitrary integer parameters, and &, # 0. Furthermore, if X/ and x! (i =1,2,3,...,n) be two

solutions of equation (62), then X = X" and tx. (where t is a non-zero integer) also are the solutions of
(62), such that

Olax =0, > ax'=0) = > a(x+x)=0, > ax)=0<>ax =0 (631
i=1 i=1 i=1 i=1 i=1
On this basis, for equations (34) we directly get the following general symmetric solutions
g, =k,m,, f,=km, e =km,, f=-km (64)

where k;,k,;m;,m, (m, = 0) are arbitrary integer parameters.

For system of linear equations (36) we get

e, =k,m,, f,=km —-km,, e =km, f =km,-km, e, =km,, f,=km,—k,m, (65)

wherek,, K,,K;;m;,m,,m;,m, (m, #0) are arbitrary integer parameters. Particularly for matrix

equation (36), using (25-1), (25-2), and (65) we may also obtain the following type of the general
solution (which includes the solution (65) as well):

e, =k,m, —k,m,, f,=k,m —-km,, e =k,m,—k,m,,
(66)
f, =km; -k,m, e, =km,-k,m, f,=km,—-k,m,.

where K;,K,, K5, K,;m;,m,,m;,m, (m, =0 or k, = 0)are arbitrary integer parameters.
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For the system of equations (37), similarly, the following general parametric solutions are obtained
(where we suppose Mg = 0):

e, =k,mg, f,=km +k,m,+km,, e =kmg, f =-km+km,—-km,,
(67)
e, =k,mg, f,=-k,m,-km.+km,, e =kmg, f,=-k,m,+k,m, —k;m,.

where here K;,K,,K;,K, are arbitrary integer parameters. Meanwhile, from the matrix equation (37) a

necessary additional condition also appears for parameters Mm; (that appears in the course of obtaining
solution (67) from the equation (37)) as follows

m,m, +mm; +m,m, + mym, =0 (68)

Condition (68) is also a homogeneous quadratic equation that corresponds to matrix equation (37), and
should be separately solved. On this basis, using the matrix equation (37) for (68), and since the

parameter m,does not appear in the solutions (67), the following unique relations and two types of
general solutions (which are algebraically equivalent) for condition (68) are obtained:

m, =0, (69)
mg : an arbitrary Integer parameter (mg = 0), (70)
mm, +m,m; + mym, =0 (71)

where one type of solution is
m, =uv,, m,=uy,, m;=uyv,,
m; =Uu,V, —U,V,, Mg =UV,;—UV,, M, =UgV, —U,V,, (72)

m, =0, mg: an arbitrary Integer parameter (mg; = 0) ;

and another type of solution (which includes the first type as well) is as follows
m, =u,v, —Uu,V,, m, =u,v, —u,v,, my=uyv,—u,v,
m, =u,v, —U\V,, Mg =uV,—Uyv,, m, =U,v, —u,v,, m, =0, (73)
m, =0, mgy: an arbitrary Integer parameter (m, = 0).
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where u;,U,,U,,u, and v;,V,,V,,V, are arbitrary integer parameters. By replacing the values of m,,

(from the relations (72) or (73)) in formulas (67), the general parametric solution for matrix equation (37)
is obtained. We should note here that since the relation (71) correspond to the matrix equation (36), two
sets of (algebraically equivalent) solutions (72) and (73) follow from two basic parametric solutions (65)
and (66). It is noteworthy that, in particular, the relations (73) in terms of parameters

m,,m,,m,, M., M,, M, have a certain appropriate symmetric structure which is compatible with a
symmetric requirement in the course of the application of these results in physics, presented in Section 3.

For the system of equations (38), the following general parametric solutions are obtained as well (where
we suppose M, # 0),

€ = k5m16’ fo = k4m1 - k3m2 + kzms - k1m51 € = k4m16’ fl = _kSml + klmlz + k2m14 + k3m15’
€, = k3m16’ fz = ksmz + k1m11 + kZmlS - k4m15’ €; = k2m16’ f3 = _k5m3 + klmlO - k3m13 - k4m14’ (74)

€, = klmle' f4 = ksms - k2m10 - k3m11 - k4m12-

k., K, K, Ky, Kg are arbitrary integer parameters. Moreover, the parameters m, should satisfy the following
conditions (which in the course of obtaining the solution (74) from matrix equation (38)):

m,Myg =—MM;3 —M,My, — MM,

MMy = MMy, +M,My, — MMy 5,

M, My = MM, —MyM,, —MgM,y, (79)
MgM;g = M, My + M3My; + MM,

MyMyg = MyoMy5 — My My + MMy 5.

Conditions (75) are a set of homogeneous quadratic equations that generally correspond to the matrix
equation (37), and should be solved as a separate set of quadratic equations. On this basis, using the

matrix equation (37) for conditions (75), and since the parameters m,, m;, M,, My, My don’t appear in the

solutions (74), the following unique relations and two types of general solutions (which are algebraically
equivalent) for conditions (75) are obtained:

m,=mg=m, =mg=m, =0, (76)

m,: an arbitrary Integer parameter (m,q #0), (77)
-mm,, +m,m;, +m.m,, =0, (78)

mm, +m,m,, —msm,; =0, (79)

m,m,; +m,m,, +M;m,g = 0, (80)

m,m,, +MmM;m,; +mym;; = 0, (81)

m,M;s +M,M; —Mm;m, = 0; (82)
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where one type of solution reads

My, = U,V — UV, My =UgVy — Uy Vg,
My, =UVy = UV, Myg = UV —UsVy,

My, = UV, —UpVy, Mg =U,Vs —UgV,,

m, . a free Integer parameter (m,, = 0).

and another type of solution (which includes the first type as well) is derived as follows:

m, = U,V —UV,, M, =UzV, —U.V,,
m; =UgV, —U,Ve, m, =0,

mg = UgV, —U,Ve, mg =0,

My, = UV — UV, My =UgVy — UV,
m;, =UV, —U,V;, Mg =UyVs —UgV,,
m,, =Uu,V, —Uv,, Mz =UuU,V; —UsV,,

m, . a free Integer parameter (m,, # 0).
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where Uu,,U,,Us,U,,U:V,,V,,V,,V,, Ve are arbitrary integer parameters. By replacing the parametric

values of m; (83) or (84) in relations (74), we get the general parametric symmetric solution for matrix
equation (38).

We should note here that since the relations of the types (78) — (82) correspond generally to the matrix
equation (36), two sets of (algebraically equivalent) solutions (83) and (84) follow from two basic
parametric solutions (65) and (66). Similar to relations (73), it is noteworthy again that, in particular, the

relations (84) in terms of parameters m;,m,,m,, m;,m,, m;,, m,,m,m,m: has a certain

appropriate symmetric structure which is compatible with a symmetric requirement in the course of the
application of these results in physics, presented in Section 3.

Applying the axiomatic linearization (and simultaneous parameterization, as necessary algebraic
conditions) approach based on the new Axiom 2-1 (formula (23)), the quadratic homogeneous equations
with more unknowns are solved in the same manner. We use the above obtained results for the
homogeneous quadratic relations, in Section 3, where we assume that the components of the relativistic
energy-momentum relation (as a definite quadratic relation) are discrete quantities.
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3. A Direct Logical Derivation of the Laws Governing the Fundamental
Forces of Nature

“Including a Unique Set of the General Relativistic (Single-Particle) Wave Equations —
Formulated Solely in D <4 Dimensional Space-Time”

In this Section on the basis of the mathematical axiomatic approach presented in Section 2 (particularly,
the A, by linearization (and simultaneous parameterization, as necessary algebraic conditions), followed
by first quantization (as a postulate) of linearized (and simultaneously parameterized, as necessary
algebraic conditions) unique forms of the special relativistic energy-momentum relation (which are

defined algebraically for a single particle with invariant mass Mg), we derive a unique and original set of
the general relativistic (single-particle) wave equations directly. These equations are shown to correspond
uniquely to certain massive forms of the laws governing the fundamental forces of nature, including the
Gravitational, Electromagnetic and Nuclear field equations (which based on our approach are solely
formulable in (1+3) dimensional space-time), in addition to the (half-integer spin) single-particle wave
equations (formulated solely in (1+2) dimensional space-time). Notably, these results are primarily
mathematical, assuming the relativistic energy-momentum is a discrete quantity— that is a basic
quantum mechanical assumption.

Each derived relativistic wave equation is in a complex tensor form, that in the matrix representation (i.e.
in the geometric algebra formulation, see equations (120) — (121)) it could be written in the form of two
coupled symmetric equations — which assumedly have chiral symmetry if the particle wave equation be
source-free. In fact, the complex relativistic (single-particle) wave equations so uniquely obtained,
correspond to certain massive form of classical fields including the Einstein, Maxwell and Yang-Mills
field equations, in addition to the (half-integer spin) single-particle wave equations such as the Dirac
equation (where the Dirac spinor field is isomorphically re-presented solely by a tensor field in three
dimensional space-time [29, 31]).

In particular, a unique massive form of the general theory of relativity — with a definite complex torsion —
is shown to be obtained solely by first quantization of a special relativistic algebraic matrix relation.
Moreover, it is shown that the massive Lagrangian density of the obtained Maxwell and Yang-Mills
fields could be also locally gauge invariant — where these fields are formally re-presented on a
background space-time with certain (coupled) complex torsion which is generated by the invariant mass
of the gauge field carrier particle. Subsequently, in agreement with certain experimental data, the
invariant mass of a particle (that actually would be identified as massive photon) has been specified

(m$® = 1.4070696 x 10" kg), which is coupled with background space-time geometry (see Section 3-4-

1). Assuming our approach is the unique and principal way for deriving (all) the laws governing the
fundamental forces of nature, then based on the unique structure of general relativistic single-particle
fields derived and also the assumption of chiral symmetry as a basic discrete symmetry of the source-free
cases of these fields, it has been shown that the universe cannot have more than four space-time
dimensions. Furthermore, a basic argument for the asymmetry of left and right handed (interacting)
particles is presented. In addition, on the basis of definite structure of the field equations derived, we also
conclude that magnetic monopoles — in contrast with electric monopoles — could not exist in nature.
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As it was mentioned in Section 1-1, the main arguments and consequences presented in this
article (particularly in this section) follow from these three basic and primary assumptions:

(1)- “Generalization of the algebraic axiom of nonzero divisors for integer elements (based on
the ring theory and the matrix representation of generalized Clifford algebra, and
subsequently, constructing a definite algebraic linearization theory);”

This is one of the new and principal concepts presented in Section 2 (see formula (23).

(2)- “Discreteness of the relativistic energy-momentum (D-momentum);”

This is a basic quantum mechanical assumption. As the quantum theory, particularly, tells us that
energy and momentum are only transferred in discrete quantities, i.e., as integer multiples of the
quantum of action (Planck constant) h.

(3)- “The general relativistic massive forms of the laws governing the fundamental forces of nature,
including the gravitational, electromagnetic and nuclear field equations, in addition to the
relativistic (half-integer spin) single-particle wave equations, are derived solely by first quantization
(as a postulate) of linearized (and simultaneously parameterized, as necessary algebraic conditions)
unique forms of the relativistic energy-momentum relation — which are defined algebraically for a

single particle with invariant mass Mg).”
We also assume that the source-free cases of these fields have “chiral symmetry”.

Note that the geometrized units, metric signature (+ — ... —) and the sign conventions (97) will be used. So
particularly, we assume the speed of light ¢ =1. However, for clarity and emphasis, in some relativistic
relations "c" as a constant be restored and indicated formally.

3-1. Assuming the components of the energy-momentum vector are discrete quantities (as a basic and
original quantum mechanical assumption)®, then definitely the invariant and relation of the energy-
momentum for a massive particle in the special relativistic conditions, i.e.

g“"p,p, =9""p, b, , (85)
LV VvV — im C
9""p,p, = P"P, =(FMee)” = 9% (=) (86)
V9

are the special cases of the general algebraic quadratic relation (51). Where g“"are constant symmetric
coefficients, Mg is the rest mass of a single particle, and p,,, p;, are the components of the relativistic

energy-momentum vector in two reference frames. Note that based on our chosen sign conventions, the
minus sign in relation (86) is for the particle, and the plus sign is connected to its anti-particle. The next
formulas and results are formulated and obtained only for particles (for anti-particles the mass sign should
be changed).As a direct consequence of the axiomatic approach presented in Section 2, the relations (85)
and (86), necessarily, should be linearized (and simultaneously parameterized, as necessary algebraic
conditions).

1. This is a primary quantum mechanical assumption. However, for general and expanded cases of the discreteness, and concerning discrete
physics, it is noteworthy that in many modern and standard quantum theories (Lorentz invariance), it is assumed that certain physical quantities
are discrete. These theories include the lattice field gauge theories such as lattice QCD, quantum gravity theories, etc. [15 — 22]. However, the
discrete axiomatic approach presented in this article directly yields to parametric linear transformations corresponding directly to the Lorentz
transformations.
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Hence, using the matrix relations (53) — (57) (which are also hermitian), we get the following unique set
of systems of linear equations that correspond equivalently to the relations (85) and (86):

First for relation (85), the equivalent set of matrix relations for various space-time dimensions are given
as follows, respectively (where S; are parameters similar to parameters M, in the matrix relations (53) —

(57)).

[9°°(p, + p2)] [5.]=0 (87)
{9°”(pv+ p.) pl—pi}{sl}zo )
—-9"(p,+P) Po— Py LS
where v=01;
9" (p, +p.) 0 —9%(p+p) PP S
ov ’ Ay ' _ n S
O ' g (pv+'pv) g (pv+' pv) (pZ pZ) 2 =O (89)
pz - pz pl - pl po - po 0 S3
-9"(p,+p)) 9¥(p,+p.) 0 Po— Py |LSs
where v=0,12;
e, 0O O O 0 -e e fs]
0 & 0 0 & 0 -e f,|s,
0 0 ¢ 0 -e ¢ 0 fys;
0 0 0 ¢ -—-f —-f, =f, 0|s, _0 (90)
o -f, f, ¢ f O 0 O0]s
f 0 —-f e O f, 0 O0|s
-f, f 0 e O 0 f, 0fs,
-¢ -¢ -¢ 0 O 0 0 fy Ss]
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=0,1,2,3 and

where v

(90-1)

S,Sg +,Sc +S,S5 +5,8, =0,

!
0

)! fo:po_p

!
14

e=9"(p,+p

!
11

)’ flzpl_p

!
14

el:glv(pv+ p

(90-2)

!
21

)1 f2:p2—p

!
v

e,=9%(p,+p

!
3"

)’ f3=p3—p

!
14

e;=9>(p,+p

(notice that the condition (90-1) is equivalent to the algebraic condition (68));
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(91)

34



where we have

S4816 = 751513 = 5,514 = $35;5, (91-1)
S6S16 = S1511 T 5,51, ~ S5Sys, (91-2)
S7316 = S1510 ~ 5351, — S5Sua (91-3)
SgS16 = S2510 + S3511 + 55543, (91-4)
SgS16 = S10515 ~ S11514 F 512513 (91-5)

and
&=9"(p, +P.) fo=po—Pp
e=9"(p,+p) f=p—pl
&,=9"(p,+p) f,=p,—p (91-6)
&=9"(p, +p,), fy=ps—pj
&, =9"(p, +p) fo=p,— P

and v =0,1,2,3,4. Notice that the algebraic conditions (91-1) — (91-5) are equivalent to the conditions
(75).
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The systems of linear equations that correspond to the relation (86) are also obtained as follows,
respectively, for various space-time dimensions:

m,C

i

(where py =—

where v=01;

, m,C , m,C
9”'p, - 9% (=) 0 -9’ pﬁQ”(ﬁ)

g g

m,C m,C
0 9P, —97(=) —9"p, +9°(=)
g00 g00

P, P, o + (1)

g
v m,C v m,c
-g' pv+gl°(\/%) 9°'p, - 9% (=) 0
. g g
where v=0,12;

e, O O O O -e e f[s]
0 g 0 0 e 0 -¢ f,|s,
0 0 ¢ 0 -e ¢ 0 fy|s;
0 0 0 e —-f -f, —=f, O|s,
o —f, f, ¢ f, 0 0 0]fs
f 0 -—-f e O f, 0 O0|s
-f, f, 0 e 0 0 f,  0fs,
-¢ -¢ - 0 O 0 0 fy Ss]

, if u#0:p, =0)

m

0™ (py - 125 [[s,]=0
{ m]”

. m,C
9’ pv—g"“(ﬁ)
g

m,C m,C

v 10
_g pv+g (m) p0+( goo

P,
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(93)

P,
S
- p, Sl

21=0
0 Sy
S4
m,C
Py + (F)_

(94)

0 (95)



=0,1,2,3 and

where v

(95-1)

S,Sg + ;S5 + 5,85 +S55;, =0,

),

gOO

m,C
fo = Po + (2

),

gOO

m,C

m,C

& =9"p, —9"(

(95-2)

f1: P1s

),

i

e, =g"p, —g'

f2= P,

),

00
g
m,C

m,C

e, =9"p, —9°(

f3 = Ps.

),

gOO

&;=9"p, -9

Notice that here also the condition (95-1) is equivalent to the algebraic condition (68).

For (1+4) dimensional case we obtain:

o
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1

O O O O O O O O O &«

O O OO0 O o o o <« o

Y 0 0o o oo o <L o o

(96)
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where we have

S4S16 = 51813 = 5,54 — S35, (96-1)
SeS16 = 1511 15,51, = S5S,5s (96-2)
S7816 = 51810 —S351, — SsSy4, (96-3)
SgS16 = S,510 3511 + 55545, (96-4)
SgS16 = S10S15 ~ S11514 T 515535 (96-5)
) m,C m,C
€&=0"P, —9"(F=), fo=p+ (),
g g
) m,C
€ = gl P, — glo( Ooo)’ 1:1 = Py,
g
) m,C
&, =9"p, —9”(—=) f,=p, (96-6)
\v9

m,C

e3:gsvpv_gso( )’ f3: Ps,
/goo

_ N4V _~40 mOC _
&=9"p, —¢ (—m), fe =P,
andv =0,1,2,3,4 . Notice that the conditions (96-1) — (96-5) are equivalent to the conditions (75).

3-2. A Direct Derivation of the Lorentz Transformations for “Discrete” Momentums

From the matrix equations (87) — (91) obtained by our axiomatic discrete approach (based on the Axiom
1-2, i.e. formula (23)), by linearization and simultaneous parameterization (as necessary algebraic

conditions) of quadratic relation (85)) and the assumption of discreteness of the relativistic quantities p,

and p;, and also the relations (90-2), (91-6), (95-2) and (96-6), and the parametric solutions
corresponding to the matrix equations (87) — (91, i.e. solutions (64), (66), (67) and (74), the parametric
linear transformations between two reference frames, that correspond to the Lorentz invariance, are
derived directly. In fact, the general parametric form of linear transformations (corresponding to the
Lorentz transformations) between two reference frames are determined directly from the matrix
equations (87) — (91) and their parametric solutions. Notably via this approach, the discreteness of
the relativistic energy-momentum (D-momentum) merely implies the linearity of these obtained
parametric transformations.

For instance, we show that how these transformations for (1+2) dimensional space-time are derived here.*
Hence from the matrix equation (89) and the integer-parametric solution (65) (for m, =1, or equivalently

for s, =1 in (89)) and assuming the Minkowski metric, we get the following isomorphic linear
transformations:

1. Lorentz transformations for higher space-time dimensions are derived by the same method for discrete momentums, and
definitely the derived transformations could be extended and applied for other physical quantities which supposedly would take
discrete values, such as space-time coordinates.
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1_2_2_ _ _ _
1 5378 sg 251 25253 2s1s3—|—2s2
2 2 12 2 12 2 2 1 _ 2
sz—i—sl 1 55 sz—f—sf 1 55 sz—l—s1 1 55 '
2 2,2 Po Po
_2S1+2S2S3 —sl—l—}—sz—l-s3 2s2sl—2s3 P |= p'l . (89-1)
2,2 4.2 2,2 4.2 2 42
S2+S1 1 55 s2—|—sl 1 55 S§+S1 1 55 » ,
p) 1)
22
252—i-25133 25251—1-253 sz+s3 1+s?
2,2 4.2 2,2 4 2 2,2 4 2
sz—l-sl 1 55 sz—i—s1 1 55 sz—l—s1 1 55
where S, are arbitrary integer parameters, and the inverse of (89-1) is given by
2 2 2
_1+s3—|—sl+s2 2(s1 s2s3) ) 2(32—1—3133)
2, 2 2 2., 2 2 2., 2 2
sz—l—s]—l—s3 s2+s1—1—s3 sz+s1—1—s3 '
Py Py
2 2 2
2(s1—|—s2s3) s;+H 1 =55 =55 2(s2s1+s3) 2= py (89-2)
s%—}—s%—l—sg sg—l-s%—l—sg s%—i—s%—l—sg .
Py Py
2 2 2
2 (sl Sy _Sz) 2 (s2s1 —s3) -85 5 — 1 + 57
2 2 2 2
s§+sl—l—s3 s2+s%—l—s§ s2+s%—l—s§
and for transformations (89-1) we also have:
22
—l—sg—sl—s2 —2s1—2s2s3 —2sls3+252
2 2 2,2 2 2,2
sg—i-sl—l—s3 s2+s1—1—s3 52+s1—1—5§
det -2s,+2s,s, —s%— 1 —l—s; +S§ 25,5, —2s, =1 (89-3)
s%—i—s%—l—sg s%—l—sf—l—sg s%—&-s%—l—sé
2,2 2
252—1—2s1s3 2s251—i-2s3 —S2+S3—1+S1
s%—i—s%—l—sg s%—i—s?—l—sg Si—i-s%—l—sg

The linear transformations (89-1) are equivalent to the Lorentz transformations, for certain values of
parameters S; obtaining from the initial conditions and given values (such as the relative velocity between

the frames). As an example, from (89-1) and the following values specified for parameters s; , the Lorentz
transformations for momentums in standard configuration [59] are directly obtained in the x-direction:

1
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1
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1+y

s =s3=0,s R
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V 0
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—l—s1 —2s]
2 2
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—251 —Sl—l Py
2
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3-3. In this Section the geometrized units [9], the Einstein notation, and the following sign conventions
will be used (So, we would assume that the speed of light ¢ =1; however, for clarity and emphasis, in
some essential relativistic relations "c" as a constant be restored and indicated formally):

- The Metric sign convention (+——...—),

- The Riemann curvature and Ricci tensors:
o P P TA P _TP T4 — _RV
Raﬂv—évFM+FMFM 8#Fm FMF R =-R

vo ' ‘ou ouv?

- The Einstein tensor (sign): G,, =-8xT,, +.... (97)

uv

By “first” quantization of the linearized (and simultaneous parameterized, as necessary algebraic
conditions) unique forms of the relativistic energy-momentum relation (86) (i.e. matrix relations (92) —
(96) formulated for various space-time dimensions), we may directly derive and formulate a unique and
original set of the general relativistic (single-particle) wave equations directly. As we show below, these
equations correspond uniquely to certain massive forms of the laws governing the fundamental forces of
nature, including the Gravitational, Electromagnetic and Nuclear field equations (which based on our
axiomatic approach are solely formulable in (1+3) dimensional space-time), and also the (half-integer
spin) single-particle wave equations (that could be formulated solely in (1+2) dimensional space-time).
In addition, when first quantization procedure (as a postulate) is applied to the linearized (and
simultaneously parameterized) unique forms of the energy-momentum relation, i.e. formulas (92) — (96),
as the principal substitution rule, we assume the following general covariant quantities and (quantum-
mechanical) operator to be substituted by their corresponding quantities in algebraic matrix relations
(92) — (96):

- General covariant kinetic energy-momentum operator:
p,= 1A% u (98)

- The metric tensor: #Y =gt (99)

[(®@}

- There is a one-to-one correspondence between “the parameters S, “ and “the components of field
strength tensor X, . . and the components of covariant quantities goéx)g (which by formula (101-3)

defines a covariant current as the source of field X . We may show this correspondence by the
following formula:

Wp-,é“)

— (X)
[ X,uvg.,{ ' ¢vp..,§ (100)

w»

where §, are formally the quantities converted by first quantization of arbitrary parameters s,. Thus
the quantities (98) — (100) will be substituted by their corresponding quantities in relations (92) —
(96), that respectively, are p,(general relativistic kinetic energy-momentum vector), g“" (as

constant values in these algebraic relations) and s, (arbitrary algebraic parametric quantities). Hence,

diffeomorphism invariance and substitutions (98) — (100) corresponding to the quantities in the
relativistic energy-momentum (matrix) relations (92) — (96), directly yield a unique general
relativistic (single-particle) wave equation, which will be written in Section 3-4 explicitly. In

addition, in Appendix A we show that the field strength tensor X, = . (as a general tensor form) could

F R :
solely two (separate) values FW , Rﬂvm. In the same manner, ¢ °, @, (corresponding to these two
particular fields) are also covariant quantities which will appear in the derived equations and their
derivatives be equal to the sources of fields F,,, R, (see below).
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Furthermore, based on the assumption (3) in Section 1-1, and taking into account a notification presented
in Appendix A, we show that there are only two kinds of definable and acceptable field strength tensors

whose components could be substituted by the parametric quantities S;, and they convert (by first

quantization procedure, i.e. bg/ applying the basic formal substitutions (98) — (100)) the matrix energy-
mgmentumhrelatlons (92) — (96) into a unique set of the general relgtlwstlc wave equations. These are a
2" and a 4" rank anti-symmetric field strength tensors; where the 4™ rank tensor is (supposedly) equal to

the Riemann curvature tensor R#W, and another tensor be represented by FW. Assuming the local

gauge symmetry, we show that this 2" rank anti-symmetric tensor corresponds to certain massive
Electromagnetic and Yang-Mills (single-particle) field strength tensors.

3-4. On this basis, the tensor representation of the general relativistic single-particle wave equations
that are uniquely obtained and formulated by the (direct) logical derivation procedure described in
Section 3-3, is as follows (see Section 3-6, formulas (120) — (121)) for the original matrix
representation, i.e. the geometric algebra formulation of these equations):

ViXiipe TV X 7V X =M X M X A MTX o, (10141)
\/ H Im(()X) k H (X)
V#X vo.l ,ux vp..& :_‘]vp..,g : (101'2)
X - im{® X
where IO ==V, +—2—k,)o) (101-3)
i (X) i OO
=M (9.k,-g9,k,), M, =M*, _(D=Dimg™" (101-4)

e 2n 2h Y

and where (according to our derivation approach) these field equations will be formulated solely in one in

D < 4 dimensional space-time. Furthermore, in the above field equations X, - is the field strength

tensor, m((,x) is the invariant mass of the (free and interacting) field carrier single-particle, ifﬁy is the
covariant Kinetic energy-momentum operator (generally defined on a background space-time with the
complex torsion T generated by the invariant mass and given by formula (110), and

wy
k# :(C/Jg00 ,0,...,0) is the general relativistic velocity of a static observer (that is a time-like

contravariant vector). J*)_ is the source of the field strength tensor X Moreover, as it was notes

vp..& uvp.g*
in Section 3-3, field strength tensor X, . could take solely two separate tensor values,
Xppe =Fi+ Ru. » where R be the Riemann curvature tensor, and F,, be a rank two anti-
symmetric field strength tensor corresponding to the known single-particle fields (including the Maxwell
and Yang-Mills fields for (1+3) dimensional space-time, and Dirac fields for (1+2) dimensional space-
time). Moreover, in Appendix A we show that in (1+3) and higher space-time dimensions, the field

strength tensor X, - should be presentable by a formula of the type: X, , . = ABW_@ - Aﬂévp._g ,

A A

for some quantities A, , B, .,

relativistic single-particle field equations (101-1) — (101-4).

where this formula should be also “derivable” from the general

1. We will show in Section 3-7, that the field equations (101-1) — (101-4) in five dimensional space-time, which correspond to the matrix
relations (96), and also for the higher space-time dimensions, are incompatible with some certain supposed essential symmetry — where we’ll
conclude that the universe cannot have more than four space-time dimensions.
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Hence in various space-time dimensions, the field equations (101-1) — (101-2) (for two separate field

strength tensors F,,, R, ., and taking into account a necessary condition mentioned above that

be presented in Appendix A) be formulated as follows, respectively:

first quantizatbn

Relation (92)  — v, F*=(im{® /mk,F* =0 (102)

where =1, x=0,and s, >$ =F,.

first quantizaton

Relation (93) -

V,F, +V,F _+V Fo=2,F +Z, F +Z,F., (103-1)

Moy o ——3® (103-2)

where A, p, 0,4, v, T=0,1,and

8 8 (E) 1(E) - imf® (E) |m( )
Sl = Sl = FlO’ SZ = SZ = ¢ ' J v = _(vv + h kv)¢ ' Zry (gry v rvky)'
first quantizaton
Relation (93) -
ViRtV R VR =T R +T R +TUR (103-3)
u im{® u ©)
V R vpo 5 k R o = vag (103-4)
where A, p, 0,1, v, T=0,1,and
A ©)  1(6) img® © m(G)
SlelleOpO" SZHSZ (Dpo_, ‘J vpo-_ (V +— k) r (gry v_ ‘rvk,u)'
first quantizaton
Relation (94) -
V.,F W+VﬂF a+V.F = Z’MF . +ZTWF .+2°,F _ (104-1)
- im(E)
vV, F4 ——2—k,F4 =-J® (104-2)
where A, p, 0,4, v, 7=0,1,2 ,and
A A A A E E — Im(E) E
;8 =F, s,—~8$,=F, s;>8=F,, s,~8$=0%, J® =V, +—2-k,)p®,

= (m$® /20)(g, .k, —g.,k,).

1. Exceptionally, the tensor equation corresponding to relation (92) (for one dimensional space-time, i.e. where only the time dimension exists) is

a special and trivial case, where the Riemann tensor vanishes; so for this case, formally, we just assume a tensor such as F 1 that is substituted

by the only parameter S, in (92)).
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first quantizaton

Relation (94) -

ViRtV R +V,R, o =T R +T R +TUR (104-3)
= oy lm(G) ) ©
V/JR 172 A k R voo _‘]vpa (104_4)
where A, p, 0,1, v,7=0,1,2,and
(G)
R . . img
S8 =Ry S8 =Ry, S5 8,=Ry,, 5,8, =02, JC = —(V, +—— . k,)p'Y
(G)
|m
T/ll/ Zh (gz',ukv _grvkﬂ)'
first quantizaton
Relation (95) -
V,F ,+V,F +V F =ZT&, F. +Z’WF .+Z°,F o (105-1)
i (E)
- im A ]
V#F”V—TokuF‘v_—J > (105-2)

where A, p, 0,4, v,t=0,1,2,3, and

A

S l%§1 = FlO = Aoél_Aiéo’ S, = §2 = on = Aoéz _Azéo’

im (B)
|m
ry (gr,u v rv y)

Sl:AOBl_A.'LBO’ SzonBz_AzBm SsonBa_Ast 34:0'
SszAsBz_AzB3' SGZALB3_ASBl’ 37:A281_A182’

S . an arbitrary parameter ;

where
Ao:V4' Bo:U4' A1:V3’ Bl=u3’

A2:V2! Bzzuz’ A3:V1’ Bazul-
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first quantizaton

Relation (95) -

V,Riw*V.R, +V,R, . =T, R +T R, +T,R, ., (1053)
— P Im(G) k P ©)
v,uR vpcr h R Vpo‘ - ‘]Vpg (105'4)

where A, p, 0, 4,v,t=0,1,2,3, and

A

51'_>§1:R10pa =AOBpo'1_Apr0'0’ S2'_>§2:R20pa :AOBpO'Z_AQBpo'O’

S3 §3 30p¢7 AOBpa'S A3Bp<70’ S, = §4 =0, Sg > §5 = RZSpU = A3Bp¢72 - AZBpO'3’
a a A B N

Sg > Sg = 31,00' AiB ASBpa'l’ S8, = 12pa AZBpal Apraz’ Sg > 8 = (0;(70)

(G)
1€ =¥, +'mG K)e®

T = (gw v 90K
$;=AB1—AB. o S5=AB.,—-AB. ¢ S3=AB.;-AB_, s,=0,
Ss=AB,—AB 3 Ss=AB,—AB_ ., $;=AB_—-AB_,,

S . an arbitrary parameter ;

where

Ao:V4’ ch70:u4’ A1:V3' Bpo-l:u3’

A2=V2, o2 = Uz, Aa Vi, po‘ 3 = U
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first quantizaton

Relation (96) -

V,Fk ,+V,F, +VF, =2, F +2° F, +Z°,F (106-1)

im{®

6/1 = ,uv _ k// F ﬂv — _J (E) (106'2)

where A, p, 0,14, v,7=0,1,2,3,4,and
s, 8 =F,=AB, —AB,, s,—$,=F,=AB,—AB,,

S, 8, =Fy, = AB, —AB;, 5,8, =0, s, =F,=AB,-AB,,

& _ _ AR AR & _ (N)
S;5> 85 =F,; =AB,-AB,, s> S;=¢",

(

E) (E)
_ |m
(E) _ (E)
JU =—(V, LB Vo

‘ry (gr,u v rv ,u)

s, =AB,—AB,, s,=AB,—AB,, s,=AB,-AB,,

s,=0, s,=A,B,-AB,, s;=0, s,=0, s;=0, s,=0,
s,, =AB,-AB;, s;=AB,-AB,, s,=AB,-A,B,
s;=AB;-AB,, s,=AB;,-AB,, s.=AB,-AB,

S,¢ . an arbitrary parameter ;

where

A():VS’ BOZUS’ A1=V4’ Bl:U4, A2=—V3’
Bz =—U,, ASZ_Vza BSZ_UZ’ A4:V1’ B4:u1'
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first quantizaton

Relation (96) -

ViR +V,R e +V.R, =T R +T R +TLR. ., (106-3)

(G)
N O g VR [ (106-4)

where A, p,0,4,v,7=0,1,2,3,4, and
S §1 = RlOpo‘ = Aoépo'l - Aiépao’ S, = §2 = ROZpo‘ = A2ém0 - Aoépo'Z’
S3 §3 30p¢7 Aonas A3ép(70’ S, = §4 =0, Sg > §5 = R04po' = A4Bpa0 - Aoé,m4
S8 =0, 5,>8,=0, $>85=0 s3>5=0, s;>8,=R,;, =A3L5>m4— A

Sll = é\l 42po- AZchr4 A4épo-2’ SlZ = é\12 = 41pc7 Apra4 A4épcrl
Siz3 > §1 32po‘ AzBpas A3 21 s SA14 RSlpo’ = A1 3 Asé
S5 > S 21po’ Ainaz AZBpal’ Si6 > S16 = ¢$)1
(G) (G)

im |m
IO ==V, + =2k, T, (0K~ 0K, ;
S = Aona1 - Aprao’ S, = AZBpO'O - AOBpO'27 S3 = AOBpo'3 - AngUO’
s, =0, 0= ABs S6=0, 5,=0, 55=0, s,=0,
SlOZASBpoll_A Bpo‘S’ 11— AzBpa4 p¢72' SZZAinO'4_AABp0'l’
Si3 = AZBpO'3 - ABBpO'Z’ S1a = A.'I.Bpa3 - ASBpo'l’ S15 = Alez - AZB/JO'l’
S, . an arbitrary parameter ;
where
Ao:V51 Bpo‘0:u A1:V4’ Bpo—l:u4’ A2: Vs,
Bo,,=-U;, Ay=-V,, B ,=-U,, A, =v, B ,=u,.

1. We will show in Section 3-7, that the field equations (106-1) — (106-4), which correspond to the matrix relations (96) (i.e. for five
dimensional space-time), as well as for higher space-time dimensions, are incompatible with some certain symmetry, where we’ll also conclude

that the universe cannot have more than four space-time dimensions.
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Where in field equations (103-1) — (106-4) we have (see also Appendix A):

Rypo =0 0 —T" 00 )= (0, 0, — T T ) (107-1)

VPO v pou

~ (E) ~ E)
Foo(v, + Mo A, -V, L

v

k,)A (107-2)

14

I'?_is the affine connection: T'” :1_“'” -K? F@# is the Christoffel symbol (or the torsion-free

ou ou ou !
connection), K ’”G# is a definite complex contorsion tensor generated by the invariant mass (of the field
(G)
carrier particle), given by: K”_ = ﬁ g”,K, (which is anti-symmetric in the first and last indices), A,

is the vector potential, and T_,, is the torsion tensor defined by

|m(G’ , D -1)im{®
T v = _va + Krv,u : (gm v TV y) T T'L %kv (107-3)
D is the number of space-time dimensions;1
: . |m(§E)
Tensor Z_, is also given by: Z,, = (9..k, —9,k,) (107-4)

Moreover, according to our derivation approach (see Section 3-7), the above field equations are solely
definable in D <4 dimensional space-time. So, only the equations (104-1) — (105-4) would be acceptable.

In addition, in the above field equations, m{® and m{® are the invariant mass of the (free and
interacting) fields carrier single-particles, 1A% , Is the covariant kinetic energy-momentum operator

(generally defined on a background space-time with the complex torsion T_  generated by the invariant

wv

mass and given by formula (3)), k* = (C/,/g00 ,0,...,0) is the general relativistic velocity of a static
observer (that is a time-like contravariant vector), and the covariant currents Jfffa) and JéE) are the

sources of the above fields. In particular, for massless cases (i.e. m{® =0, m{¥) =0), the field equations

(105-1) — (105-4) turn into the Maxwell, Yang-Mills (if assuming the local gauge invariance, see below)
and the gravitational single-particle fields [68, 69] (in fact, in the context of relativistic quantum
mechanics, these relativistic fields could precisely describe single-particles, where the solutions are taken
to be complex).

L In the general relativistic wave equations (102) — (106-4), quantities Bﬂ ) Bpﬂ ,»and Aﬂ (as a differential operator) are defined as
(See Appendix A):

A#Yaﬂlz---an = a,uYalaz... Fj#Yﬂaz a ! A#Y a1a2a3...an =0 Ya1a2a3...an + Fa;lMY iaza}..an
A A - im{® . |m(§G) ©)
B,=A,, B,, =T, Theconservation laws would be (V, — o =2k )I® =0,(V, - 5 —k,)J ;U =0.

Moreover, the commutator of covariant derivative with torsion is [25, 27): (V ,V, =V V =V, Rpo' T,V.N,.
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In Section 3-5 we show that the Einstein field equations (that necessarily include a cosmological
constant) are derived directly from field equations (103-3) — (103-4), (104-3) — (104-4) and (105-3) —
(105-4) and so on, for various space-time dimensions.

As an additional principal requirement, we show below (in Section 3-4-1) that we may also assume
that the “massive” Lagrangian density for the obtained general relativistic single-particle wave
equations (2-1) — (2-3), be locally gauge invariant as well — where these fields be still massive, and

V. be equivalent to the general relativistic (with torsion (107-3), which is compatible with the local

gauge invariance condition [9, 58, 60 - 63]) form of the (local) gauge-covariant derivative [67]. On
this basis, in (1+3) dimensional space-time, equations (105-1) — (105-2) not only would describe a
certain massive form of Maxwell’s (single-photon) field based on the Abelian gauge group U (1),
but also would present a certain massive form of Yang—Mills (single-particle) fields based on the
(non-Abelian) gauge groups SU(N). For the latter case, the field strength tensor, vector gauge
potential and the current in equations (105-1) — (105-2), are also written in component notation as:

Fe,. A%, J%F) where the Latin index a=1,2,3, .., N°-1,and N’ -1 is the number of linearly

independent generators of the group SU(N) (as a real manifold) [58]. Hence, by requiring the local
gauge invariance for general relativistic massive particle field equations (105-1) — (105-2), in Section
3-4-1, we show that the massive Lagrangian density specified for these fields could be locally gauge
invariant — if these fields be formally re-presented on a background space-time with certain complex
torsion which is generated by the invariant mass of the gauge field carrier particle. Subsequently, in
agreement with certain experimental data, the invariant mass of a particle (that would actually be
identified as massive photon) has been specified (m{® = 1.4070696 x 10 kg), which is coupled

with background space-time geometry. Note that the gauge theoretic approach for the field equations
(104-1) - (104-2) could be applied, too.

It is noteworthy to recall that gauge symmetries can be viewed as analogues of the principle of
general covariance of general relativity in which the coordinate system can be chosen freely under
arbitrary diffeomorphism of space-time. Both gauge invariance and diffeomorphism invariance
reflect a redundancy in the description of the system. In point of fact, a global symmetry is just a
local symmetry whose group's parameters are fixed in space-time. The requirement of local
symmetry, the cornerstone of gauge theories, is a stricter constraint [58]. However, our approach
could be also considered in the framework of the theories that lie beyond the Standard Model [71], as
it also includes new consequences such as a certain formulation for the gravitational particle field.

In addition, we should note that the field equations (104-1) — (104-4) and (105-1) — (105-4) would
correspond to two different single-particle fields: (104-1) — (104-2) correspond to the tensor
representation of the spin-1/2 single-particle fields formulated solely in (1+2) dimensional space-time
[29, 31] — where we necessary have F,,=F,, =0[29, 31]; and (105-1) — (105-2) describe the spin-1
single-particle fields formulated solely in (1+3) dimensional space-time [68, 69]. In the precisely same
manner, the field equations (104-3) — (104-4) describe the spin-3/2 single-particle field (gravitational)

formulated solely in (1+2) dimensional space-time — where R# o 18 the Riemann curvature tensor, and

we necessary have Ry, . =Ry, =0. The field equations (105-3) — (105-4) also describe the spin-2

single-particle (gravitational) field formulated solely in (1+3) dimensional space-time. However, it should
be emphasized here (as we noted above) that, in general, for single-particle field equations (102) — (105-
4), the (quantum mechanical) solutions are taken to be complex [29, 30, 31, 68, 69]. However, in the
context of relativistic quantum mechanics, the field equations (104-1) — (105-4) are subject to a process of
2" quantization anyhow; then these equations would describe solely the bosonic fields in (1+3)
dimensional space-time, and the fermionic fields in (1+2) dimensional space-time.1

We will show in Section 3-7, that the field equations (106-1) — (106-4), corresponding to the matrix relations (96) (i.e. for five space-time
dimensions), as well as for higher space-time dimensions, are incompatible with some certain symmetry and are not definable, where we’ll also
conclude that the universe cannot have more than four space-time dimensions.
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3-4-1. The Local Gauge-Invariance of “Massive” Lagrangian Density of the
(unique) Obtained Massive Forms of Maxwell and Yang-Mills Fields

In this section we present (for the first time) a complex torsion approach to the massive gauge field

theory. Hence, corresponding to the general relativistic massive single-particle wave equations

(103-1) - (103-2), (104-1) — (104-2), (105-1) — (105-2), and so on — as special cases of the generally

derived field equations (101-1) — (101-4) in various space-time dimensions, which particularly represent

the Maxwell and Yang-mills fields in 1+3 dimensions — we may write formally the following their
equivalent field equations (formulable solely for a “rank two anti-symmetric” field strength tensor):

%AFW+§#FM+§VF@=O, (108-1)

V. F* =-3® (108-2)

)7 v

where we suppose the general covariant derivative V , 1s defined with the following complex torsion
tensor (similar to the torsion tensor (107-3)) generated by both invariant masses m{®) and m{®:

V,F ww=0,F,, —(7, - KTM)FW —(T", - K’M)Fﬂr , (109)
> i(m® +m®) _
K=" > 9.k, ; (109-1)

where f’j,# is the Christoffel symbol (or the torsion-free connection), va is contorsion tensor, and the

torsion tensor read

- im{® im{®
TT/JV = TT,UV + ZT/JV = 2h (gT,UkV - gTVk,LI) + 2h (gZ}UkV - gTVk,LI) (110)

Using formula (110) in the field equations (108-1) — (108-2), we may get a general relativistic wave
equation formally similar to massive field (103-1) — (103-2), ..., (105-1) — (105-2), as follows
=z, F +Z,F +Z°,F (108-3)

im{®

vV, F4 - k,F* =-3® (108-4)

and the covariant derivative V , is

A

however, here the background space-time is defined with torsion 'I:Tl
defined by (109).

The Lagrangian density for source-free (J (f) = 0) case of the fields of the type (108-1) — (108-2), is
given by [58],

1 v
L® == [-gF“'F ,, (111)

where ¢ is the metric's determinant.
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Assuming the local gauge invariance for field (108-1) — (108-2), in component notation formula (111) is
also written as

® 1 o Y
Lyt =_Z,/—gF o (112)
Now as for the trace part of torsion tensor 'I:W (110) we have

R [\ )
=(D-Dad, ¢
where D is the number of space-time dimensions, and

_i(m® +m®)

de: kV:?#(pzév(p, T

(114)

we may simply conclude that the conditions (113) — (114) are sufficient for the general relativistic field
equations (108-1) — (108-2) and the Lagrangian density (112) to be locally gauge-invariant [9, 58, 60-63].

Now, using the torsion tensor geometrical properties, in the above gauge fields if we assume that the

background space-time be re-defined with torsion T_,, = (im{®/ 2n)(9,,k, —9,,k,), as a geometrical
abject, and Z_,, = (im{® /2h)(g,k, —g,k,) as an independent tensor field generated by m{® (as the

invariant mass of the gauge field carrier particle), which its trace part, i.e.
z*,,=2,=(D-Dim{® /2n)k, =(D-1)0,¢ , y=im{? /2n (115-1)

couples to the gauge fields (108-1) — (108-2), then these fields be formally equivalent to certain massive
Maxwell and Yang-Mills single-particle fields. Hence the field strength tensor F"W and the locally gauge

invariant massive Lagrangian density (112) could be equivalently re-written as follows, respectively:
im{®
2h

Fo,=V,A° =V A’ + (k, A%, =Kk, A%) (115-2)
im{®
2h

im{®

(kK" A" — k#AVa)][(ﬁvAaﬂ ~V, A + o

L(gli) = _% VT g [(vaﬂa _vﬂAva + (kv Aa;z - ky Aav )]

(115-3)
where Aaﬂ is the gauge field vector (potential) and Y ., denotes the general relativistic form of the local

gauge-covariant derivative [67]. In addition, it is noteworthy that since (im{" / 2h)K* is a contravarint

“time-like” vector, the obtained unique massive Lagrangian density (115-3) for Maxwell and Yang-Mills
(single-particle) fields could be also considered in the framework of both three and four dimensional
cases of the Chern-Simons gauge theory [64, 65].
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It is noteworthy that for the case of electromagnetic field, according to [60 — 63], based on certain
experimental data we can establish a lower bound for » (as a constant) in (115-1): |7/| > 20. Thus, in
agreement with these experimental results, the invariant mass of a particle (that actually would be

identified as massive photon), which is coupled with background space-time geometry, can be
approximately specified as follows:

m{® ~1.4070696x10 * kg (115-4)

The above torsion (generally defined by formulas (110) and (115-1)) approach could be also applied for
massive neutrino which is coupled with background space-time geometry. Such massive particle fields
which are coupled to background space-time geometry (with complex torsion defined above) could be
fully responsible for the dark energy and dark matter as well [75].

We should note that the above particular approach for formulating the (local) gauge-invariance
formulation of massive Maxwell and Yang-Mills field equations (as well as the half-integer relativistic
single-particle wave equations such as the Dirac equation), by using a certain (coupled) complex torsion
tensor field (generated by the invariant mass of the gauge field carrier particle), may be also considered
via the teleparallel geometry — where for example the gravitation whether requires a curved or a
torsionned space-time, is a matter of convention [72 - 74]. In fact on this basis, the torsion tensor can
always be treated as an independent tensor field, or equivalently, as part of the space-time
geometry. That’s it.

Furthermore, the mass gap in quantum Yang-Mills theory may be connected with the background
space-time geometry with the above complex torsion. As professors A. Jaffe and E. Witten in the
conclusion of their famous article [70] concerning the mass gap problem in Yang-Mills theory, in
particular, have mentioned: “... One view of the mass gap in Yang-Mills theory suggests that it
may be tied to curvature in the space of connections”.

3-4-2. A Direct Proving of the Absence of Magnetic Monopoles in Nature

As a direct consequence of the assumption (3) in Section 1-1, and also the unique structure of derived
general relativistic single-particle field equations (101-1) — (101-4), as well as one of their particular
case for four dimensional space-time, i.e. equations (105-1) — (105-2) corresponding to the
Electromagnetic field (and also Yang-Mills field equations, see Section 3-4) we may conclude that
magnetic monopoles — in contrast with electric charges — cannot exist in nature. This conclusion is
based solely on certain algebraic properties of linearized (and simultaneously parameterized, as
necessary algebraic conditions) unique forms of the relativistic energy-momentum relation (95).

3-5. Deriving the Einstein Field Equations with a Cosmological Constant

The massless cases of general relat|V|st|c wave equations (103-3) — (103-4), (104-3) — (104-4) and (105-
3) - (105-4), are given by (m{® = =0):

\% RﬂVpU+V#RMpa +VVRWU =0, (116-1)
(©)
\Y R“m ==J, (116-2)

Hence, by contraction the 2" Bianchi identity (116-1) and assuming the sign conventions (97), we get

VJRW =V,R,-V.R, (117)
Then from (116-2) and (117) and the following definition
©G) —
Jype=—87(V,T,-V T,)+88(V,T9,-V T19,) , (118)
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where T, is the stress-energy tensor (T =T*4), g,, is the metric and ‘B’ is a constant (which be
specified for each space-time dimension), we easily obtain the Einstein field equations as follows:

R, =-8~(T,—BTg,)-Ag,, (119)

where A is a cosmological constant (emerged naturally in the course of obtaining (119)). Hence for
(1+1) dimensional case from (119) we get

R”V:—47zTgW+}/2Ag#v (119-1)

where B=0. For (1+2) dimensional case we have (however, for this case as we show in Section 3-7, we
have R =0):

02p0

R,,—%Rg, =-8xT, —2Ag,,, (119-2)
where B =1. For (1+3) dimensional space-time, we obtain

Ryv _% Rg,uv = _872-T,uv _Agyv (119_3)
where B=1/2.

3-6. Geometric Algebra Representation of the Derived General Relativistic
(Single-Particle) Wave Equations (103-1) — (106-4)

It should be mentioned that the general relativistic single-particle wave equations (103-1) — (106-4
derived by first quantization (as a postulate) of the energy-momentum matrix relations (92) — (96
(including matrices that are hermitian and generate a Clifford algebra ), in matrix representation, i.e. in
the geometric algebra formulation, are written as follows:

(iha"V , —mya*k,)¥; =0, (120)
(iha"V,, —mea*k,)¥; =0 (121)
where a’=p*+p'"*, at=p"-p* (122)

In matrix equations (120) — (121%_ — which each equation could be written in the form of two coupled
equations that assumedly have chiral symmetry if the single-particle field equation be source-free (see

Section 3-7) — ‘Yand ‘¥ are column matrices (representing the single-particle wave functions) and

matrices f*and B'* are the contravariant square matrices (corresponding to a Clifford algebra, see

Appendix B for special relativistic cases), are as follow! (for various space-time dimensions). Hence for
(1+1) dimensional case (corresponding to equations (103-1) — (103-4)) we have

, [0 0 , [t 0] . Jo1]  foo
ﬂ_O—l’ﬂO_o o’ﬂ_o O"Bl_l 0/

F Rigpo
{2 n[z]

IO =V, + (m® /20)k, 192, 3D =V, +(im{® /2n)k,]p'®.

vpo po !

1. The covariant matrices ﬂ;l has been written instead of /3 .
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Using (123), the special relativistic cases of equations (120) — (121) in (1+1) dimensions (corresponding
to equations (103-1) — (103-4)) are given by, respectively:

i1V, —mg? v, Ve | (120-1)
—inv,  —inVy-m® | ¥ e
where
G F .
e ZLQF)J:Lp(lEO)} YL :[Flo] » ViR = [(/’(E)] '
inv, —m® inv w
o0 : ®1=0 (121-1)
- |hv1 - IhVO - m(()G) W(R)R

where (for this special case we may suppose: m, #0=> T, # 0)

Y (rL Rio
¥ = = & | Vel =[R10po] r YRR =[(0,(0§) :
Y (r)R D

For (1+2) dimensional case (corresponding to equations (104-1) — (104-4)) we get

RlOpo- FlO
Rozpo F - im{® 5 |, img”
W =| 7| W= 2 3O =V, + =2k, )9, IO =(V, +—2k,)p®  (124)
Rlea F21 h h
o o®)

where
o |10 ., 100 , |01 3 0 O
o = , O = , 07 = , O = . (124-1)
0 0 01 0 0 -1 0
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Using (124) and (124-1), the special relativistic cases of equations (120) — (121) in (1+2) dimensions, are
given by, respectively:

inv,(c° + o) —m® iV, (0® —0%) +V,(~o" + ") | Ve | _, (120-2)
—iH[V,(6* —=0*)+V, (-0 + )] —inV,y(c° +0") - m® ViFr
where
FlO
YL Fos Fo Fa )
\P — — , l// — , l// = )
i L’(F)J Fsy o {FOZ o L™
P®
inv,(c° +0')-m® iV, (0* =0°)+V, (-0 + ") | Wimr | _, (121-2)
iV (0*=0°)+V, (-0 +0")]  —iVe(o®+o)-mP | Ve

where (for this special case we may suppose: m, #0=> T, # 0)
R

1000
N V(Rr)L _ ROZpU W _ RlOpa W _ R21po’ .
§ Y (ryL Rleo‘ " R02po' (R (0,(13)
(G)
P o

For (1+3) dimensional casees (corresponding to the field equations (105-1) — (105-4)) of equations
(120) — (121), we have

o |0 0 , O+ 0 o 0 0y
ﬁ{o —(f°+71)} ﬁO{ 0 O}ﬂ{—f 0} ﬂl_[—yz 0}'

0 —° 0 6 , 0 7
) A A S A
/4 0 -7~ 0 -y 0

RlOpo‘ Flo
RZOpo‘ F20
RSOpa F30
0 0 - im (6) _ i (E)
Womlp | Wem| o | 3D =- Tk )e, 3D = (9, + Tk )p® (12
23pc F23 h h
R3lp¢7 F31
RlZpa F12
P 0]
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where we have

100 0 0000 0 00 1 00 0 0
~lo1o00| , o000l , |0 o000 ,l00-10
70000}”0010’70000’70100'
0000 000 1 100 0 00 0 0

- (125-1)
0 0 00 00 -1 0 00 0 0 0 -1 0 0
,looo0oz1] , oo oo , o000 ., |10 00
70000”{1000’70001’70000'

0 -1 00 00 0 0 00 -1 0 0 0 00

Using (125) and (125-1), the special relativistic cases of equations (120) — (121) in (1+3) dimensions, are
given by, respectively:

{ inVo(r° +7")-mi? [V, (7* = 7*) + Y, +77) + Vs (7 —77)]}{W(F)L} o
iV, (72 =)+ V(0 +7°)+ V. (r° -] —iAVo(y° + ") —mf® VR
(120-3)
where
o
FZO
FSO I:10 F23
ViFL 0 Fy =
Y :{WEFiJ: F.o y Ve = F,, y WiER = F, |’
F31 0 §D(E)
I:12
Q)(E)

55



{ inV,(y°+7')-m® [V, (7% — %) +V, (7 + )+ V(7 —y?)]}{m
in[V,(7 =)+ V(0 + )+ Vo (= 7] —inV,(¥° + ') —m{® YRR
(121-3)

where (for this special case we may suppose: m, #0=> T, # 0)

R

1000
Raopr
Ry Riom Rosw
Y, ={V/(R)L}: ° » WL = R20po‘ » ViR = Rslm
YRR Rosnr Ryop0 Riz0
RSlpo‘ 0 ¢,ffr)
Rz
oL

And for (1+4) dimensional case of (120) — (121), corresponding to the field equations (106-1) — (106-4),
we obtain:*

1. For this case (just for clarity) the square matrices ﬂ” and :B;, have been written in detail, however, these square matrices,

definitely, could be written by formulations similar to relations (123) and (12-1) (including the special relativistic cases
(120-1) — (120-3) and (121-1) —(121-3)).
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i Fg | I 10,30_
Fo, 02p0
Fao R3Opo‘

0 0
Fos R04p0'
0 0
0 0

Ve = 8 , Yy = 8 I8 =—(v, +@kv)¢g’ 1O (9, +$kv)¢(a,
Fas R43po‘
Fa R42p0
Fa R41po‘
Fs, RSZpo‘
F31 R31p0'
Fa Rleo‘
gD(E) (Déi)

K L Pro (126)

The size of matrices «, and a . In field equations (120) — (121) for (1+5) dimensional space-time is

32x32, and the column matrices - and ‘¥ are defined as follows:

62



FlO_ _Rlopcr_
on RZOPO'
F30 R30p6
0 0
F4o R40pa
0 0
0 0
0 0
Fso R5OP0'
0 0
0 0
0 0
0 0
0 0
0 0
Ol el o = e, 99 =, 4 M )0
0 0 h
0 0
Fus Risoo
0 0
F53 R53pa
Fzs RZSpcr
F51 RSlpa
0 0
F34 R34p0
F., R42po‘
F14 R14pc
Fsz R32p0
F13 R13pcr
Fy R21po‘
i) Lo

(127)
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3-7. In this Section, as another direct consequence of the assumption (3) in Section 1-1, and also the
unique structure of the derived general relativistic wave equations (101-1) — (101-4) (including equations
(102) — (105-4) and so on as particular cases of these equations for various space-time dimensions), we
conclude that the universe cannon have more than four space-time dimensions.

As it was mentioned in Section 3-4, in the context of relativistic quantum mechanics, the relativistic
(single-particle) wave equations (120) — (121) (equivalent to equations (101-1) — (101-4), including
equations (102) — (106-4) and so on for various dimensions) give an equivalent tensor representation of
the half-integer spin single-particle fields (defined solely in (1+2) dimensional space-time by the matrices
(124-1), or matrices (B-2) for the special relativistic case in Appendix B), as well as a tensor
representation of the integer spin single-particle fields (defined solely in (1+3) dimensional space-time by
the matrices (125-1), or matrices (B-3) for the special relativistic case in Appendix B).

Meanwhile, it is noteworthy that the half-integer spin particle fields derived solely by this approach,

is compatible with various experimental data related to two (spatial) dimensional property for electrons.
These experiments include two-dimensional electron gas (2DEG), that is a gas of electrons free to move
in two dimensions, but tightly confined in the third [38, 39]. For the latter case, it has been shown in
several works that the Dirac spinor field in (1+2) dimensional space-time, could be also isomorphically
represented by (anti-symmetric two-index) tensor representation of the Lorentz group — which is
equivalent to three dimensional case of the single-particle tensor field (120) defined by matrices (124-1)
(or matrices (B-2) for the special relativistic case in Appendix B) [29, 31]. In fact, it has been shown that
in three dimensional space-time all the basic effects attributed to spinors can be also explained using the
tensor formulation of the relativistic wave equation for particles of spin-%2 (as well as any particle of
half-integer spin exhibit Fermi—Dirac statistics). Moreover, for a particle of spin-1 (as well as any particle
of integer spin exhibit Bose—Einstein statistics) it has also been shown that its spinor representation could
be equivalent to an anti-symmetric two-index tensor representation of the Lorentz group [30, 31].

The relativistic wave equations could be also represented by the left and right handed components of
the wave-functions v, ., v, (defined by formulas (123) — (127)). We can basically show that by

the assumption that the source-free particle fields preserve chiral symmetry [32 - 37], some or all the
components of the wave functions v, ., ¥, in relativistic single-particle wave equations (120) —

(121) should vanish in certain space-time dimensions (for dimensions D >5 all the wave-functions’
components will vanish).

Hence, if the components of tensor fields R F,. equivalently be represented by the wave-functional

uvpo!
components v, ., ¥, using the formula (123) for two dimensional case of equations (120) — (121)
(corresponding to the field equations (103-1) — (103-4), where p, v, p ,0 = 0,1; and v ,,= - ¥, ,,
Y wvpo=" Wupo)r WE have:

inv,—m® inv, Vi |_g inv, —mg® inv, Vi | _g (128)
—inV,  —inVe-mP Vo] [ -V, =iV —m® | W
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and

Ve | _[w
Ve = . z{ 10}' Vi = [‘//10] » VYRR = [0] '

RGN 0
=|0f;
= l//(F_)L [_] (128-1)
7%
Yr = h = {l//mm } Y = [Wwpa] » YRR = [O] :
YRR | 0
= VYR = [O] :

So, in (1+1) dimensional cases of the relativistic wave equations (120) — (121), chiral symmetry implies
that the wave-function vanishes.

For three dimensional space-time case of equations (120) — (121), i.e. equations (120-2) — (121-2)
(corresponding to the field equations (104-1) — (104-4), where , v, p .6 =012, v , == W ,, ¥, 0=~

Vo pa), we get

V1o
VL
_ | Vo2 Yo |V
Ye =|Wepr = » ViEL = » WER = 0
0 Vo1 Vo2
0
=Wy, =0;
7%
Y rL Wlom W w
Y. = = 02p0 , = 1000 , = 21po
R ‘//(S)R Ve VirL |:l//02[70' Y (rR)R 0 (129)
0
= lr//02p0' :0

Thus, the components y/o,, ¥,,, in (129) vanish, due to assumption of the chiral symmetry, and the

particle fields be represented by two components wave-functions W and ¥y . This result (for example)

for W is fully compatible with the tensor representation of the Dirac spinor field in (1+2) dimensional
space-time [29, 48].
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Subsequently, for four dimensional cases of equations (120) — (121), i.e. equations (120-3) — (121-3)
(corresponding to the field equations (105-1) — (105-4), where x, v, p ,0 = 0,123, and v, =- vy, ,,

Yoo~ Woup r Wavpo=— V.up0) We ODtain, respectively:

Vo V1o %
VL

Ye =lVegr | = » Ve = r ViERr = :
0 Vs 7N Vis

V3000 Yiow Vs

Y (ryL w w
20 31
Yy = YRR | = » WiRL = ol VYRR = Sl (130)

0 Vo3 3000 12p0

This result for y-and y is also fully compatible with the integer spin particle fields describing solely
by six components wave-functions [35, 49].

66



For relativistic wave equations (120) — (121) in five dimensional space-time (corresponding to the single-
particle field equations (106-1) — (106-4), where w, v, p .0 =0,1,234; W, , == W ;s V ;0= = V\po)s WE
obtain

Y10
Y02
Y30
0
g _l//lo_ 0]
0 Vo2 Vs
0 Y30 V42
YL 0 0 Ve,
Ye=yepr = ol Ve = oo | YEer= Ve SV =W =V =¥, =0
° Va3 0 Va
Va2 0 Va1
Y L 0 | 0 ]
V32
Va1
Va1
0 _
0 0]
Y02 Va3
Y30 Va2
0 0
= VEL = » VER = ;
g V32
0 0
0 0
L 0 . L O .

67



_‘//mm ]
Vo200
V3000
0
Youpo _V/lopa | -0 ]
0 Vo200 ¥ 4300
Ve 0 Y3000 ¥ 4200
0 0 Y
¥e =V 0o I VR = » WiRr = = Viopr =Viaree =Viare =Voiw =0
0 Vos,0 V320
Y 430 0 Y3100
Viors 0 Vo
Y 4100 . 0 | . 0 ]
V320
Vil
Vorm
O _
S C o
Voo V430
Vo V200
0 0
= V@RL = » YRR =
Vo0 Vi3op0
0 0
0 0
. 0 ] L 0 | (131)

Thus, assuming that the source-free cases of the relativistic (single-particle) wave equations (120) — (121)
in five dimensional space-time (specified by (131)) must preserve chiral symmetry, implies the wave

function’s components ¥15,¥/41,W31,W 21, Wi0p1Wa1p1 V3101 Wa1p A Wig Wit 1 Wate Wiy Vanish,

where, consequently, one of the spatial components (that is f,) of the covariant derivative vanishes as
well. Thus the equations (120) — (121) are not formulable in five dimensional space-time, and reduced to

(be equivalent to) their four dimensional cases, i.e. (130). Therefore, based on the assumption (3) in
Section 1-1, and also the unique structure of general relativistic single-particle wave equations
derived, the universe is not definable in (1+4) dimensional space-time.

In addition, the size of matrices «, and &# in equations (120) — (121) in six dimensional space-time is
32x32, and the wave functions W and W representing by their left and right handed components, are

given by (where i, v, p,6=0,1,2345 ¥, . == ¥ ,,, ¥ 10p0=" Viupo):
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Wi |

¥ 20

Y30
0

W o
0
0
O — -
V5o _'//10_ 0
0 Va0 0
0 Y30 0
0 0 Vs
0 Va0 0
0 0 Vss
0 0 Vs

Ve 0 W,
Ve = '//(S)R 8 v VL = e, | YEr = (; =

0 0 V34
0 0 Vi
Vs 0 Via
0 0 V32
¥ss 0 Vis
Vs 0 Va
Vs L 0 L 0
0

Vaa

Va2

Vi

V32

Vi3

Ya

_O .

DW=V Wi =Wao =Ws0 =Was = Ws3 = Wos =Ws1 = W3y =Wy =Wy =
=W =Vi3=¥u=0 = we) =¥er=[0];
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l/llo;xr
‘//ZOpa

'//30/)0'

l//40p9'

l//50pc7

o

VirL
Ve = Ywrr | =

O O O O O o o o

o

Vs

l//53/x>'
WZSpo‘

WS lpo

Vi
‘//42/17
l//14pa
lr//32pa

l//l 3p0

l/IleO'

= Wi0p Vo000 V3000 =Vaope = Vsopw =Viaspe = Vsspw = Vospe = Vsipe —

=V =Warpe =Vispe = V3200 =Vizpe = Voue =0 = ViriL =¥ RR =[0] .

v VL =

» YRR =

70

lr//45p¢7

‘//53/17
lr//25pc

l//5 lpo

Vi
Vioro
Viap
V320
Vi3

WleO'

(132)



Thus due to the chiral symmetry, in six dimensional space-time all the components of wave-functions
Y. and W, should vanish. Consequently, the equations (120) — (121) are not formulable in (1+5)

dimensional space-time. Hence based on the assumption (3) in Section 1-1 and also the unique structure
of the general relativistic particle wave equations derived, the universe is not definable in (1+5)
dimensional space-time as well. There is precisely the same result for the higher dimensional cases of
relativistic wave equations (120) — (121). Consequently, based on our axiomatic approach (including the
basic assumptions (1) — (3) in Section 1-1, the universe cannot have more than four space-time
dimensions.
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3-8. On the Asymmetry of Left and Right Handed (interacting) Particles

In Section 3-7, we concluded that the general relativistic (single-particle) wave equations (120) — (121)
are definable solely in D <4 dimensional space-time. In particular, three and four dimensional cases of
equations (120) — (121), i.e. equations (120-2) — (121-2) and (120-3) — (121-3), each equation
particularly includes a set of equations that merely contain the divergences of wave-functions ,, and
W oy - These sets of massive equations for the non source-free cases (i.e. forJ® =0, J{%) #0) of
equations (120) — (121), respectively are as follows:

For three dimensional case we obtain,

_ |m‘E’ _im®
(120-2) = (V,-— k)w'y =(V, + 7; Ko )t (133-1)
— m(G) m(G)
(121-2) = (V,——>— . K)w'om = (Vo + ko)) (133-2)
where we have (using (129)):
—‘//10
YL 0 {‘/’10} {‘/’21}
\P = = ) l// = ' l// = !
F |:l//(F)R:| Ve (FIL 0 BR = 5(®)
_(/)(E)
_l//lOpo—
YL 0 {Wlom} Vot
\II = = , [// = , lr// = B
" |:V/(F)Rj| Voip o 0 (FF (0,(3
©)
| P

(E) (G)
®) _ img (E) ©) _ img ©)
3O =¥, + 0 )p® | 3O =V, + 0k )p®

And for four dimensional cases, the mentioned sets of equations read,

(120-3) =

(E) im (E) i (E) im (E)
|m — Im — - Im
k)w o+(V2_TOk2)‘//20+(V3_ ks)‘//3o =(Vo+ 7;

(V.- k)p® , (134-1)

- im(E) im{® im{®
(V,+ 5 k)l//23+(V +t— 5 k)‘//sl"'(v"' 5 kw1, =0 ;
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(121-3) =

_im® _im®
(Vi= kW + (Vo -

- im
k2)lr//20pa+(v3_ ;;

(G)

(G)

(G) (G)
— |m |m |m
(V,+ 5 — KW +(V T 5 Ko )W 310 "'(V L— 5
where we have (using (130)):
i V1o |
Vo
W30 V1o Vs
Ve 0 Y20 Vai
\P = = 1 l// = ' l// - '
F |:l//(F)Ri| ¥as o 4 Oy,
Va1 0 (P(E)
Vio
¢(E)
_l//lOpO' ]
l//ZOpO'
V3000 Yiow Vs
VR)L 0 4 Wiy
Yy = == v YR = 200, VYRR = "
YRR V2300 30p0 Viopo
Vit 0 @fi)
l//12p0'
L2 |
_ im(E) |m(G)
3O =9, + k)0 3 = (7, + Tk ol

k3)l//30pa

k )l//12po— =

©) | (134-2)

Equations (133-1) — (133-2) and (134-1) — (134-2) describe the relationship between the static fields
(corresponding solely to the left handed components of fields v ,,, v ,,,) and the charged (or

massive in case of gravitational field) particles as the sources of these fields. On this basis, massive
and non source-free cases of the relativistic particle field equations (120) — (121) (including

equations (133-1) — (133-2) and (134-1) —

(134-2)) definitely, violate chiral symmetry of these

relativistic (single-particle) wave equations. Moreover, this also expressly means that the sources of

all the interacting massive fields should be made solely by the left-handed particles.
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4. Conclusion

This article is based on my previous publications (Refs. [1], [2], [3], 1997-1998), and also my thesis
work [4] (but in a new generalized and axiomatized framework). As it was mentioned in Sections 1
and 2, the main arguments and consequences presented in this article (particularly in connection with
the mathematical structure of the laws governing the fundamental forces of nature) followed from
these three basic assumptions:

(1)- “Generalization of the algebraic axiom of nonzero divisors for integer elements (based on the
ring theory and the matrix representation of generalized Clifford algebra, and subsequently,
constructing a definite algebraic linearization theory);”

This is one of the new and axiomatic concepts presented in this article (see Section 2-1, formula (23)).

(2)- “Discreteness of the relativistic energy-momentum (D-momentum);”

This is a basic quantum mechanical assumption. Quantum theory, particularly, tells us that energy and
momentum are only transferred in discrete quantities, i.e., as integer multiples of the quantum of action

(Planck constant) h.

(3)- “The general relativistic massive forms of the laws governing the fundamental forces of nature,
including the gravitational, electromagnetic and nuclear field equations, in addition to the
relativistic (half-integer spin) single-particle wave equations, are derived solely by first quantization
(as a postulate) of linearized (and simultaneously parameterized, as necessary algebraic conditions)
unique forms of the relativistic energy-momentum relation — which are defined algebraically for a

single particle with invariant mass Mg).” We also assume that the source-free cases of these fields
have “chiral symmetry”.

In Section 2, we presented a new axiomatic matrix approach based on the algebraic structure of ring
theory (including the integral domains [5]) and the generalized Clifford algebra [40 - 47], and
subsequently, we constructed a linearization theory. In Section 3, on the basis of this (primary)
mathematical approach and also the assumption of discreteness of the relativistic energy-momentum (D-
momentum), by linearization (and simultaneous parameterization, as necessary algebraic conditions),
followed by first quantization of the special relativistic energy-momentum relation (defined algebraically
for a single particle with invariant mass mg), we derived a unique and original set of the general
relativistic (single-particle) wave equations directly. These equations were shown to correspond uniquely
to certain massive forms of the laws governing the fundamental forces of nature, including the
Gravitational, Electromagnetic and Nuclear field equations (which based on our approach were solely
formulable in (1+3) dimensional space-time), in addition to the (half-integer spin) single-particle wave
equations (that were formulated solely in (1+2) dimensional space-time). Each derived relativistic wave
equation is in a complex tensor form, that in the matrix representation (i.e. in the geometric algebra
formulation, including equations (120) and (121)) it could was written in the form of two coupled
symmetric equations — which assumedly have chiral symmetry if the particle wave equation be
source-free. In fact, the complex relativistic (single-particle) wave equations so uniquely obtained,
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corresponded to certain massive forms of classical fields including the Einstein, Maxwell and Yang-
Mills field equations, in addition to the (half-integer spin) single-particle wave equations such as the
Dirac equation (where the Dirac spinor field is isomorphically re-presented solely by a tensor field in
three dimensional space-time [29, 31]). We should note that the unique set of general relativistic
wave equations derived by our approach doesn’t include the Klein-Gordon equation - and so on -
which describes the spinless elementary particles; thus based on our assumption (3) of Section 1-1,
we may conclude that any spinless particle should be a composite particle (this includes the Higgs
particle as well, however the Higgs mechanism could be formulated by a composite Higgs particle as
well). In particular, in Section 3-5, a unique massive form of the general theory of relativity — with a
definite complex torsion — was shown to be obtained solely by first quantization of a special
relativistic algebraic matrix relation. Moreover, in Section 3-4-1, it was shown that the “massive”
Lagrangian density of the obtained Maxwell and Yang-Mills fields could be also locally gauge
invariant — where these fields were formally re-presented on a background space-time with certain
(coupled) complex torsion which is generated by the invariant mass of the gauge field carrier
particle. Subsequently, in agreement with certain experimental data, the invariant mass of a particle
(that actually would be identified as massive photon) was specified (formula (115-4)), which is
coupled with background space-time geometry. In Section 3-7, based on the unique mathematical
structure of the general relativistic single-particle fields derived (i.e. equations (120) - (121)) and also
the assumption of chiral symmetry as a basic discrete symmetry of the source-free cases of these
fields, we showed that the universe cannot have more than four space-time dimensions. Furthermore,
in Section 3-8, a basic argument for asymmetry of the left and right handed (interacting) particles
was presented. In addition, in Section 3-4-2, on the basis of definite mathematical structure of the
field equations derived, we also concluded that magnetic monopoles — in contrast with electric
monopoles — could not exist in nature.

The results obtained in this article, demonstrate the efficiency of linearization theory as a new
mathematical axiomatic approach formulated for certain algebraic structures (presented in Section 2)
and a wide range of its possible applications in mathematics and fundamental physics.
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Appendix A.

As it was mentioned in Sections 3-3 and 3-4, the field strength tensor X, . in the derived general
relativistic single-particle field equations (101-1) — (101-4), for (1+3) and higher space-time dimensions
should be presentable by a formula of the type: X, .= A»éyp_qg - Aﬂévp_qg , for some quantities
A , B
show below, this condition follows from the conditions that appeared for integer parameters S;in

y2i 1
relativistic matrix energy-momentum relations (95) — (96) (formulated for four and five space-time
dimensions), i.e. conditions (95-1) and (96-1) — (96-5), and also taking into account the substitution rule
(100) as part of the first quantization (as a postulate) procedure and shows that there is one-to-one

correspondence between “the parameters S;“ and “the components of field strength tensor X , . and

vo..c » Where this formula should be also “derivable” from the equations (101-1) — (101-4). As we

the components of covariant quantities (péx)g (which by formula (101-3) defines a covariant current as the

source of field X, .)”. We should note that in the same manner, for the higher dimensional cases of
matrix energy-momentum relations (obtained in Section 3-1), there are the similar conditions.

First, using the solutions (73) and (84) obtained in Section 2-6 for quadratic equations (68) and (75), the
general solutions of conditions (95-1) and (96-1) — (96-5) can be written as follows, respectively:

S, =UV, —UV,, S, =U,V, —U,V,,

Sy =UV, —U,V;, Sy =U,V; —U,V,,

(A-1)
Sg =WV, —UgV,, S; =UV, —U,V,, S, =0,
Sg . arbitrary parameter
and
S, =U,Vs —UV,, S, =UVe —UV;, S;=UV,—U,V,
s, =0, sc=uv, —uV.,, s4=0, s;,=0, s;=0, s5=0,
S1p = UpVy —UVy, Sy = UgVy —UiVs, S = UV, — ULV, (A-2)

Si3 = UpVg —UgVy, Sy = UV, —UVy, S5 = U,V —UgVy,

S,¢ . arbitrary parameter
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The substitution rule (100) as part of the first quantization procedure of matrix relations (95) and (96)
(along with the obtained field equations (101-1) — (101-4) by first quantization of relations (92) — (96) and
so on), and also the general solutions (A-1) and (A-2) imply, respectively:

S ;5 = Xlop..,g = AoB1p..,g - AlBop..,g1 S, 8, = Xzop..,; = Aosz..,g - AzBop..,gv

S3> 83 =Xy, , =AB;, . —ABy, . S8, =0, sSs>8 =Xy, ,=AB,, . —AB;, .,

A _ _ AR AR A _ A DB A B 2 _ _(X)
Sg > 5 = X31p..,{ - AlBsp..,; - AsBlp..,;! S5, = Xlzp..,; - AzBlp..,; - Alep..g' Sg > 55 = (Dp..,;

where

Sl:AOBl_AlBO’ SzonBz_AzBo’ SsonBs_AsBO’ 34:01
Ss = A,B, —AB;, s;=AB,-AB, s,=AB -AB,,

S . an arbitrary parameter ;

and

Ao:V41 Bo:u41 A1:V3’ Blzu?:’

A2:V2’ Bzzuz’ A3:V1' B3=U1.
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S =S, =0, $,>5 =0, =>8=0 s,—=>S, =0, S,—5S,= X43p,_{ = AsB4p__,; —A4B3p._14,

A

Sip b 5 = 42p Ve AzB4p < A4sz.‘,§’ S5, = X41p..,; = AiB4p..,§ - A4 B1p..,§’

32p Ve AzBsp < Assz..,g’ Siq A14 = X31p..,; = AiBsp..,g - AHBlp..,{’

>
-
w

SlS

& _ _ AR AR & (X)
Si5 > S5 = lep..,g = Alep..,g - AzBlp..,g’ S16 > S16 =@y

where
Sl:AOBl_AlBO’ SzzAzBo_AoBZ’ 53:AoBa_AsBo’
s,=0, s =AB,-AB,, s;,=0, s,=0, s;,=0, s,=0,

S10 = AsB4 - A4B3, Sii = AzB4 - A4Bzv S, = AiB4 - A4Bl,

Si13 = AzBs - A3le S14 = AlBS - ASBl’ Si5 = Ale - AzBl!

S, . an arbitrary parameter ;

and

AO:V51 BOZUSl A1:V4’ Blzu4’ A2:_V3’
Bz =-U,, A3:_V21 BBZ_UZ’ A4:Vl’ B4:ul'

Thus, we should try to derive and specify the quantities Aﬂ and Iévp._g from the field equations (101-1) —
(101-4), for various rank (suchas F,,,H,, ,R,, ,...) of the general field strength tensor X , , .. As it

was mentioned in Section 3-4, the case of rank four of tensor X is compatible with Riemann

Hvp.g
curvature tensor, and we principally assume that these are equivalent. So, let we start with the Riemann
curvature tensor (as a mathematical tensor with a definite structure), we have
A A
—(6 °,+I7,17, o) — (8 re +FPMFVU) (A-5)
A A
= po‘,uv (av pUo F vprﬂ,ua) (ay pvo r ypr/lvc) (A-G)
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From (A-5) and (A-6) we get

Rpa,uv = (A/ Bpuo' - A,u BpVO') (A_7)
where A,=D, B, ,=T, . (A-8)
Rpayv = Dvrp;m' - D/ervc (A_g)
or
Rpo‘yv = (A\/Bp,ua - Aprva) (A_ 10)
where A, =D, B’ =T".. (A-11)
R, =DI",-DJI", (A-12)
and [Sﬂ is a differential operator [Sﬂ given by
~N o _ o a A
D,uA 0.0, — a,uA 0.0, +r /MA aa3..0, (A-13)
N A
D,u a0 .0 = a;tAa1a2a3...an _r quﬂaza3...an (A'14)

As the next step, let we consider a rank two field strength tensor Fﬂv (as a particular case of general field
strength tensor X with a minimum rank). Hence from the field equations (101-1) — (101-4) we can

obtain

nvpg!

F.,=V,A -V,A, (A-15)

7]

Where we can also re-write formula (A-15) as follows,

FW = A»BAI — AHBV (A-16)
where
Aﬁ :Vﬂ, BﬁzAﬁ. (A-17)

For a rank three field strength tensor Hﬂvp (as a special case of general field strength tensor X ,, , ) and

higher rank field strength tensors, from the field equations (101-1) — (101-4) the formulas similar to (A-7)
and (A-15) (which are determinable for rank two and rank four field strength tensors F, ,R, ) could

uv! uvpo
not be obtained. Therefore, we may conclude that F,,, R, . are the only field strength tensors which are

compatible with formula (100) and the general field equations (101-1) — (101-4).
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Appendix B.

In this Appendix we write (explicitly) the special relativistic cases of contravariant real matrices ¢, and

&'ﬂ — that are hermitian and generate Clifford algebras C¢; 1, Cly 2, Cl13, Cl14 and so on — indicated
in the general covariant single-particle wave equations (120) — (121). Note that for special relativistic
cases of these equations, matrices é?# are simply given by relation mo&”k# =m,l, where | is the

identity matrix. So, below only the matrices «, are written (where the signature is (+ — —...-), see the
sign conventions (97)):

Hence for (1+1) dimensional space-time we have

6 {1 0} . {0 1}
a = , a = (B-1)
0 -1 -1 0

For (1+2) dimensional space-time we get

10 0 0 0 0 01
o |0°+0" 0 |01 0 0 , |0 c?-c®| |0 0 10
“ _[ 0 —(a°+al)} 00 -1 0| “ _[—02+0'3 0 } 0 -1 00
00 0 -1 -1 0 00
0 01 0
) 0 —o'+o?° 0 0 0 -1
¢ =[0'1—00 0 }z 100 0
0 10 0
(B-2)

Subsequently, for (1+3) dimensional cases of equations (120) — (121) (corresponding to particle field
equations (105-1) — (105-4)) we have, respectively:
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In addition, matrices a* for five dimensional cases of equations (120) — (121) (corresponding to

equations (106-1) — (106-4)) are given by, respectively

0
0
0
0
0
0
0
0
0

1 0000O0O0O0O

01 000O0O0O0DO

00100O0O0O0TDO

00010O0O0O0TDO
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(B-4)
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