Title	On the Logical Origin of the Laws Governing the Fundamental Forces of Nature : A New A xiomatic Matrix A pproach
Author(s)	Z anedi, Ramin
Citation	A rchive for Studies in Logic (AFSIL), 16(1), 1-87
Issue Date	2015-01
Doc URL	http:/hdl .handle.net/2115/59279
Rights	CC A tribution-NonCommercial-NoDerivatives 4.0 International License. License URL: https://reativecommons.org/icenses/by-nc-nd/4.0/
Rights(URL)	https://reativecommons.org/icenses/by-nc-nd/4.0/
Type	article
Note	A cknowledgements: Special thanks are extended to Prof. and A cademician Vitaly L. Ginzburg (Russia), Prof. and A cademician Dmitry V. Shirkov (Russia), Prof. Leonid A. Shelepin (Russia), Prof. V ladimir Y a. Fainberg (Russia), Prof. Wolfgang Rindler (USA), Prof. Roman W. Jackiw (USA), Prof. Roger Penrose (UK), Prof. Steven Weinberg Michael A tiyah (UK) (who, in particular, kindly encouraged me to continue this work as a new unorthodox (primary) mathematical approach to fundamental physics), and many others for their support and valuable guidance during my studies and research.
Note(URL)	https://ds.cern.ch/record/1980381/
File Information	R.A.Zahedi--Forces.of.N ature.Laws Jan.2015-signed.pdf

Instructions for use

On the Logical Origin of the Laws Governing the Fundamental Forces of Nature: A New Axiomatic Matrix Approach

Ramin Zahedi *
Logic and Philosophy of Science Research Group, Hokkaido University, Japan

28 Jan 2015

Abstract

The main idea of this article is based on my previous publications (Refs. [1], [2], [3], [4], 1997-1998). In this article we present a new axiomatic matrix approach (and subsequently constructing a linearization theory) based on the ring theory and the generalized Clifford algebra. On the basis of this (primary) mathematical approach and also the assumption of discreteness of the relativistic energy-momentum (D-momentum), by linearization (and simultaneous parameterization, as necessary algebraic conditions), followed by "first" quantization of the relativistic energymomentum relation, a unique and original set of the general relativistic single-particle wave equations are derived directly. These equations are shown to correspond to certain massive forms of the laws governing the fundamental forces of nature, including the Gravitational, Electromagnetic and Nuclear field equations (which based on this approach are solely formulable in $(1+3)$ dimensional space-time), in addition to the (half-integer spin) single-particle wave equations such as the Dirac equation (formulated solely in $(1+2)$ dimensional space-time). Each derived singleparticle field equation is in a complex tensor form, where in matrix representation (i.e. in the geometric algebra formulation) it could be written in the form of two coupled symmetric equations - which assumedly have chiral symmetry if the particle wave equation be source-free. We show that the massless cases of the complex relativistic wave equations so obtained correspond to the classical fields including the Einstein, Maxwell and Yang-Mills field equations. In particular, a unique massive form of the general theory of relativity - with a definite complex torsion - is shown to be obtained solely by first quantization of a special relativistic algebraic matrix relation. Moreover, it is shown that the massive Lagrangian density of the obtained Maxwell and Yang-Mills fields could be also locally gauge invariant - where these fields are formally re-presented on a background space-time with certain (coupled) complex torsion which is generated by the invariant mass of the gauge field carrier particle. Subsequently, in agreement with certain experimental data, the invariant mass of a particle (that would be identified as massive photon) has been specified ($m_{0} \approx 1.4070696 \times 10^{-41} \mathrm{~kg}$), which is coupled with background space-time geometry. Assuming our approach is the unique and principal way for deriving (all) the laws governing the fundamental forces of nature, then based on the unique structure of general relativistic single-particle wave equations derived and also the assumption of chiral symmetry as a basic discrete symmetry of the source-free cases of these fields, it is shown that the universe cannot have more than four space-time dimensions. In addition, a mathematical argument for the asymmetry of left and right handed (interacting) particles is presented. Furthermore, on the basis of definite mathematical structure of the field equations derived, we also conclude that magnetic monopoles (in contrast with electric monopoles) could not exist in nature. ${ }^{1}$

PACS Classifications: $04.20 . \mathrm{Cv}, 04.50 . \mathrm{Kd}, 04.90 .+\mathrm{e}, 04.62 .+\mathrm{v}, 02.10 . \mathrm{Hh}, 02.10 . \mathrm{Yn}, 02.20 . \mathrm{Bb}, 02.90 .+\mathrm{p}, 03.50 .-\mathrm{z}, 03.65 . \mathrm{Pm}, 12.60 .-\mathrm{i}, 12.10 . \mathrm{Dm}, 12.10 .-\mathrm{g}$.

1. Introduction and Summary

Why do the fundamental forces acting on the Universe (i.e., the forces that appear to cause all the movements and interactions) manifest in the way, shape, and form they do? This is one of the greatest ontological questions that science can investigate. In this article, we are going to consider this question by a mathematical axiomatic (matrix) approach.

[^0]Eugene Wigner's foundational paper, "On the Unreasonable Effectiveness of Mathematics in the Natural Sciences", famously observed that purely mathematical structures and relations often lead to deep physical insights, in turn serving as the basis of highly successful physical theories [50]. Referring to the Oxford English dictionary, a law of physics (or a scientific law) is: "A theoretical principle deduced from particular facts, applicable to a defined group or class of phenomena, and expressible by the statement that a particular phenomenon always occurs if certain conditions be present [55]. In actual fact, laws of physics (including the fundamental laws) are typically conclusions based on repeated scientific experiments and observations over many years and which have become accepted universally within the scientific communities, and one of the most fundamental and operational aims of the human race has been to acknowledge (as truths) and formulate a summary description of the natural world in the form of such laws [56, 57]. In this article, based on our axiomatic approach, we show that one of the most fundamental logical blocks of the universe's structure are certain "matrices", which their components are the quantized (discrete) basic physical quantities (i.e. are "integer" multiples of the quantum of action " h "). Subsequently, we provide a unique logical foundation to the most acknowledged fundamental (empirical) laws of nature, i.e. the laws governing the fundamental forces of nature.

This article is based on my previous publications (Refs. [1], [2], [3], 1997-1998), and also my thesis work [4] (but in a new generalized and axiomatized framework). We present a new axiomatic matrix approach based on the algebraic structure of ring theory (including the integral domains [5]) and the generalized Clifford algebra [40-47], and subsequently, we construct a linearization theory. On the basis of this (primary) mathematical approach and the assumption of discreteness of the relativistic energy-momentum (D-momentum), by linearization (and simultaneous parameterization, as necessary algebraic conditions), followed by first quantization of the special relativistic energymomentum relation (defined algebraically for a single particle with invariant mass $\boldsymbol{m}_{\boldsymbol{0}}$), we derive a unique and original set of the general relativistic (single-particle) wave equations directly. These equations are shown to correspond uniquely to certain massive forms of the laws governing the fundamental forces of nature, including the Gravitational, Electromagnetic and Nuclear field equations (which are solely formulable in ($1+3$) dimensional space-time), in addition to the (halfinteger spin) single-particle wave equations (formulated solely in (1+2) dimensional space-time).
Each derived relativistic wave equation is in a complex tensor form, that in the matrix representation (i.e. in the geometric algebra formulation) it could be written in the form of two coupled symmetric equations - which assumedly have chiral symmetry if the particle wave equation be source-free. In fact, the complex relativistic (single-particle) wave equations so uniquely obtained, correspond to certain massive form of classical fields including the Einstein, Maxwell and YangMills field equations, in addition to the (half-integer spin) single-particle wave equations such as the Dirac equation (where the Dirac spinor field is isomorphically re-presented solely by a tensor field in three dimensional space-time $[29,31]$).

In particular, a unique massive form of the general theory of relativity - with a definite complex torsion - is shown to be obtained solely by first quantization of a special relativistic algebraic matrix relation. Moreover, it is shown that the massive Lagrangian density of the obtained Maxwell and Yang-Mills fields could be also locally gauge invariant - where these fields are formally re-presented on a background space-time with certain (coupled) complex torsion, which is generated by the invariant mass of the gauge field carrier particle. Subsequently, in agreement with certain experimental data, the invariant mass of a particle (that actually would be identified as massive photon) has been specified ($m_{0} \approx 1.4070696 \times 10^{-41} \mathrm{~kg}$), which is coupled with background spacetime geometry (see Section 3-4-1).

Assuming our approach is the unique and principal way for deriving (all) the laws governing the fundamental forces of nature, then based on the unique structure of general relativistic single-particle fields derived and also the assumption of chiral symmetry as a basic discrete symmetry of the sourcefree cases of these fields, it has been shown that the universe cannot have more than four space-time dimensions. In addition, on the basis of definite structure of the field equations derived, we also conclude that magnetic monopoles - in contrast with electric monopoles - could not exist in nature. Furthermore, a basic argument for the asymmetry of left and right handed (interacting) particles is presented.

1-1. The main arguments and consequences presented in this article (particularly in connection with the logical origin of the laws governing the fundamental forces) follow from these three basic and primary assumptions:
(1)- "Generalization of the algebraic axiom of nonzero divisors for integer elements (based on the ring theory and the matrix representation of generalized Clifford algebra, and subsequently, constructing a definite algebraic linearization theory);"

This is one of the new and principal concepts presented in this article (see Section 2-1, formula (23)).

(2)- "Discreteness of the relativistic energy-momentum (D-momentum);"

This is a basic and original quantum mechanical assumption. Quantum theory, particularly, tells us that energy and momentum are only transferred in discrete quantities, i.e., as integer multiples of the quantum of action (Planck constant) h.
(3)- "The general relativistic massive forms of the laws governing the fundamental forces of nature, including the gravitational, electromagnetic and nuclear field equations, in addition to the relativistic (half-integer spin) single-particle wave equations, are derived solely by first quantization (as a postulate) of linearized (and simultaneously parameterized, as necessary algebraic conditions) unique forms of the relativistic energy-momentum relation - which are defined algebraically for a single particle with invariant mass $\boldsymbol{m}_{\mathbf{0}}$)."

We also assume that the source-free cases of these fields have "chiral symmetry".

Following is a summary description of some notable consequences of the axiomatic matrix approach presented in this article (note that the geometrized units, metric signature $(+-\ldots-)$ and the sign conventions (97) will be used):

1-2. Two categories of the general relativistic (single-particle) wave equations are derived directly by linearization (and simultaneous parameterization, as necessary algebraic conditions), followed by first quantization (as a postulate) of the special relativistic energy-momentum relation (defined for a particle with rest mass m_{0}), as follows:

$$
\begin{gather*}
\breve{\nabla}_{\lambda} R_{\mu \nu \rho \sigma}+\breve{\nabla}_{\mu} R_{\nu \lambda \rho \sigma}+\breve{\nabla}_{\nu} R_{\lambda \mu \rho \sigma}=T^{\tau}{ }_{\mu \mu} R_{\tau \nu \rho \sigma}+T_{\mu \nu}^{\tau} R_{\tau \lambda \rho \sigma}+T_{\nu \lambda}^{\tau} R_{\tau \mu \rho \sigma}, \tag{1-1}\\
\breve{\nabla}_{\mu} R_{\nu \rho \sigma}^{\mu}-\frac{i m_{0}^{(G)}}{\hbar} k_{\mu} R_{\nu \rho \sigma}^{\mu}=-J_{\nu \rho \sigma}^{(G)} \tag{1-2}\\
R_{\mu \nu \rho \sigma}=\left(\partial_{\nu} \Gamma_{\rho \sigma \mu}-\Gamma_{\rho \nu}^{\lambda} \Gamma_{\lambda \sigma \mu}\right)-\left(\partial_{\mu} \Gamma_{\rho \sigma \nu}-\Gamma_{\rho \mu}^{\lambda} \Gamma_{\lambda \sigma \nu}\right) ; \tag{1-3}\\
\breve{\nabla}_{\lambda} F_{\mu \nu}+\breve{\nabla}_{\mu} F_{\nu \lambda}+\breve{\nabla}_{\nu} F_{\lambda \mu}=Z^{\tau}{ }_{\mu \mu} F_{\tau \nu}+Z_{\mu \nu}^{\tau} F_{\tau \lambda}+Z_{\nu \lambda}^{\tau} F_{\tau \mu}, \tag{2-1}\\
\breve{\nabla}_{\mu} F_{\nu}^{\mu}-\frac{i m_{0}^{(E)}}{\hbar} k_{\mu} F_{\nu}^{\mu}=-J_{\nu}^{(E)}, \tag{2-2}\\
F_{\mu \nu}=\left(\breve{\nabla}_{\nu}-\frac{i m_{0}^{(E)}}{2 \hbar} k_{\nu}\right) A_{\mu}-\left(\breve{\nabla}_{\mu}-\frac{i m_{0}^{(E)}}{2 \hbar} k_{\mu}\right) A_{\nu} . \tag{2-3}
\end{gather*}
$$

where $\Gamma_{\sigma \mu}^{\rho}$ is the affine connection, $T_{\tau \mu \nu}$ is a definite complex torsion tensor given by

$$
\begin{equation*}
T_{\tau \mu \nu}=\frac{i m_{0}^{(G)}}{2 \hbar}\left(g_{\tau \mu} k_{v}-g_{\tau \nu} k_{\mu}\right), \quad T_{\nu}=T_{\mu \nu}^{\mu}=(D-1) \frac{i m_{0}^{(G)}}{2 \hbar} k_{v} \tag{3}
\end{equation*}
$$

D is the number of dimensions; and the sources of the fields $R_{\mu \nu \rho \sigma}$ and $F_{\mu \nu}$ are defined by

$$
\begin{equation*}
J_{v \rho \sigma}^{(G)}=-\left(\bar{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{v}\right) \varphi_{\rho c}^{(G)}, \quad J_{v}^{(E)}=-\left(\bar{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)} \tag{4}
\end{equation*}
$$

Tensor $Z_{\tau \mu \nu}$ is also given by: $\quad Z_{\tau \mu \nu}=\frac{i m_{0}^{(E)}}{2 \hbar}\left(g_{\tau \mu} k_{\nu}-g_{\tau \nu} k_{\mu}\right)$
where (based on the assumption (3) in Section 1-1) these field equations are formulable solely in $\mathrm{D} \leq 4$ dimensional space-time. Moreover, in the above equations $m_{0}^{(G)}$ and $m_{0}^{(E)}$ are the invariant masses of the (free and interacting) fields carrier single-particles, $i \hbar \breve{\nabla}_{\mu}$ is the covariant kinetic energy-momentum operator (generally defined on a background space-time with the complex torsion $T_{\tau \mu \nu}$ generated by the invariant mass (of the field carrier particle) and given by formula (3)), $k^{\mu}=\left(c / \sqrt{g_{00}}, 0, \ldots, 0\right)$ is the general relativistic velocity of a static observer (that is a time-like contravariant vector), and $J_{v \rho \sigma}^{(G)}$ and $J_{v}^{(E)}$ are the sources for these fields.

As an additional principal requirement, we show that we may also assume that the Lagrangian density for the obtained general relativistic "massive" single-particle wave equations (2-1) - (2-3), be locally gauge invariant as well - where these fields be still massive, and ∇_{μ} be equivalent to the general relativistic (with torsion (3), which is compatible with the local gauge invariance condition [9,58, $60-63]$) form of the (local) gauge-covariant derivative [67]. On this basis, in (1+3) dimensional space-time, equations (2-1) - (2-3) not only would describe a certain massive form of Maxwell's (single-photon) field based on the Abelian gauge group $U(1)$, but also would present a certain massive form of Yang-Mills (single-particle) fields based on the (non-Abelian) gauge groups $S U(N)$. For the latter case, the field strength tensor, vector gauge potential and the current in equations (2-1) - (2-3), are also written in component notation as: $F_{\mu \nu}^{a}, A_{\mu}^{a}, J_{\mu}^{a(E)}$, where the Latin index $a=1,2,3, \ldots, N^{2}-1$, and $N^{2}-1$ is the number of linearly independent generators of the group $S U(N)$ (as a real manifold) [58]. Hence, by requiring the local gauge invariance for general relativistic massive particle field equations (2-1) - (2-3), in Section 3-4, we show that the massive Lagrangian density specified for these fields could be locally gauge invariant - if these fields be formally re-presented on a background space-time with certain complex torsion which is generated by the invariant mass of the gauge field carrier particle. Subsequently, in agreement with certain experimental data, the invariant mass of a particle (that would be identified as massive photon) has been specified ($m_{0}^{(E)} \approx 1.4070696 \times 10^{-41} \mathrm{~kg}$), which is coupled with background space-time geometry.

It is noteworthy to recall that gauge symmetries can be viewed as analogues of the principle of general covariance of general relativity in which the coordinate system can be chosen freely under arbitrary diffeomorphism of space-time. Both gauge invariance and diffeomorphism invariance reflect a redundancy in the description of the system. In point of fact, a global symmetry is just a local symmetry whose group's parameters are fixed in space-time. The requirement of local symmetry, the cornerstone of gauge theories, is a stricter constraint [58]. However, our approach could be also considered in the framework of the theories that lie beyond the Standard Model [71], as it also includes new consequences such as a certain formulation for the gravitational particle field.

In addition, we should note that the field equations (2-1) - (2-3) would correspond to two different particle fields: they describe the spin- $1 / 2$ single-particle fields formulated solely in ($1+2$) dimensional space-time - where we necessary have $F_{20}=F_{02}=0[29,31]$; these equations also describe the spin-1 single-particle fields formulated solely in $(1+3)$ dimensional space-time [68, 69]. In the precisely same manner, the field equations (1-1) - (1-2) describe the spin-3/2 single-particle field (gravitational) formulated solely in (1+2) dimensional space-time - where $R_{\mu \nu \rho \sigma}$ is the Riemann curvature tensor, and we necessary have $R_{20 \rho \sigma}=R_{02 \rho \sigma}=0$. The field equations (1-1)-(1-2) also describe the spin-2 singleparticle (gravitational) field formulated solely in $(1+3)$ dimensional space-time. However, it should be emphasize here that for single-particle field equations (1-1) - (2-3), the (quantum mechanical) solutions are taken to be complex $[29,30,31,68,69]$.

In particular, for massless cases (i.e. $m_{0}^{(G)}=0, m_{0}^{(E)}=0$), the field equations (1-1) - (2-3) turn into the classical fields including the Einstein (with a cosmological constant), Maxwell and Yang-Mills field equations, and only these fields. In the context of relativistic quantum mechanics, equations (1-1) - (2-3) are subject to a process of $2^{\text {nd }}$ quantization anyhow; then these equations would describe the bosonic fields in $(1+3)$ dimensional space-time, and the fermionic fields in (1+2) dimensional space-time.

As it was mentioned above, in this article the geometrized units, metric signature ($+-\ldots-$) and the sign conventions (97) will be used. So particularly, we assume the speed of light $c=1$. However, for clarity and emphasis, in some essential relativistic relations " c " as a constant be restored and indicated formally.

1-3. The field equations (1-1) - (2-3) that are obtained straightforwardly by first quantization of linearized (and simultaneously parameterized, as necessary algebraic conditions) unique forms of the relativistic energy-momentum (matrix) relation, i.e. formulas (92) - (96), could be also written in matrix representation, (or in the geometric algebra formulation, as we show in Section 3-4), as follows:

$$
\begin{align*}
& \left(i \hbar \alpha^{\mu} \breve{\nabla}_{\mu}-m_{0} \tilde{\alpha}^{\mu} k_{\mu}\right) \Psi_{R}=0, \tag{1-A}\\
& \left(i \hbar \alpha^{\mu} \breve{\nabla}_{\mu}-m_{0} \tilde{\alpha}^{\mu} k_{\mu}\right) \Psi_{F}=0 \tag{2-A}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha^{\mu}=\beta^{\mu}+\beta^{\prime \mu}, \tilde{\alpha}^{\mu}=\beta^{\mu}-\beta^{\mu} \tag{6}
\end{equation*}
$$

Ψ_{R}, Ψ_{E} are column matrices, β^{μ} and β^{μ} are contravariant square matrices (corresponding to the generalized Clifford algebra, see Sections 2-4, 3-3, 3-6, 3-7 and Appendix B); these matrices in (1+2) and $(1+3)$ dimensional space-time given by, respectively

$$
\begin{align*}
& \beta^{0}=\left[\begin{array}{cc}
0 & 0 \\
0 & -\left(\sigma^{0}+\sigma^{1}\right)
\end{array}\right], \beta_{0}^{\prime}=\left[\begin{array}{cc}
\sigma^{0}+\sigma^{1} & 0 \\
0 & 0
\end{array}\right], \beta^{1}=\left[\begin{array}{cc}
0 & \sigma^{2} \\
-\sigma^{2} & 0
\end{array}\right], \beta_{1}^{\prime}=\left[\begin{array}{cc}
0 & \sigma^{3} \\
-\sigma^{3} & 0
\end{array}\right], \\
& \beta^{2}=\left[\begin{array}{cc}
0 & -\sigma^{1} \\
-\sigma^{0} & 0
\end{array}\right], \beta_{2}^{\prime}=\left[\begin{array}{cc}
0 & -\sigma^{0} \\
-\sigma^{1} & 0
\end{array}\right] ; \\
& \Psi_{R}=\left[\begin{array}{c}
R_{10 \rho \sigma} \\
0 \\
R_{21 \rho \sigma} \\
\varphi_{\rho \sigma}^{(R)}
\end{array}\right], \Psi_{F}=\left[\begin{array}{c}
F_{10} \\
0 \\
F_{21} \\
\varphi^{(E)}
\end{array}\right], J_{v \rho \sigma}^{(G)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{v}\right) \varphi_{\rho \sigma}^{(G)}, J_{v}^{(E)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)} \tag{7}
\end{align*}
$$

where

$$
\sigma^{0}=\left[\begin{array}{ll}
1 & 0 \tag{7-1}\\
0 & 0
\end{array}\right], \sigma^{1}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \quad \sigma^{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \sigma^{3}=\left[\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right]
$$

In relations (7) it is assumed that $R_{02 \rho \sigma}=R_{20 \rho \sigma}=0, F_{02}=F_{20}=0$; in Section 3-7 we show that a certain symmetric assumption yields these conditions.

For (1+3) dimensional space-time we have:

$$
\begin{align*}
& \beta^{0}=\left[\begin{array}{cc}
0 & 0 \\
0 & -\left(\gamma^{0}+\gamma^{1}\right)
\end{array}\right], \beta_{0}^{\prime}=\left[\begin{array}{cc}
\left(\gamma^{0}+\gamma^{1}\right) & 0 \\
0 & 0
\end{array}\right], \beta^{1}=\left[\begin{array}{cc}
0 & \gamma^{2} \\
-\gamma^{3} & 0
\end{array}\right], \beta_{1}^{\prime}=\left[\begin{array}{cc}
0 & \gamma^{3} \\
-\gamma^{2} & 0
\end{array}\right], \\
& \beta^{2}=\left[\begin{array}{cc}
0 & \gamma^{4} \\
\gamma^{5} & 0
\end{array}\right], \beta_{2}^{\prime}=\left[\begin{array}{cc}
0 & -\gamma^{5} \\
-\gamma^{4} & 0
\end{array}\right], \beta^{3}=\left[\begin{array}{cc}
0 & \gamma^{6} \\
-\gamma^{7} & 0
\end{array}\right], \beta_{3}^{\prime}=\left[\begin{array}{cc}
0 & \gamma^{7} \\
-\gamma^{6} & 0
\end{array}\right], \\
& \Psi_{R}=\left[\begin{array}{c}
R_{10 \rho \sigma} \\
R_{20 \rho \sigma} \\
R_{30 \rho \sigma} \\
0 \\
R_{23 \rho \sigma} \\
R_{31 \rho \sigma} \\
R_{12 \rho \sigma} \\
\varphi_{\rho \sigma}^{(G)}
\end{array}\right], \Psi_{F}=\left[\begin{array}{c}
F_{10} \\
F_{20} \\
F_{30} \\
0 \\
F_{23} \\
F_{31} \\
F_{12} \\
\varphi^{(E)}
\end{array}\right], J_{v \rho \sigma}^{(G)}=-\left(\bar{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{v}\right) \varphi_{\rho \sigma}^{(G)}, J_{v}^{(E)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)} \tag{8}
\end{align*}
$$

where

$$
\begin{align*}
& \gamma^{0}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \gamma^{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \gamma^{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right], \gamma^{3}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] . \tag{8-1}\\
& \gamma^{4}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \gamma^{5}=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \gamma^{6}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right], \gamma^{7}=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{align*}
$$

1-4. In Section 3, we show that from the gravitational field equations (1-1) - (1-2), or their equivalent matrix formulation, i.e. equation (1-A) (for $m_{0}^{(G)}=0$), the Einstein field equations (including the cosmological constant Λ, which emerges naturally via derivation process) are derived straightforwardly as follows:

$$
\begin{equation*}
R_{\mu \nu}=-8 \pi\left(T_{\mu \nu}-B T g_{\mu \nu}\right)-\Lambda g_{\mu \nu} \tag{9}
\end{equation*}
$$

where $J_{v \rho \sigma}^{(G)}=-8 \pi\left(\nabla_{\sigma} T_{v \rho}-\nabla_{\rho} T_{v \sigma}\right)+8 \pi B\left(\nabla_{\sigma} T g_{v \rho}-\nabla_{\rho} T g_{v \sigma}\right), T_{\mu \nu}$ is the stress-energy tensor $\left(T=T^{\mu}{ }_{\mu}\right)$,
Λ is a cosmological constant, and $B=0,1,1 / 2$ for two, three and four dimensional space-time, respectively.

1-5. Based on the unique structure of general relativistic single-particle fields derived and also the assumption of chiral symmetry as a basic discrete symmetry of the source-free cases of these fields, we conclude (in Section 3-7) that the universe cannot have more than ($1+3$) space-time dimensions. In addition, a basic argument for the asymmetry of left and right handed (interacting) particles is presented (in Section 3-8). Furthermore, on this basis, we may conclude that the miscellaneous and various relativistic wave equations (which has been written on the basis of experiments and so on) such as the Majorana, Breit, Proca, Rarita-Schwinger, Bargmann-Wigner equations, etc. [12 - 14], should be modified and/or replaced by the uniquely derived general relativistic (single-particle) wave equations (1 -$A)-(2-A)$ (or their equivalent formulations, i.e. equations (1-1) - (2-3)).

1-6. According to the definite mathematical structure of derived field equations (2-1) - (2-3) that correspond to the Maxwell's equations (and also the Yang-Mills equations as the generalization of these equations, see Sections 3-4 and 3-4-1), in Section 3-4-2 we conclude that magnetic monopoles (in contrast with electric monopoles) could not exist in nature.

Let we emphasize again that the above noted results are direct outcomes of a new primary and axiomatic mathematical approach ${ }^{1}$. In this article we try generally to present the main schemes of applications of this new axiomatic approach in mathematics and particularly in fundamental physics. Hence, in Section 2, we present and develop this new mathematical approach, where we formulate a theory of linearization based on the ring theory (including the integral domains) and the generalized Clifford algebra. In Section 3, we show one of the main applications of this (primary) mathematical approach in the foundations of physics, where particularly in connection with the laws governing the fundamental forces and their logical origin, we'll focus on the direct "mathematical derivation" of a definite set of the general relativistic (single-particle) wave equations which uniquely represent these laws as the most fundamental laws of nature.

[^1]
2. The Theory of Linearization: A New Axiomatic Matrix Approach

"Based on the Ring Theory (Including the Integral Domains) and the Matrix Representation of Generalized Clifford Algebra"

Mathematical models of physical processes include certain classes of mathematical objects and relations between these objects. The models of this type, which are most commonly used, are groups, rings, vector spaces, and linear algebras. A group is a set G with a single operation (multiplication) $a \times b=c$; $a, b, c \in G$ which obeys the known conditions [5]. A ring is a set of elements R, where two binary operations, namely, addition and multiplication, are defined.

With respect to addition this set is a group, and multiplication is connected with addition by the distributivity laws $a \times(b+c)=(a \times b)+(a \times c),(b+c) \times a=(b \times a)+(c \times a) ; a, b, c \in R$. The rings reflect the structural properties of the set R. As distinct from the group models, those connected with rings are not frequently applied, although in physics various algebras of matrices, algebras of hypercomplex numbers, Grassman and Clifford algebras are widely used. This is due to the intricacy of finding a connection between the binary relations of addition and multiplication and the element of the rings [5, 2].

This article is devoted to the development of a rather simple approach of establishing such a connection and an analysis of concrete problems on this basis.

I find out that if we axiomatically generalize the set of single-integer elements Z to the set of $n \times n$ square matrix elements (as axioms' elements with single-integer components, which we show it by $\mathrm{Z}_{n \times n}$), fruitful new relations and results hold. Thus in this Section, we present a matrix generalization of the algebraic axiom of nonzero divisors for the ring of integers. Then, we axiomatically formulate a matrix model for constructing a linearization theory over this ring. On this basis, we introduce the necessary and sufficient conditions for transforming the homogeneous non-linear equations (of any order) to their equivalent systems of linear equations (or matrix equations). These matrix equations definitely correspond to the matrix representation of the generalized Clifford algebras. In Section 2-4, quadratic forms (and relevant equations) are studied and analyzed on this basis explicitly.
$\mathbf{2 - 1}$. The algebraic axioms of the domain of integers Z with binary operations $(+, x)$, usually are defined as follows [5]:

- $a_{1}, a_{2}, a_{3}, \ldots \in \mathrm{Z}$,
- Closure:

$$
\begin{equation*}
a_{k}+a_{l} \in \mathrm{Z}, \quad a_{k} \times a_{l} \in \mathrm{Z} \tag{10}
\end{equation*}
$$

- Associativity: $\quad a_{k}+\left(a_{l}+a_{p}\right)=\left(a_{k}+a_{l}\right)+a_{p}, a_{k} \times\left(a_{l} \times a_{p}\right)=\left(a_{k} \times a_{l}\right) \times a_{p}$
- Commutativity

$$
\begin{equation*}
a_{k}+a_{l}=a_{l}+a_{k}, \quad a_{k} \times a_{l}=a_{l} \times a_{k} \tag{11}
\end{equation*}
$$

- Existence of an identity element: $\quad a_{k}+0=a_{k}, a_{k} \times 1=a_{k}$
- Existence of inverse element (for addition): $a_{k}+\left(-a_{k}\right)=0$
- Distributivity: $a_{k} \times\left(a_{l}+a_{p}\right)=\left(a_{k} \times a_{l}\right)+\left(a_{k} \times a_{p}\right),\left(a_{k}+a_{l}\right) \times a_{p}=\left(a_{k} \times a_{p}\right)+\left(a_{l} \times a_{p}\right)$
- No zero divisors:

$$
\begin{equation*}
\left(a_{k}=0 \vee a_{l}=0\right) \Leftrightarrow a_{k} \times a_{l}=0 \tag{15}
\end{equation*}
$$

It is easy to show that the axiom (16), equivalently, could be also presented as follows

$$
\begin{equation*}
\left(a_{k} \times m_{l}=0, m_{l} \neq 0\right) \Leftrightarrow a_{k}=0 \tag{16-1}
\end{equation*}
$$

In axioms (10) - (15), we may simply suppose that the single elements $a_{k} \in \mathrm{Z}$ are 1×1 matrices with integer components: $\left[a_{1}\right]_{1 \times 1}\left(\equiv a_{1}\right),\left[a_{2}\right]_{\mid \times 1}\left(\equiv a_{2}\right),\left[a_{3}\right]_{\mid \times 1}\left(\equiv a_{3}\right), \ldots \in \mathrm{Z}_{1 \times 1}(\equiv Z)$, then equivalently, the axioms (10) - (15) could also be written by square matrices (with integer components) as follows:
$-M_{k}=\left[m_{k_{i j}}\right], \quad m_{k_{\bar{j}}} \in \mathrm{Z}, \quad \exists n \in \mathrm{~N}: i, j=1,2,3, \ldots, n, \quad M_{1}, M_{2}, M_{3}, \ldots \in \mathrm{Z}_{n \times n}$,

- Closure: $\quad M_{k}+M_{l} \in \mathrm{Z}_{n \times n}, \quad M_{k} \times M_{l} \in \mathrm{Z}_{n \times n}$
- Associativity: $\quad M_{k}+\left(M_{l}+M_{p}\right)=\left(M_{k}+M_{l}\right)+M_{p}, M_{k} \times\left(M_{l} \times M_{p}\right)=\left(M_{k} \times M_{l}\right) \times M_{p}$
- Commutativity (for addition): $\quad M_{k}+M_{l}=M_{l}+M_{k}$
- Property of the transpose for matrix multiplication:

$$
\begin{equation*}
\left(M_{k} \times M_{l}\right)^{T}=M_{l}^{T} \times M_{k}^{T} \tag{19-2}
\end{equation*}
$$

where $M_{k}{ }^{T}$ is the transpose of matrix M_{k}.

- Existence of an identity element: $\quad M_{k}+0=M_{k}, \quad M_{k} \times I_{n \times n}=M_{k}$
- Existence of the inverse element (for addition):

$$
\begin{equation*}
M_{k}+\left(-M_{k}\right)=0 \tag{21}
\end{equation*}
$$

- Distributivity:

$$
\begin{align*}
& M_{k} \times\left(M_{l}+M_{p}\right)=\left(M_{k} \times M_{l}\right)+\left(M_{k} \times M_{p}\right), \\
& \left(M_{k}+M_{l}\right) \times M_{p}=\left(M_{k} \times M_{p}\right)+\left(M_{l} \times M_{p}\right) \tag{22}
\end{align*}
$$

Note that from the axioms (10) - (15), we can obtain the matrix-formulation axioms (17) - (22) and vice versa.

In this article, we principally take into account the set of matrix-formulation axioms (17) - (22) for integers, and present the following new additional axiom (formulated "solely" via square matrices) as a new algebraic property of the ring (or domain) of integers - which is a generalized matrixformulation of axiom (16-1), and be replaced by (16-1):

Axiom 2-1. " Let $F\left(b_{1}, b_{2}, b_{3}, \ldots, b_{s}\right)$ be a homogeneous polynomial of degree $\boldsymbol{r} \geq \mathbf{2}$ over the integer elements $b_{p} \in \mathrm{Z}\left(\equiv Z_{\mathrm{lx} 1}\right)$, we have the following axiom:
$\exists A, M \in \mathrm{Z}_{n \times n}$,

$$
\begin{equation*}
\left[(A \times M=0, M \neq 0) \wedge\left(A^{r}=F\left(b_{1}, b_{2}, b_{3}, \ldots, b_{s}\right) I_{n}\right)\right] \Leftrightarrow F\left(b_{1}, b_{2}, b_{3}, \ldots, b_{s}\right)=0 \tag{23}
\end{equation*}
$$

where $A=\left[a_{i j}\right], a_{i j}=\sum_{p=1}^{s} H_{i j p} b_{p}$, and $b_{p} \in \mathrm{Z}\left(\equiv Z_{1 \times 1}\right), \quad \exists n, s: i, j=1,2,3, \ldots, n, \quad p=1,2,3, \ldots, s$, $H_{i j p}$ are coefficients, $M(M \neq 0)$ is a parametric arbitrary matrix, and I_{n} is the identity matrix."

In fact, axiom (16) (or its equivalent, i.e. axiom (16-1)) can be obtained from Axiom 2-1, but definitely not vice versa. Only for special case $n=1$, the set of axioms (17) - (23) (formulated by square matrices) become equivalent to the set of ordinary axioms (10) - (16-1) for integer elements. Axiom 2-1 is formulated "solely" by square matrices (with integer components), and definitely is a new axiom for integers. In this Section and Section 3 we will demonstrate its main and direct consequences and fruitful applications.

Remark 2-1. Note that in Axiom 2-1, according to the arbitrariness of all the parametric components of $n \times n$ matrix $M(M \neq 0)$, without loss of generality, we may replace matrix M with a $n \times 1$ matrix $M_{n \times 1}$ in equations $A M=0$ (with the same condition $M \neq 0$, but only with " n " number of arbitrary parametric components).

Remark 2-2. Algebraic axiomatic relation (23) presents a new fundamental matrix structure and framework for constructing a basic linearization theory in the ring theory (including the integral domains), which will be described below. Also note that the elements $a_{i j}$ are the "linear" homogeneous forms of integer elements $b_{p q}$. Furthermore, (using the definition $A=\left[a_{i j}\right], a_{i j}=\sum_{p=1}^{s} H_{i j p} b_{p}$), we may simply represent matrix A by this linear formula: $A=\sum_{p=1}^{s} b_{p} E_{p}$, where E_{p} are square matrices; then the relation $A^{r}=F\left(b_{1}, b_{2}, b_{3}, \ldots, b_{s}\right) I_{n}$ will definitely express the standard definition of the generalized Clifford algebra associated with homogeneous form $F\left(b_{1}, b_{2}, b_{3}, \ldots, b_{s}\right)$, and generated by matrices E_{p} [43-47]. Thus based on the definition of Axiom 2-1 (formula (23)) over the integer elements, the Clifford algebra (and its matrix representation) as a very well known and studied mathematical theory, is the main and central characteristic of the axiomatic approach presented in this article. We use this essential property in Section 2-4, for a unique determination of square matrices A that generate a generalized Clifford algebra associated with quadratic homogeneous forms of the type (25) (defined below).

2-2. Generally, there are standard and certain methods for solving homogeneous linear equations over the ring of integers [7]. Moreover, on the basis of the Axiom 2-1, the necessary and sufficient condition for solving an homogeneous equation of the $r^{\text {th }}$ order such as $F\left(b_{1}, b_{2}, b_{3}, \ldots, b_{s}\right)=0$, is the transforming or converting it (by "linearization" and simultaneous parameterization, as necessary algebraic conditions) into an equivalent system of linear equations of type $A M=0$ (where $M \neq 0, M: n \times 1$ matrix with parametric components). On this basis, below we'll obtain merely the systems of linear equations that equivalently correspond to the various homogeneous quadratic equations, and also systems of linear equations corresponding to some of the higher order equations.

On the methodological standpoint, firstly, for obtaining and specifying a system of linear equations that corresponds to a given equation $F\left(b_{1}, b_{2}, b_{3}, \ldots, b_{s}\right)=0$, we definitely should assume and take the minimum value for n (i.e. the size of $n \times n$ matrix A defined in (23)). Secondly, by replacing the components of matrix A with the linear forms $a_{i j}=\sum_{p=1}^{s} H_{i j p} b_{p}$ (defined in (23)), in the equation $A^{r}=F\left(b_{1}, b_{2}, b_{3}, \ldots, b_{s}\right) I_{n}$, we basically should calculate the coefficients $H_{i j p}$ (which are independent of elements b_{p}), by ordinary and standard methods of solving certain equations over the ring of integers.

2-3. In particular, an arbitrary homogeneous quadratic form such as

$$
\begin{equation*}
F\left(c_{1}, c_{2}, c_{3}, \ldots, c_{s}\right)=\sum_{i_{1}, i_{2}=1}^{s} B_{i_{i} i_{2}} \prod_{p=1}^{2} c_{i_{p}} \tag{24}
\end{equation*}
$$

could be transformed into a simpler quadratic form of the type

$$
\begin{equation*}
Q\left(b_{11}, b_{21}, b_{12}, b_{22}, \ldots, b_{2 s}\right)=\sum_{q=1}^{s} \prod_{p=1}^{2} b_{p q} \tag{25}
\end{equation*}
$$

by the following linear isomorphic transformations:

$$
\begin{equation*}
b_{11}=c_{1}, \quad b_{21}=\sum_{i_{2}=1}^{s} B_{1 i_{2}} c_{i_{2}}, \quad b_{12}=c_{2}, \quad b_{22}=\sum_{i_{2}=1}^{s} B_{2 i_{2}} c_{i_{2}}, \ldots, \quad b_{1 s}=c_{s}, \quad b_{2 s}=\sum_{i_{2}=1}^{s} B_{s i_{2}} c_{i_{2}} \tag{24-1}
\end{equation*}
$$

Furthermore, as we'll also show later, the following quadratic form could be transformed into quadratic forms of the type (25) as well (by a similar isomorphic transformations):

$$
\begin{equation*}
Q\left(c_{1}, c_{2}, c_{3}, \ldots, c_{s}, d_{1}, d_{2}, d_{3}, \ldots, d_{s}\right)=\sum_{i_{1}, i_{2}=1}^{s} B_{i_{i} i_{2}} \prod_{p=1}^{2} c_{i_{p}}-\sum_{i_{1}, i_{2}=1}^{s} B_{i_{i} i_{2}} \prod_{p=1}^{2} d_{i_{p}} \tag{26}
\end{equation*}
$$

Remark 2-3. In addition, concerning the formula (25), the following general relations could be proven easily:

$$
\begin{align*}
&\left(\sum_{q=1}^{s} \prod_{p=1}^{r} b_{p q} c_{(r+1) q}=\right. 0, \tag{25-1}\\
&\left.\sum_{q=1}^{s} \prod_{p=1}^{r} b_{p q} d_{(r+1) q}=0\right) \Rightarrow \sum_{q=1}^{s} \prod_{p=1}^{r} b_{p q}\left(c_{(r+1) q} \pm d_{(r+1) q}\right)=0, \tag{25-2}\\
& \sum_{q=1}^{s} \prod_{p=1}^{r} b_{p q} c_{(r+1) q}=0 \Leftrightarrow \sum_{q=1}^{s} \prod_{p=1}^{r} b_{p q}\left(t c_{(r+1) q}\right)=0
\end{align*}
$$

where the parameter t is an arbitrary non-zero integer.

2-4. According to the general forms of homogeneous quadratic equations (24) - (26), and the isomorphic linear transformations (24-1), below we merely write the systems of linear equations that correspond to the following quadratic equation (moreover, as we mentioned in Section 2-2, according to the Axiom 2-1 (formula (23)), only one system of linear equations - with the minimum number of equations - for each particular case is sufficient):

$$
\begin{equation*}
Q\left(b_{11}, b_{21}, b_{12}, b_{22}, \ldots, b_{2 s}\right)=\sum_{q=1}^{s} \prod_{p=1}^{2} b_{p q}=0 \tag{25-3}
\end{equation*}
$$

Now according to Axiom 2-1 (formula (23)), the following relation should be specified for equation (253), which by to formulate its equivalent system of linear equations $A M=0$,

$$
\begin{equation*}
A^{2}=\left(\sum_{p=1}^{2} \sum_{q=1}^{s} b_{p q} E_{p q}\right)^{2}=Q\left(b_{11}, b_{21}, b_{12}, b_{22}, \ldots, b_{2 s}\right) I_{n} \tag{25-4}
\end{equation*}
$$

where $n=2^{s-1}$, and matrices $E_{p q}$ generate a generalized Clifford algebra associated with form $Q\left(b_{11}, b_{21}, b_{12}, b_{22}, \ldots, b_{2 s}\right)$.

We should note here that the matrix equations, which will be obtained on this basis for the above homogeneous quadratic equations, also could simply be modified to be hermitian (and we will do it for these equations). The hermiticity is a necessary condition for these matrix equations (i.e. matrix equations (32), (34), (36), (37), (38), corresponding quadratic equation (24)), which we will use to formulate the relativistic wave equations of physics, in Section 3 (see Sections 3-3, 3-6, 3-7 and Appendix B).

Thus let we expand the equation (25-3) as follows, respectively:

$$
\begin{gather*}
\sum_{q=1}^{1} \prod_{p=1}^{2} b_{p q}=b_{11} b_{21}=0 \tag{27}\\
\sum_{q=1}^{2} \prod_{p=1}^{2} b_{p q}=b_{11} b_{21}+b_{12} b_{22}=0, \tag{28}\\
\sum_{q=1}^{3} \prod_{p=1}^{2} b_{p q}=b_{11} b_{21}+b_{12} b_{22}+b_{13} b_{23}=0, \tag{29}\\
\sum_{q=1}^{4} \prod_{p=1}^{2} b_{p q}=b_{11} b_{21}+b_{12} b_{22}+b_{13} b_{23}+b_{14} b_{24}=0, \tag{30}\\
\sum_{q=1}^{5} \prod_{p=1}^{2} b_{p q}=b_{11} b_{21}+b_{12} b_{22}+b_{13} b_{23}+b_{14} b_{24}+b_{15} b_{25}=0 ; \tag{31}
\end{gather*}
$$

Hence, based on the Axiom 2-1 (formula (23)), Remark 2-2 and our methodology mentioned in Section 22 , the equivalent matrix equations (here we mean a system of linear equations) corresponding (uniquely) to the quadratic equations (27) - (31) are, respectively, as follows:

First, the equivalent matrix equation corresponding to quadratic equation (27) is given by

$$
A \times M=\left[\begin{array}{cc}
0 & e_{0} \tag{32}\\
f_{0} & 0
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right]=0
$$

where $e_{0}=b_{11}, f_{0}=b_{21}$, and we have

$$
A^{2}=\left[\begin{array}{cc}
0 & e_{0} \tag{32-1}\\
f_{0} & 0
\end{array}\right] \times\left[\begin{array}{cc}
0 & e_{0} \\
f_{0} & 0
\end{array}\right]=\left(e_{0} f_{0}\right) I_{2}
$$

For (28) we have the following equivalent matrix equation

$$
A \times M=\left[\begin{array}{cccc}
0 & 0 & e_{0} & f_{1} \tag{33}\\
0 & 0 & -e_{1} & f_{0} \\
f_{0} & f_{1} & 0 & 0 \\
-e_{1} & e_{0} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right]=0
$$

where $e_{0}=b_{11}, f_{0}=b_{21}, e_{1}=b_{12}, f_{1}=b_{22}$, and we have

$$
A^{2}=\left[\begin{array}{cccc}
0 & 0 & e_{0} & f_{1} \tag{33-1}\\
0 & 0 & -e_{1} & f_{0} \\
f_{0} & -f_{1} & 0 & 0 \\
e_{1} & e_{0} & 0 & 0
\end{array}\right] \times\left[\begin{array}{cccc}
0 & 0 & e_{0} & f_{1} \\
0 & 0 & -e_{1} & f_{0} \\
f_{0} & -f_{1} & 0 & 0 \\
e_{1} & e_{0} & 0 & 0
\end{array}\right]=\left(e_{0} f_{0}+e_{1} f_{1}\right) I_{4}
$$

Notice that using (33) we get the following two separate and fully equivalent matrix equations for (28):

$$
\begin{align*}
& {\left[\begin{array}{cc}
e_{0} & f_{1} \\
-e_{1} & f_{0}
\end{array}\right]\left[\begin{array}{l}
m_{3} \\
m_{4}
\end{array}\right]=0,} \tag{33-2}\\
& {\left[\begin{array}{cc}
f_{0} & f_{1} \\
-e_{1} & e_{0}
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right]=0} \tag{33-3}
\end{align*}
$$

As the matrix equations (33-2) and (33-3) are equivalent, we can choose the equation (33-2) as the system of linear equations corresponding to quadratic equation (28) - where for simplicity we may also replace the parameters m_{1} and m_{2} by parameters m_{3} and m_{4}, as follows

$$
\left[\begin{array}{cc}
e_{0} & f_{1} \tag{34}\\
-e_{1} & f_{0}
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right]=0
$$

The following system of linear equations corresponds to quadratic equation (29):

$$
A \times M=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & e_{0} & 0 & -e_{2} & f_{1} \tag{35}\\
0 & 0 & 0 & 0 & 0 & e_{0} & -e_{1} & -f_{2} \\
0 & 0 & 0 & 0 & f_{2} & f_{1} & f_{0} & 0 \\
0 & 0 & 0 & 0 & -e_{1} & e_{2} & 0 & f_{0} \\
f_{0} & 0 & e_{2} & -f_{1} & 0 & 0 & 0 & 0 \\
0 & f_{0} & e_{1} & f_{2} & 0 & 0 & 0 & 0 \\
-f_{2} & -f_{1} & e_{0} & 0 & 0 & 0 & 0 & 0 \\
e_{1} & -e_{2} & 0 & e_{0} & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
m_{5} \\
m_{6} \\
m_{7} \\
m_{8}
\end{array}\right]=0
$$

where $e_{0}=b_{11}, f_{0}=b_{21}, e_{1}=b_{12}, f_{1}=b_{22}, e_{2}=b_{13}, f_{2}=b_{23}$, and we have

$$
\begin{align*}
& A^{2}= \\
& =\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & e_{0} & 0 & -e_{2} & f_{1} \\
0 & 0 & 0 & 0 & 0 & e_{0} & -e_{1} & -f_{2} \\
0 & 0 & 0 & 0 & f_{2} & f_{1} & f_{0} & 0 \\
0 & 0 & 0 & 0 & -e_{1} & e_{2} & 0 & f_{0} \\
f_{0} & 0 & e_{2} & -f_{1} & 0 & 0 & 0 & 0 \\
0 & f_{0} & e_{1} & f_{2} & 0 & 0 & 0 & 0 \\
-f_{2} & -f_{1} & e_{0} & 0 & 0 & 0 & 0 & 0 \\
e_{1} & -e_{2} & 0 & e_{0} & 0 & 0 & 0 & 0
\end{array}\right] \times\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & e_{0} & 0 & -e_{2} & f_{1} \\
0 & 0 & 0 & 0 & 0 & e_{0} & -e_{1} & -f_{2} \\
0 & 0 & 0 & 0 & f_{2} & f_{1} & f_{0} & 0 \\
0 & 0 & 0 & 0 & -e_{1} & e_{2} & 0 & f_{0} \\
f_{0} & 0 & e_{2} & -f_{1} & 0 & 0 & 0 & 0 \\
0 & f_{0} & e_{1} & f_{2} & 0 & 0 & 0 & 0 \\
-f_{2} & -f_{1} & e_{0} & 0 & 0 & 0 & 0 & 0 \\
e_{1} & -e_{2} & 0 & e_{0} & 0 & 0 & 0 & 0
\end{array}\right] \\
& =\left(e_{0} f_{0}+e_{1} f_{1}+e_{2} f_{2}\right) I_{8} \tag{35-1}
\end{align*}
$$

From (35) (similar to the (33)) the following two equivalent matrix equations are obtained,

$$
\begin{align*}
& {\left[\begin{array}{cccc}
e_{0} & 0 & -e_{2} & f_{1} \\
0 & e_{0} & -e_{1} & -f_{2} \\
f_{2} & f_{1} & f_{0} & 0 \\
-e_{1} & e_{2} & 0 & f_{0}
\end{array}\right]\left[\begin{array}{l}
m_{5} \\
m_{6} \\
m_{7} \\
m_{8}
\end{array}\right]=0,} \tag{35-2}\\
& {\left[\begin{array}{cccc}
f_{0} & 0 & e_{2} & -f_{1} \\
0 & f_{0} & e_{1} & f_{2} \\
-f_{2} & -f_{1} & e_{0} & 0 \\
e_{1} & -e_{2} & 0 & e_{0}
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right]=0} \tag{35-3}
\end{align*}
$$

So, we can choose equation (35-2), as the system of linear equations corresponding to the quadratic equation (29) (where for simplicity here we also replace the parameters m_{1}, m_{2}, m_{3} and m_{4} by parameters m_{5}, m_{6}, m_{7} and $\left.m_{8}\right)$:

$$
\left[\begin{array}{cccc}
e_{0} & 0 & -e_{2} & f_{1} \tag{36}\\
0 & e_{0} & -e_{1} & -f_{2} \\
f_{2} & f_{1} & f_{0} & 0 \\
-e_{1} & e_{2} & 0 & f_{0}
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right]=0
$$

Similar to the matrix equations (34) and (36) that correspond to the quadratic equations (28) and (29), the unique and equivalent matrix equations corresponding to the quadratic equations (30) and (31) are also obtained as follows, respectively,

$$
\left[\begin{array}{cccccccc}
e_{0} & 0 & 0 & 0 & 0 & -e_{3} & e_{2} & f_{1} \tag{37}\\
0 & e_{0} & 0 & 0 & e_{3} & 0 & -e_{1} & f_{2} \\
0 & 0 & e_{0} & 0 & -e_{2} & e_{1} & 0 & f_{3} \\
0 & 0 & 0 & e_{0} & -f_{1} & -f_{2} & -f_{3} & 0 \\
0 & -f_{3} & f_{2} & e_{1} & f_{0} & 0 & 0 & 0 \\
f_{3} & 0 & -f_{1} & e_{2} & 0 & f_{0} & 0 & 0 \\
-f_{2} & f_{1} & 0 & e_{3} & 0 & 0 & f_{0} & 0 \\
-e_{1} & -e_{2} & -e_{3} & 0 & 0 & 0 & 0 & f_{0}
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
m_{5} \\
m_{6} \\
m_{7} \\
m_{8}
\end{array}\right]=0
$$

where $e_{0}=b_{11}, f_{0}=b_{21}, e_{1}=b_{12}, f_{1}=b_{22}, e_{2}=b_{13}, f_{2}=b_{23}, e_{3}=b_{14}, f_{3}=b_{24}$;
and for (31) we obtain

$$
\left[\begin{array}{cccccccccccccccc}
e_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{4} & 0 & -e_{3} & -e_{2} & f_{1} \\
0 & e_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & 0 & e_{3} & 0 & -e_{1} & -f_{2} \\
0 & 0 & e_{0} & 0 & 0 & 0 & 0 & 0 & 0 & -e_{4} & 0 & 0 & e_{2} & e_{1} & 0 & f_{3} \\
0 & 0 & 0 & e_{0} & 0 & 0 & 0 & 0 & e_{4} & 0 & 0 & 0 & -f_{1} & f_{2} & -f_{3} & 0 \\
0 & 0 & 0 & 0 & e_{0} & 0 & 0 & 0 & 0 & -e_{3} & -e_{2} & -e_{1} & 0 & 0 & 0 & -f_{4} \\
0 & 0 & 0 & 0 & 0 & e_{0} & 0 & 0 & e_{3} & 0 & f_{1} & -f_{2} & 0 & 0 & f_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & e_{0} & 0 & e_{2} & -f_{1} & 0 & f_{3} & 0 & -f_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{0} & e_{1} & f_{2} & -f_{3} & 0 & f_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & -f_{4} & 0 & -f_{3} & -f_{2} & -f_{1} & f_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & f_{4} & 0 & f_{3} & 0 & e_{1} & -e_{2} & 0 & f_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -f_{4} & 0 & 0 & f_{2} & -e_{1} & 0 & e_{3} & 0 & 0 & f_{0} & 0 & 0 & 0 & 0 & 0 \\
f_{4} & 0 & 0 & 0 & f_{1} & e_{2} & -e_{3} & 0 & 0 & 0 & 0 & f_{0} & 0 & 0 & 0 & 0 \\
0 & -f_{3} & -f_{2} & e_{1} & 0 & 0 & 0 & -e_{4} & 0 & 0 & 0 & 0 & f_{0} & 0 & 0 & 0 \\
f_{3} & 0 & -f_{1} & -e_{2} & 0 & 0 & e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & f_{0} & 0 & 0 \\
f_{2} & f_{1} & 0 & e_{3} & 0 & -e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{0} & 0 \\
-e_{1} & e_{2} & -e_{3} & 0 & e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{0}
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
m_{5} \\
m_{6} \\
m_{7} \\
m_{8} \\
m_{9} \\
m_{10} \\
m_{11} \\
m_{12} \\
m_{13} \\
m_{14} \\
m_{15} \\
m_{16}
\end{array}\right]=0
$$

where $e_{0}=b_{11}, f_{0}=b_{21}, e_{1}=b_{12}, f_{1}=b_{22}, e_{2}=b_{13}, f_{2}=b_{23}, e_{3}=b_{14}, f_{3}=b_{24}, e_{4}=b_{15}, f_{4}=b_{25}$.

In a similar manner, the systems of linear equations with larger sizes could be obtained for special cases of general quadratic equation (25-3), where $s=1,2,3, \ldots$. The size of the square matrices of these matrix equations is $2^{s} \times 2^{s}$. But, this size is reducible to $2^{s-1} \times 2^{s-1}$ for the quadratic forms (as we had these sizes for matrix equations (34), (36), (37) and (38) which correspond to the quadratic equations (29) (31)). In general, the size of the square matrices A that correspond to the homogeneous $r^{\text {th }}$ order form $F\left(b_{1}, b_{2}, b_{3}, \ldots, b_{s}\right)$ defined in (23), is $r^{s} \times r^{s}$, which for particular cases this size could be reduced. Moreover, based on Axiom 1-2 (formula (23)), by obtaining (and solving) a system of linear equations which corresponds to a $r^{\text {th }}$ order equation, we may systematically show (or decide) whether this equation has the integral solution.

We present below the systems of linear equations (defined by (23)) corresponding to some particular higher ($3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$) order homogeneous equations. For a third order equation of the type

$$
\begin{equation*}
F\left(e_{0}, f_{0}, e_{1}, f_{1}, e_{2}, f_{2}\right)=e_{0}^{2} f_{0}-e_{0} f_{0}^{2}+e_{2}^{2} f_{2}-e_{2} f_{2}^{2}+e_{1} f_{1} g_{1}=0 \tag{39}
\end{equation*}
$$

the following matrix equation is obtained

$$
A M=\left[\begin{array}{rrr}
0 & 0 & A_{1} \tag{40}\\
A_{2} & 0 & 0 \\
0 & A_{3} & 0
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
:::: \\
m_{27}
\end{array}\right]=0,
$$

where A is a 27×27 square matrix and we have

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{ccccccccc}
-e_{2}+f_{2} & 0 & 0 & 0 & 0 & 0 & -e_{0}+f_{0} & e_{1} & 0 \\
0 & -e_{2}+f_{2} & 0 & 0 & 0 & 0 & 0 & e_{0} & g_{1} \\
0 & 0 & -e_{2}+f_{2} & 0 & 0 & 0 & f_{1} & 0 & -f_{0} \\
-f_{0} & e_{1} & 0 & e_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & -e_{0}+f_{0} & g_{1} & 0 & e_{2} & 0 & 0 & 0 & 0 \\
f_{1} & 0 & e_{0} & 0 & 0 & e_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & e_{0} & e_{1} & 0 & -f_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & -f_{0} & g_{1} & 0 & -f_{2} & 0 \\
0 & 0 & 0 & 0 & f_{1} & 0 & -e_{0}+f_{0} & 0 & 0 \\
-f_{2}
\end{array}\right], \\
& A_{2}=\left[\begin{array}{ccccccccc}
-f_{2} & 0 & 0 & 0 & 0 & 0 & -e_{0}+f_{0} & e_{1} & 0 \\
0 & -f_{2} & 0 & 0 & 0 & 0 & 0 & e_{0} & g_{1} \\
0 & 0 & -f_{2} & 0 & 0 & 0 & f_{1} & 0 & -f_{0} \\
-f_{0} & e_{1} & 0 & -e_{2}+f_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & -e_{0}+f_{0} & g_{1} & 0 & -e_{2}+f_{2} & 0 & 0 & 0 & 0 \\
f_{1} & 0 & e_{0} & 0 & 0 & -e_{2}+f_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & e_{0} & e_{1} & 0 & e_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & -f_{0} & g_{1} & 0 & e_{2} & 0 \\
0 & 0 & 0 & f_{1} & 0 & -e_{0}+f_{0} & 0 & 0 & e_{2}
\end{array}\right],
\end{aligned}
$$

$$
A_{3}=\left[\begin{array}{ccccccccc}
e_{2} & 0 & 0 & 0 & 0 & 0 & -e_{0}+f_{0} & e_{1} & 0 \tag{41}\\
0 & e_{2} & 0 & 0 & 0 & 0 & 0 & e_{0} & g_{1} \\
0 & 0 & e_{2} & 0 & 0 & 0 & f_{1} & 0 & -f_{0} \\
-f_{0} & e_{1} & 0 & -f_{2} & 0 & 0 & 0 & 0 & 0 \\
0 & -e_{0}+f_{0} & g_{1} & 0 & -f_{2} & 0 & 0 & 0 & 0 \\
f_{1} & 0 & e_{0} & 0 & 0 & -f_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & e_{0} & e_{1} & 0 & -e_{2}+f_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & -f_{0} & g_{1} & 0 & -e_{2}+f_{2} & 0 \\
0 & 0 & 0 & f_{1} & 0 & -e_{0}+f_{0} & 0 & 0 & -e_{2}+f_{2}
\end{array}\right] .
$$

Based on (23), the system of linear equations corresponding to the $3^{\text {rd }}$ order equation

$$
\begin{equation*}
F(a, b, c)=2\left(a^{3}-c^{3}+B b^{3}\right)=0 \tag{42}
\end{equation*}
$$

is given by

$$
A M=\left[\begin{array}{rrr}
0 & 0 & A_{1} \tag{43}\\
A_{2} & 0 & 0 \\
0 & A_{3} & 0
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
:::: \\
m_{27}
\end{array}\right]=0,
$$

where A is a 27×27 square matrix and we have:

$$
A_{1}=\left[\begin{array}{ccccccccc}
-a & 0 & 0 & 0 & 0 & 0 & -2 c & b & 0 \\
0 & -a & 0 & 0 & 0 & 0 & 0 & c & 2 b \\
0 & 0 & -a & 0 & 0 & 0 & b & 0 & c \\
c & b & 0 & -a & 0 & 0 & 0 & 0 & 0 \\
0 & -2 c & 2 b & 0 & -a & 0 & 0 & 0 & 0 \\
b & 0 & c & 0 & 0 & -a & 0 & 0 & 0 \\
0 & 0 & 0 & c & b & 0 & 2 a & 0 & 0 \\
0 & 0 & 0 & 0 & c & 2 b & 0 & 2 a & 0 \\
0 & 0 & 0 & b & 0 & -2 c & 0 & 0 & 2 a
\end{array}\right], A_{2}=\left[\begin{array}{ccccccccc}
2 a & 0 & 0 & 0 & 0 & 0 & -2 c & b & 0 \\
0 & 2 a & 0 & 0 & 0 & 0 & 0 & c & 2 b \\
0 & 0 & 2 a & 0 & 0 & 0 & b & 0 & c \\
c & b & 0 & -a & 0 & 0 & 0 & 0 & 0 \\
0 & -2 c & 2 b & 0 & -a & 0 & 0 & 0 & 0 \\
b & 0 & c & 0 & 0 & -a & 0 & 0 & 0 \\
0 & 0 & 0 & c & b & 0 & -a & 0 & 0 \\
0 & 0 & 0 & 0 & c & 2 b & 0 & -a & 0 \\
0 & 0 & 0 & b & 0 & -2 c & 0 & 0 & -a
\end{array}\right],
$$

$$
A_{3}=\left[\begin{array}{ccccccccc}
-a & 0 & 0 & 0 & 0 & 0 & -2 c & b & 0 \tag{44}\\
0 & -a & 0 & 0 & 0 & 0 & 0 & c & 2 b \\
0 & 0 & -a & 0 & 0 & 0 & b & 0 & c \\
c & b & 0 & 2 a & 0 & 0 & 0 & 0 & 0 \\
0 & -2 c & 2 b & 0 & 2 a & 0 & 0 & 0 & 0 \\
b & 0 & c & 0 & 0 & 2 a & 0 & 0 & 0 \\
0 & 0 & 0 & c & b & 0 & -a & 0 & 0 \\
0 & 0 & 0 & 0 & c & 2 b & 0 & -a & 0 \\
0 & 0 & 0 & b & 0 & -2 c & 0 & 0 & -a
\end{array}\right] .
$$

For the $4^{\text {th }}$ order homogeneous equation,

$$
\begin{equation*}
F\left(e_{1}, e_{2}, f_{1}, f_{2}, f_{3}, f_{4}\right)=-e_{1} e_{2}^{3}+e_{1}^{3} e_{2}+f_{1} f_{2} f_{3} f_{4}=0 \tag{45}
\end{equation*}
$$

the equivalent system of linear equations, that follow from Axiom 1-2, is

$$
A M=\left[\begin{array}{cccc}
0 & 0 & 0 & A_{1} \tag{46}\\
-A_{2} & 0 & 0 & 0 \\
0 & A_{3} & 0 & 0 \\
0 & 0 & A_{4} & 0
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\ldots \\
\ldots \\
m_{16}
\end{array}\right]=0,
$$

where A is a 16×16 square matrix and matrices $A_{1}, A_{2}, A_{3}, A_{4}$ are

$$
\begin{align*}
& A_{1}=\left[\begin{array}{cccc}
e_{1}+e_{2} & 0 & 0 & f_{1} \\
-f_{2} & e_{1} & 0 & 0 \\
0 & f_{3} & -e_{1}+e_{2} & 0 \\
0 & 0 & f_{4} & -e_{2}
\end{array}\right], A_{2}=\left[\begin{array}{cccc}
-e_{2} & 0 & 0 & f_{1} \\
f_{2} & e_{1}+e_{2} & 0 & 0 \\
0 & -f_{3} & e_{1} & 0 \\
0 & 0 & f_{4} & -e_{1}+e_{2}
\end{array}\right], \\
& A_{3}=\left[\begin{array}{cccc}
-e_{1}+e_{2} & 0 & 0 & f_{1} \\
f_{2} & -e_{2} & 0 & 0 \\
0 & f_{3} & e_{1}+e_{2} & 0 \\
0 & 0 & -f_{4} & e_{1}
\end{array}\right], A_{4}=\left[\begin{array}{cccc}
e_{1} & 0 & 0 & -f_{1} \\
f_{2} & -e_{1}+e_{2} & 0 & 0 \\
0 & f_{3} & -e_{2} & 0 \\
0 & 0 & f_{4} & e_{1}+e_{2}
\end{array}\right] . \tag{47}
\end{align*}
$$

In addition, the obtained system of linear equations which corresponds to the $5^{\text {th }}$ order homogeneous equation,

$$
\begin{equation*}
F\left(e_{1}, e_{2}, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)=e_{1}^{4} e_{2}-e_{1}^{3} e_{2}^{2}-e_{1}^{2} e_{2}^{3}+e_{1} e_{2}^{4}+f_{1} f_{2} f_{3} f_{4} f_{5}=0 \tag{48}
\end{equation*}
$$

is:

$$
A M=\left[\begin{array}{rrrrr}
0 & 0 & 0 & 0 & A_{1} \tag{49}\\
A_{2} & 0 & 0 & 0 & 0 \\
0 & A_{3} & 0 & 0 & 0 \\
0 & 0 & A_{4} & 0 & 0 \\
0 & 0 & 0 & A_{5} & 0
\end{array}\right] \cdot\left[\begin{array}{r}
m_{1} \\
m_{2} \\
\ldots \\
\ldots \\
m_{25}
\end{array}\right]=0,
$$

where A is a 25×25 square matrix and matrices $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ are given by
$A_{1}=\left[\begin{array}{ccccc}e_{1}-e_{2} & 0 & 0 & 0 & f_{1} \\ f_{2} & e_{1} & 0 & 0 & 0 \\ 0 & f_{3} & e_{2} & 0 & 0 \\ 0 & 0 & f_{4} & -e_{1}+e_{2} & 0 \\ 0 & 0 & 0 & f_{5} & -e_{1}-e_{2}\end{array}\right], A_{2}=\left[\begin{array}{ccccc}-e_{1}-e_{2} & 0 & 0 & 0 & f_{1} \\ f_{2} & e_{1}-e_{2} & 0 & 0 & 0 \\ 0 & f_{3} & e_{1} & 0 & 0 \\ 0 & 0 & f_{4} & e_{2} & 0 \\ 0 & 0 & 0 & f_{5} & -e_{1}+e_{2}\end{array}\right]$,
$A_{3}=\left[\begin{array}{ccccc}-e_{1}+e_{2} & 0 & 0 & 0 & f_{1} \\ f_{2} & -e_{1}-e_{2} & 0 & 0 & 0 \\ 0 & f_{3} & e_{1}-e_{2} & 0 & 0 \\ 0 & 0 & f_{4} & e_{1} & 0 \\ 0 & 0 & 0 & f_{5} & e_{2}\end{array}\right], A_{4}=\left[\begin{array}{ccccc}e_{2} & 0 & 0 & 0 & f_{1} \\ f_{2}-e_{1}+e_{2} & 0 & 0 & 0 \\ 0 & f_{3} & -e_{1}-e_{2} & 0 & 0 \\ 0 & 0 & f_{4} & e_{1}-e_{2} & 0 \\ 0 & 0 & 0 & f_{5} & e_{1}\end{array}\right]$,
$A_{5}=\left[\begin{array}{ccccc}e_{1} & 0 & 0 & 0 & f_{1} \\ f_{2} & e_{2} & 0 & 0 & 0 \\ 0 & f_{3} & -e_{1}+e_{2} & 0 & 0 \\ 0 & 0 & f_{4} & -e_{1}-e_{2} & 0 \\ 0 & 0 & 0 & f_{5} & e_{1}-e_{2}\end{array}\right]$

2-5. Because of particular applications of the obtained systems of linear equations corresponding to the general quadratic equation (25-3)in Section 3 (concerning the derivation of the relativistic single-particle field equations of physics and Lorentz transformations and so on), in this section we analyze and solve the matrix equations (34), (36), (37), (38). However, it should be noted again that these matrix equations (that are structurally unique) have been obtained not only on the basis of the algebraic Axiom 2-1 (formula (23)), but also have been modified to be hermitian.

First, let we consider the following more general homogeneous quadratic equation

$$
\begin{equation*}
\sum_{i, j=0}^{n} B_{i j}\left(c_{i} c_{j}-d_{i} d_{j}\right)=0 \tag{51}
\end{equation*}
$$

where $B=\left\lfloor B_{i j}\right\rfloor$ is a symmetric matrix $B_{i j}=B_{j i}$, and $\operatorname{det}\left|B_{i j}\right| \neq 0$.
For obtaining the systems of linear equations corresponding to (51) (for $n=0,1,2,3, \ldots$; , we define the following isomorphic linear transformations

$$
\begin{equation*}
e_{i}=\sum_{j=0}^{n} B_{i j}\left(c_{j}+d_{j}\right), f_{i}=c_{i}-d_{i} \tag{52}
\end{equation*}
$$

which could also be represent as

$$
\begin{gather*}
{\left[\begin{array}{c}
f_{0} \\
f_{1} \\
f_{3} \\
\cdot \\
\cdot \\
\cdot \\
f_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{0}-d_{0} \\
c_{1}-d_{1} \\
c_{2}-d_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{n}-d_{n}
\end{array}\right],} \tag{52-1}\\
{\left[\begin{array}{c}
e_{0} \\
e_{1} \\
e_{3} \\
\cdot \\
\cdot \\
\cdot \\
e_{n}
\end{array}\right]=\left[\begin{array}{llllll}
B_{00} & B_{01} & B_{02} & \cdot & \cdot & \cdot \\
B_{10} & B_{11} & B_{12} & \cdot & \cdot & \cdot \\
B_{20} & B_{21} & B_{22} & \cdot & \cdot & \cdot \\
\cdot & & & B_{2 n} \\
\cdot & & & & \\
\cdot & B_{n 1} & B_{n 2} & \cdot & \cdot & \cdot \\
B_{n 0} & B_{n n}
\end{array}\right]\left[\begin{array}{c}
c_{0}+d_{0} \\
c_{1}+d_{1} \\
c_{2}+d_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{n}+d_{n}
\end{array}\right] ;} \tag{52-2}
\end{gather*}
$$

where $\operatorname{det} B \neq 0$, and matrix B be invertible. Thus, by the above transformations, the systems of linear equations corresponding to (51) are (34) (for $n=1$), (36) (for $n=2$), (37) (for $n=3$) and (38) (for $n=4$). Hence, using (52-1) and (52-2), these matrix equations are represented as follows

$$
\begin{align*}
& {\left[B_{00}\left(c_{0}+d_{0}\right)\right]\left[m_{1}\right]=0,} \tag{53}\\
& {\left[\begin{array}{cc}
\sum_{j=0}^{1} B_{0 j}\left(c_{j}+d_{j}\right) & c_{1}-d_{1} \\
-\sum_{j=0}^{1} B_{1 j}\left(c_{j}+d_{j}\right) & c_{0}-d_{0}
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right]=0,} \tag{54}\\
& {\left[\begin{array}{cccc}
\sum_{j=0}^{2} B_{0 j}\left(c_{j}+d_{j}\right) & 0 & -\sum_{j=0}^{2} B_{2 j}\left(c_{j}+d_{j}\right) & c_{1}-d_{1} \\
0 & \sum_{j=0}^{2} B_{0 j}\left(c_{j}+d_{j}\right) & -\sum_{j=0}^{2} B_{1 j}\left(c_{j}+d_{j}\right) & -\left(c_{2}-d_{2}\right) \\
c_{2}-d_{2} & c_{1}-d_{1} & c_{0}-d_{0} & 0 \\
-\sum_{j=0}^{2} B_{1 j}\left(c_{j}+d_{j}\right) & \sum_{j=0}^{2} B_{2 j}\left(c_{j}+d_{j}\right) & 0 & c_{0}-d_{0}
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4}
\end{array}\right]=0,} \tag{55}\\
& {\left[\begin{array}{cccccccc}
e_{0} & 0 & 0 & 0 & 0 & -e_{3} & e_{2} & f_{1} \\
0 & e_{0} & 0 & 0 & e_{3} & 0 & -e_{1} & f_{2} \\
0 & 0 & e_{0} & 0 & -e_{2} & e_{1} & 0 & f_{3} \\
0 & 0 & 0 & e_{0} & -f_{1} & -f_{2} & -f_{3} & 0 \\
0 & -f_{3} & f_{2} & e_{1} & f_{0} & 0 & 0 & 0 \\
f_{3} & 0 & -f_{1} & e_{2} & 0 & f_{0} & 0 & 0 \\
-f_{2} & f_{1} & 0 & e_{3} & 0 & 0 & f_{0} & 0 \\
-e_{1} & -e_{2} & -e_{3} & 0 & 0 & 0 & 0 & f_{0}
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
m_{5} \\
m_{6} \\
m_{7} \\
m_{8}
\end{array}\right]=0,} \tag{56}
\end{align*}
$$

where

$$
\begin{align*}
& e_{0}=\sum_{j=0}^{3} B_{0 j}\left(c_{j}+d_{j}\right), \quad f_{0}=c_{0}-d_{0}, \\
& e_{1}=\sum_{j=0}^{3} B_{1 j}\left(c_{j}+d_{j}\right), \quad f_{1}=c_{1}-d_{1}, \\
& e_{2}=\sum_{j=0}^{3} B_{2 j}\left(c_{j}+d_{j}\right), \quad f_{2}=c_{2}-d_{2}, \tag{56-1}\\
& e_{3}=\sum_{j=0}^{3} B_{3 j}\left(c_{j}+d_{j}\right), \quad f_{3}=c_{3}-d_{3} .
\end{align*}
$$

$$
\left[\begin{array}{ccccccccccccccccc}
e_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{4} & 0 & -e_{3} & -e_{2} & f_{1} \tag{57}\\
0 & e_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & 0 & e_{3} & 0 & -e_{1} & -f_{2} \\
0 & 0 & e_{0} & 0 & 0 & 0 & 0 & 0 & 0 & -e_{4} & 0 & 0 & e_{2} & e_{1} & 0 & f_{3} \\
0 & 0 & 0 & e_{0} & 0 & 0 & 0 & 0 & e_{4} & 0 & 0 & 0 & -f_{1} & f_{2} & -f_{3} & 0 \\
0 & 0 & 0 & 0 & e_{0} & 0 & 0 & 0 & 0 & -e_{3} & -e_{2} & -e_{1} & 0 & 0 & 0 & -f_{4} \\
0 & 0 & 0 & 0 & 0 & e_{0} & 0 & 0 & e_{3} & 0 & f_{1} & -f_{2} & 0 & 0 & f_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & e_{0} & 0 & e_{2} & -f_{1} & 0 & f_{3} & 0 & -f_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{0} & e_{1} & f_{2} & -f_{3} & 0 & f_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & -f_{4} & 0 & -f_{3} & -f_{2} & -f_{1} & f_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & f_{4} & 0 & f_{3} & 0 & e_{1} & -e_{2} & 0 & f_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -f_{4} & 0 & 0 & f_{2} & -e_{1} & 0 & e_{3} & 0 & 0 & f_{0} & 0 & 0 & 0 & 0 & 0 \\
f_{4} & 0 & 0 & 0 & f_{1} & e_{2} & -e_{3} & 0 & 0 & 0 & 0 & f_{0} & 0 & 0 & 0 & 0 \\
0 & -f_{3} & -f_{2} & e_{1} & 0 & 0 & 0 & -e_{4} & 0 & 0 & 0 & 0 & f_{0} & 0 & 0 & 0 \\
f_{3} & 0 & -f_{1} & -e_{2} & 0 & 0 & e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & f_{0} & 0 & 0 \\
f_{2} & f_{1} & 0 & e_{3} & 0 & -e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{0} & 0 \\
-e_{1} & e_{2} & -e_{3} & 0 & e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{0}
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
m_{5} \\
m_{6} \\
m_{7} \\
m_{8} \\
m_{9} \\
m_{10} \\
m_{11} \\
m_{12} \\
m_{13} \\
m_{14} \\
m_{15} \\
m_{16}
\end{array}\right]=0
$$

where

$$
\begin{align*}
& e_{0}=\sum_{j=0}^{4} B_{0 j}\left(c_{j}+d_{j}\right), \quad f_{0}=c_{0}-d_{0}, \\
& e_{1}=\sum_{j=0}^{4} B_{1 j}\left(c_{j}+d_{j}\right), \quad f_{1}=c_{1}-d_{1}, \\
& e_{2}=\sum_{j=0}^{4} B_{2 j}\left(c_{j}+d_{j}\right), \quad f_{2}=c_{2}-d_{2}, \tag{57-1}\\
& e_{3}=\sum_{j=0}^{4} B_{3 j}\left(c_{j}+d_{j}\right), \quad f_{3}=c_{3}-d_{3}, \\
& e_{4}=\sum_{j=0}^{4} B_{4 j}\left(c_{j}+d_{j}\right), \quad f_{4}=c_{4}-d_{4} .
\end{align*}
$$

It is noteworthy here that there are not the similar isomorphic linear transformations such as (51-1) -(51-2) (that were definable for quadratic equation (51)) for the third and the higher order equations of the form:

$$
\begin{equation*}
\sum_{i, j, k=0}^{n} B_{i j k}\left(c_{i} c_{j} c_{k}-d_{i} d_{j} d_{k}\right)=0, \sum_{i, j, k, l=0}^{n} B_{i j k l}\left(c_{i} c_{j} c_{k} c_{l}-d_{i} d_{j} d_{k} d_{l}\right)=0, \ldots \tag{58}
\end{equation*}
$$

Moreover, by the following choices

$$
\begin{gather*}
B=\left[\begin{array}{ccccccc}
B_{00} & B_{01} & B_{02} & \cdot & \cdot & \cdot & B_{0 n} \\
B_{10} & B_{11} & B_{12} & \cdot & \cdot & \cdot & B_{1 n} \\
B_{20} & B_{21} & B_{22} & \cdot & \cdot & \cdot & B_{2 n} \\
\cdot & & & & & \\
\cdot & \\
\cdot & B_{n 1} & B_{n 2} & \cdot & \cdot & \cdot & B_{n n}
\end{array}\right], \\
C=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right], \quad D=\left[\begin{array}{c}
d_{0} \\
d_{1} \\
d_{2} \\
\cdot \\
\cdot \\
\cdot \\
d_{n}
\end{array}\right], \quad E=\left[\begin{array}{c}
e_{0} \\
e_{1} \\
e_{3} \\
\cdot \\
\cdot \\
\cdot \\
e_{n}
\end{array}\right], F=\left[\begin{array}{c}
f_{0} \\
f_{1} \\
f_{3} \\
\cdot \\
\cdot \\
\cdot \\
f_{n}
\end{array}\right] ; \tag{59}
\end{gather*}
$$

we can rewrite the transformations (52-1) and (52-2) as follows

$$
\begin{equation*}
E=B(C+D), \quad F=C-D, \tag{60}
\end{equation*}
$$

From (60) we also get

$$
\begin{equation*}
C=1 / 2\left(B^{-1} E+F\right), \quad D=1 / 2\left(B^{-1} E-F\right) \tag{61}
\end{equation*}
$$

In (61) B^{-1} is the inverse of matrix B. In Section 2-6, using the relations (60) and (61) and also the solutions of matrix equations (34), (36), (37) and (38), we directly will determine the general solutions of systems of linear equations (54) - (57), which will be the general solutions of quadratic equation (51) as well, for $n=0,1,2,3, \ldots$.

2-6. Now utilizing the standard and specific methods of solving the systems of homogeneous linear equations over the ring of integers [7], below we obtain the general parametric solutions for the systems of homogeneous linear equations (34), (36), (37) and (38) for unknowns e_{i} and f_{i}.

First, let we write a definite parametric solution of general homogeneous linear equation of the type

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} x_{i}=0 \tag{62}
\end{equation*}
$$

for unknowns x_{i}, over the ring of integer elements [7, 8]:

$$
\begin{equation*}
x_{j}=a_{n} k_{j}, \quad(j=1,2,3, \ldots, n-1), \quad x_{n}=-\sum_{j=1}^{n-1} a_{j} k_{j} \tag{63}
\end{equation*}
$$

where k_{i} are arbitrary integer parameters, and $a_{n} \neq 0$. Furthermore, if x_{i}^{\prime} and $x_{i}^{\prime \prime}(i=1,2,3, \ldots, n)$ be two solutions of equation (62), then $x_{i}^{\prime} \pm x_{i}^{\prime \prime}$ and $t x_{i}^{\prime}$ (where t is a non-zero integer) also are the solutions of (62), such that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i} x_{i}^{\prime}=0, \sum_{i=1}^{n} a_{i} x_{i}^{\prime \prime}=0\right) \Rightarrow \sum_{i=1}^{n} a_{i}\left(x_{i}^{\prime} \pm x_{i}^{\prime \prime}\right)=0, \sum_{i=1}^{n} a_{i}\left(t x_{i}^{\prime}\right)=0 \Leftrightarrow \sum_{i=1}^{n} a_{i} x_{i}^{\prime}=0 \tag{63-1}
\end{equation*}
$$

On this basis, for equations (34) we directly get the following general symmetric solutions

$$
\begin{equation*}
e_{0}=k_{2} m_{2}, \quad f_{0}=k_{1} m_{1}, \quad e_{1}=k_{1} m_{2}, \quad f_{1}=-k_{2} m_{1} \tag{64}
\end{equation*}
$$

where $k_{1}, k_{2} ; m_{1}, m_{2}\left(m_{2} \neq 0\right)$ are arbitrary integer parameters.

For system of linear equations (36) we get
$e_{0}=k_{3} m_{4}, \quad f_{0}=k_{2} m_{1}-k_{1} m_{2}, e_{1}=k_{2} m_{4}, \quad f_{1}=k_{1} m_{3}-k_{3} m_{1}, \quad e_{2}=k_{1} m_{4}, \quad f_{2}=k_{3} m_{2}-k_{2} m_{3}$
where $k_{1}, k_{2}, k_{3} ; m_{1}, m_{2}, m_{3}, m_{4}\left(m_{4} \neq 0\right)$ are arbitrary integer parameters. Particularly for matrix equation (36), using (25-1), (25-2), and (65) we may also obtain the following type of the general solution (which includes the solution (65) as well):

$$
\begin{align*}
& e_{0}=k_{3} m_{4}-k_{4} m_{3}, \quad f_{0}=k_{2} m_{1}-k_{1} m_{2}, \quad e_{1}=k_{2} m_{4}-k_{4} m_{2}, \\
& f_{1}=k_{1} m_{3}-k_{3} m_{1}, \quad e_{2}=k_{1} m_{4}-k_{4} m_{1}, \quad f_{2}=k_{3} m_{2}-k_{2} m_{3} . \tag{66}
\end{align*}
$$

where $k_{1}, k_{2}, k_{3}, k_{4} ; m_{1}, m_{2}, m_{3}, m_{4}\left(m_{4} \neq 0\right.$ or $\left.k_{4} \neq 0\right)$ are arbitrary integer parameters.

For the system of equations (37), similarly, the following general parametric solutions are obtained (where we suppose $m_{8} \neq 0$):

$$
\begin{align*}
& e_{0}=k_{4} m_{8}, \quad f_{0}=k_{3} m_{1}+k_{2} m_{2}+k_{1} m_{3}, \quad e_{1}=k_{3} m_{8}, \quad f_{1}=-k_{4} m_{1}+k_{1} m_{6}-k_{2} m_{7}, \\
& e_{2}=k_{2} m_{8}, \quad f_{2}=-k_{4} m_{2}-k_{1} m_{5}+k_{3} m_{7}, \quad e_{3}=k_{1} m_{8}, \quad f_{3}=-k_{4} m_{3}+k_{2} m_{5}-k_{3} m_{6} . \tag{67}
\end{align*}
$$

where here $k_{1}, k_{2}, k_{3}, k_{4}$ are arbitrary integer parameters. Meanwhile, from the matrix equation (37) a necessary additional condition also appears for parameters m_{i} (that appears in the course of obtaining solution (67) from the equation (37)) as follows

$$
\begin{equation*}
m_{4} m_{8}+m_{1} m_{5}+m_{2} m_{6}+m_{3} m_{7}=0 \tag{68}
\end{equation*}
$$

Condition (68) is also a homogeneous quadratic equation that corresponds to matrix equation (37), and should be separately solved. On this basis, using the matrix equation (37) for (68), and since the parameter m_{4} does not appear in the solutions (67), the following unique relations and two types of general solutions (which are algebraically equivalent) for condition (68) are obtained:

$$
\begin{equation*}
m_{4}=0, \tag{69}
\end{equation*}
$$

$$
\begin{align*}
& m_{8}: \text { an arbitrary Integer parameter }\left(m_{8} \neq 0\right), \tag{70}\\
& \qquad m_{1} m_{5}+m_{2} m_{6}+m_{3} m_{7}=0 \tag{71}
\end{align*}
$$

where one type of solution is

$$
\begin{align*}
& m_{1}=u_{3} v_{4}, \quad m_{2}=u_{2} v_{4}, \quad m_{3}=u_{1} v_{4}, \\
& m_{5}=u_{2} v_{1}-u_{1} v_{2}, \quad m_{6}=u_{1} v_{3}-u_{3} v_{1}, \quad m_{7}=u_{3} v_{2}-u_{2} v_{3}, \tag{72}\\
& m_{4}=0, \quad m_{8}: \text { an arbitrary Integer parameter }\left(m_{8} \neq 0\right)
\end{align*}
$$

and another type of solution (which includes the first type as well) is as follows

$$
\begin{align*}
& m_{1}=u_{3} v_{4}-u_{4} v_{3}, \quad m_{2}=u_{2} v_{4}-u_{4} v_{2}, \quad m_{3}=u_{1} v_{4}-u_{4} v_{1}, \\
& m_{5}=u_{2} v_{1}-u_{1} v_{2}, \quad m_{6}=u_{1} v_{3}-u_{3} v_{1}, \quad m_{7}=u_{3} v_{2}-u_{2} v_{3}, \quad m_{4}=0, \tag{73}\\
& m_{4}=0, \quad m_{8}: \text { an arbitrary Integer parameter }\left(m_{8} \neq 0\right) .
\end{align*}
$$

where $u_{1}, u_{2}, u_{3}, u_{4}$ and $v_{1}, v_{2}, v_{3}, v_{4}$ are arbitrary integer parameters. By replacing the values of m_{i}, (from the relations (72) or (73)) in formulas (67), the general parametric solution for matrix equation (37) is obtained. We should note here that since the relation (71) correspond to the matrix equation (36), two sets of (algebraically equivalent) solutions (72) and (73) follow from two basic parametric solutions (65) and (66). It is noteworthy that, in particular, the relations (73) in terms of parameters $m_{1}, m_{2}, m_{3}, m_{5}, m_{6}, m_{7}$ have a certain appropriate symmetric structure which is compatible with a symmetric requirement in the course of the application of these results in physics, presented in Section 3.

For the system of equations (38), the following general parametric solutions are obtained as well (where we suppose $m_{16} \neq 0$),

$$
\begin{align*}
& e_{0}=k_{5} m_{16}, \quad f_{0}=k_{4} m_{1}-k_{3} m_{2}+k_{2} m_{3}-k_{1} m_{5}, \quad e_{1}=k_{4} m_{16}, \quad f_{1}=-k_{5} m_{1}+k_{1} m_{12}+k_{2} m_{14}+k_{3} m_{15}, \\
& e_{2}=k_{3} m_{16}, \quad f_{2}=k_{5} m_{2}+k_{1} m_{11}+k_{2} m_{13}-k_{4} m_{15}, \quad e_{3}=k_{2} m_{16}, f_{3}=-k_{5} m_{3}+k_{1} m_{10}-k_{3} m_{13}-k_{4} m_{14}, \tag{74}\\
& e_{4}=k_{1} m_{16}, \quad f_{4}=k_{5} m_{5}-k_{2} m_{10}-k_{3} m_{11}-k_{4} m_{12} .
\end{align*}
$$

$k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ are arbitrary integer parameters. Moreover, the parameters m_{i} should satisfy the following conditions (which in the course of obtaining the solution (74) from matrix equation (38)):

$$
\begin{align*}
& m_{4} m_{16}=-m_{1} m_{13}-m_{2} m_{14}-m_{3} m_{15}, \\
& m_{6} m_{16}=m_{1} m_{11}+m_{2} m_{12}-m_{5} m_{15}, \\
& m_{7} m_{16}=m_{1} m_{10}-m_{3} m_{12}-m_{5} m_{14}, \tag{75}\\
& m_{8} m_{16}=m_{2} m_{10}+m_{3} m_{11}+m_{5} m_{13}, \\
& m_{9} m_{16}=m_{10} m_{15}-m_{11} m_{14}+m_{12} m_{13} .
\end{align*}
$$

Conditions (75) are a set of homogeneous quadratic equations that generally correspond to the matrix equation (37), and should be solved as a separate set of quadratic equations. On this basis, using the matrix equation (37) for conditions (75), and since the parameters $m_{4}, m_{6}, m_{7}, m_{8}, m_{9}$ don't appear in the solutions (74), the following unique relations and two types of general solutions (which are algebraically equivalent) for conditions (75) are obtained:

$$
\begin{equation*}
m_{4}=m_{6}=m_{7}=m_{8}=m_{9}=0, \tag{76}
\end{equation*}
$$

$$
\begin{gather*}
m_{16}: \text { an arbitrary Integer parameter }\left(m_{16} \neq 0\right), \tag{77}\\
-m_{1} m_{10}+m_{3} m_{12}+m_{5} m_{14}=0 \tag{78}\\
m_{1} m_{11}+m_{2} m_{12}-m_{5} m_{15}=0 \tag{79}\\
m_{1} m_{13}+m_{2} m_{14}+m_{3} m_{15}=0 \tag{80}\\
m_{2} m_{10}+m_{5} m_{13}+m_{3} m_{11}=0 \tag{81}\\
m_{10} m_{15}+m_{12} m_{13}-m_{11} m_{14}=0 \tag{82}
\end{gather*}
$$

where one type of solution reads

$$
\begin{align*}
& m_{1}=u_{4} v_{5}, \quad m_{2}=u_{3} v_{5} \\
& m_{3}=-u_{2} v_{5}, \quad m_{4}=0 \\
& m_{5}=-u_{1} v_{5}, \quad m_{6}=0 \\
& m_{7}=0, \quad m_{8}=0, \quad m_{9}=0 \\
& m_{10}=u_{2} v_{1}-u_{1} v_{2}, \quad m_{11}=u_{3} v_{1}-u_{1} v_{3} \\
& m_{12}=u_{1} v_{4}-u_{4} v_{1}, \quad m_{13}=u_{2} v_{3}-u_{3} v_{2} \\
& m_{14}=u_{4} v_{2}-u_{2} v_{4}, \quad m_{15}=u_{4} v_{3}-u_{3} v_{4} \\
& m_{16}: \text { a free Integer parameter }\left(m_{16} \neq 0\right) \tag{83}
\end{align*}
$$

and another type of solution (which includes the first type as well) is derived as follows:

$$
\begin{align*}
& m_{1}=u_{4} v_{5}-u_{5} v_{4}, \quad m_{2}=u_{3} v_{5}-u_{5} v_{3} \\
& m_{3}=u_{5} v_{2}-u_{2} v_{5}, \quad m_{4}=0 \\
& m_{5}=u_{5} v_{1}-u_{1} v_{5}, \quad m_{6}=0 \\
& m_{7}=0, \quad m_{8}=0, \quad m_{9}=0 \\
& m_{10}=u_{2} v_{1}-u_{1} v_{2}, \quad m_{11}=u_{3} v_{1}-u_{1} v_{3} \\
& m_{12}=u_{1} v_{4}-u_{4} v_{1}, \quad m_{13}=u_{2} v_{3}-u_{3} v_{2} \\
& m_{14}=u_{4} v_{2}-u_{2} v_{4}, \quad m_{15}=u_{4} v_{3}-u_{3} v_{4} \\
& m_{16}: \text { a free Integer parameter }\left(m_{16} \neq 0\right) \tag{84}
\end{align*}
$$

where $u_{1}, u_{2}, u_{3}, u_{4}, u_{5} ; v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ are arbitrary integer parameters. By replacing the parametric values of $m_{i}(83)$ or (84) in relations (74), we get the general parametric symmetric solution for matrix equation (38).

We should note here that since the relations of the types (78) - (82) correspond generally to the matrix equation (36), two sets of (algebraically equivalent) solutions (83) and (84) follow from two basic parametric solutions (65) and (66). Similar to relations (73), it is noteworthy again that, in particular, the relations (84) in terms of parameters $m_{1}, m_{2}, m_{3}, m_{5}, m_{10}, m_{11}, m_{12}, m_{13}, m_{14}, m_{15}$ has a certain appropriate symmetric structure which is compatible with a symmetric requirement in the course of the application of these results in physics, presented in Section 3.

Applying the axiomatic linearization (and simultaneous parameterization, as necessary algebraic conditions) approach based on the new Axiom 2-1 (formula (23)), the quadratic homogeneous equations with more unknowns are solved in the same manner. We use the above obtained results for the homogeneous quadratic relations, in Section 3, where we assume that the components of the relativistic energy-momentum relation (as a definite quadratic relation) are discrete quantities.

3. A Direct Logical Derivation of the Laws Governing the Fundamental Forces of Nature

"Including a Unique Set of the General Relativistic (Single-Particle) Wave Equations Formulated Solely in D ≤ 4 Dimensional Space-Time"

In this Section on the basis of the mathematical axiomatic approach presented in Section 2 (particularly, the A, by linearization (and simultaneous parameterization, as necessary algebraic conditions), followed by first quantization (as a postulate) of linearized (and simultaneously parameterized, as necessary algebraic conditions) unique forms of the special relativistic energy-momentum relation (which are defined algebraically for a single particle with invariant mass m_{0}), we derive a unique and original set of the general relativistic (single-particle) wave equations directly. These equations are shown to correspond uniquely to certain massive forms of the laws governing the fundamental forces of nature, including the Gravitational, Electromagnetic and Nuclear field equations (which based on our approach are solely formulable in ($1+3$) dimensional space-time), in addition to the (half-integer spin) single-particle wave equations (formulated solely in (1+2) dimensional space-time). Notably, these results are primarily mathematical, assuming the relativistic energy-momentum is a discrete quantity- that is a basic quantum mechanical assumption.

Each derived relativistic wave equation is in a complex tensor form, that in the matrix representation (i.e. in the geometric algebra formulation, see equations (120) - (121)) it could be written in the form of two coupled symmetric equations - which assumedly have chiral symmetry if the particle wave equation be source-free. In fact, the complex relativistic (single-particle) wave equations so uniquely obtained, correspond to certain massive form of classical fields including the Einstein, Maxwell and Yang-Mills field equations, in addition to the (half-integer spin) single-particle wave equations such as the Dirac equation (where the Dirac spinor field is isomorphically re-presented solely by a tensor field in three dimensional space-time [29, 31]).

In particular, a unique massive form of the general theory of relativity - with a definite complex torsion is shown to be obtained solely by first quantization of a special relativistic algebraic matrix relation. Moreover, it is shown that the massive Lagrangian density of the obtained Maxwell and Yang-Mills fields could be also locally gauge invariant - where these fields are formally re-presented on a background space-time with certain (coupled) complex torsion which is generated by the invariant mass of the gauge field carrier particle. Subsequently, in agreement with certain experimental data, the invariant mass of a particle (that actually would be identified as massive photon) has been specified ($m_{0}^{(E)} \approx 1.4070696 \times 10^{-41} \mathrm{~kg}$), which is coupled with background space-time geometry (see Section 3-41). Assuming our approach is the unique and principal way for deriving (all) the laws governing the fundamental forces of nature, then based on the unique structure of general relativistic single-particle fields derived and also the assumption of chiral symmetry as a basic discrete symmetry of the source-free cases of these fields, it has been shown that the universe cannot have more than four space-time dimensions. Furthermore, a basic argument for the asymmetry of left and right handed (interacting) particles is presented. In addition, on the basis of definite structure of the field equations derived, we also conclude that magnetic monopoles - in contrast with electric monopoles - could not exist in nature.

As it was mentioned in Section 1-1, the main arguments and consequences presented in this article (particularly in this section) follow from these three basic and primary assumptions:
(1)- "Generalization of the algebraic axiom of nonzero divisors for integer elements (based on the ring theory and the matrix representation of generalized Clifford algebra, and subsequently, constructing a definite algebraic linearization theory);"

This is one of the new and principal concepts presented in Section 2 (see formula (23).

(2)- "Discreteness of the relativistic energy-momentum (D-momentum);"

This is a basic quantum mechanical assumption. As the quantum theory, particularly, tells us that energy and momentum are only transferred in discrete quantities, i.e., as integer multiples of the quantum of action (Planck constant) h.
(3)- "The general relativistic massive forms of the laws governing the fundamental forces of nature, including the gravitational, electromagnetic and nuclear field equations, in addition to the relativistic (half-integer spin) single-particle wave equations, are derived solely by first quantization (as a postulate) of linearized (and simultaneously parameterized, as necessary algebraic conditions) unique forms of the relativistic energy-momentum relation - which are defined algebraically for a single particle with invariant mass $\boldsymbol{m}_{\mathbf{0}}$)."

We also assume that the source-free cases of these fields have "chiral symmetry".
Note that the geometrized units, metric signature ($+-\ldots-$) and the sign conventions (97) will be used. So particularly, we assume the speed of light $c=1$. However, for clarity and emphasis, in some relativistic relations " c " as a constant be restored and indicated formally.

3-1. Assuming the components of the energy-momentum vector are discrete quantities (as a basic and original quantum mechanical assumption $)^{1}$, then definitely the invariant and relation of the energymomentum for a massive particle in the special relativistic conditions, i.e.

$$
\begin{gather*}
g^{\mu v} p_{\mu} p_{v}=g^{\mu v} p_{\mu}^{\prime} p_{v}^{\prime}, \tag{85}\\
g^{\mu v} p_{\mu} p_{v}=p^{v} p_{v}=\left(\mp m_{0} c\right)^{2}=g^{00}\left(\frac{\mp m_{0} c}{\sqrt{g^{00}}}\right)^{2} \tag{86}
\end{gather*}
$$

are the special cases of the general algebraic quadratic relation (51). Where $g^{\mu \nu}$ are constant symmetric coefficients, m_{0} is the rest mass of a single particle, and $p_{\mu}, p_{\mu}^{\prime}$ are the components of the relativistic energy-momentum vector in two reference frames. Note that based on our chosen sign conventions, the minus sign in relation (86) is for the particle, and the plus sign is connected to its anti-particle. The next formulas and results are formulated and obtained only for particles (for anti-particles the mass sign should be changed).As a direct consequence of the axiomatic approach presented in Section 2, the relations (85) and (86), necessarily, should be linearized (and simultaneously parameterized, as necessary algebraic conditions).

[^2]Hence, using the matrix relations (53) - (57) (which are also hermitian), we get the following unique set of systems of linear equations that correspond equivalently to the relations (85) and (86):

First for relation (85), the equivalent set of matrix relations for various space-time dimensions are given as follows, respectively (where s_{i} are parameters similar to parameters m_{i} in the matrix relations (53) (57)),

$$
\begin{gather*}
{\left[g^{00}\left(p_{0}+p_{0}^{\prime}\right)\right]\left[s_{1}\right]=0} \tag{87}\\
{\left[\begin{array}{cc}
g^{0 v}\left(p_{v}+p_{v}^{\prime}\right) & p_{1}-p_{1}^{\prime} \\
-g^{1 v}\left(p_{v}+p_{v}^{\prime}\right) & p_{0}-p_{0}^{\prime}
\end{array}\right]\left[\begin{array}{c}
s_{1} \\
s_{2}
\end{array}\right]=0} \tag{88}
\end{gather*}
$$

where $v=0,1$;

$$
\left[\begin{array}{cccc}
g^{0 v}\left(p_{v}+p_{v}^{\prime}\right) & 0 & -g^{2 v}\left(p_{v}+p_{v}^{\prime}\right) & p_{1}-p_{1}^{\prime} \tag{89}\\
0 & g^{0 v}\left(p_{v}+p_{v}^{\prime}\right) & -g^{1 v}\left(p_{v}+p_{v}^{\prime}\right) & -\left(p_{2}-p_{2}^{\prime}\right) \\
p_{2}-p_{2}^{\prime} & p_{1}-p_{1}^{\prime} & p_{0}-p_{0}^{\prime} & 0 \\
-g^{1 v}\left(p_{v}+p_{v}^{\prime}\right) & g^{2 v}\left(p_{v}+p_{v}^{\prime}\right) & 0 & p_{0}-p_{0}^{\prime}
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]=0
$$

where $v=0,1,2$;

$$
\left[\begin{array}{cccccccc}
e_{0} & 0 & 0 & 0 & 0 & -e_{3} & e_{2} & f_{1} \tag{90}\\
0 & e_{0} & 0 & 0 & e_{3} & 0 & -e_{1} & f_{2} \\
0 & 0 & e_{0} & 0 & -e_{2} & e_{1} & 0 & f_{3} \\
0 & 0 & 0 & e_{0} & -f_{1} & -f_{2} & -f_{3} & 0 \\
0 & -f_{3} & f_{2} & e_{1} & f_{0} & 0 & 0 & 0 \\
f_{3} & 0 & -f_{1} & e_{2} & 0 & f_{0} & 0 & 0 \\
-f_{2} & f_{1} & 0 & e_{3} & 0 & 0 & f_{0} & 0 \\
-e_{1} & -e_{2} & -e_{3} & 0 & 0 & 0 & 0 & f_{0}
\end{array}\right]\left[\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4} \\
s_{5} \\
s_{6} \\
s_{7} \\
s_{8}
\end{array}\right]=0
$$

where $v=0,1,2,3$ and

$$
\begin{gather*}
s_{4} s_{8}+s_{1} s_{5}+s_{2} s_{6}+s_{3} s_{7}=0, \tag{90-1}\\
e_{0}=g^{0 v}\left(p_{v}+p_{v}^{\prime}\right), \quad f_{0}=p_{0}-p_{0}^{\prime}, \\
e_{1}=g^{1 v}\left(p_{v}+p_{v}^{\prime}\right), \quad f_{1}=p_{1}-p_{1}^{\prime}, \tag{90-2}\\
e_{2}=g^{2 v}\left(p_{v}+p_{v}^{\prime}\right), \quad f_{2}=p_{2}-p_{2}^{\prime}, \\
e_{3}=g^{3 v}\left(p_{v}+p_{v}^{\prime}\right), \quad f_{3}=p_{3}-p_{3}^{\prime} .
\end{gather*}
$$

(notice that the condition (90-1) is equivalent to the algebraic condition (68));
$\left[\begin{array}{cccccccccccccccc}e_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{4} & 0 & -e_{3} & -e_{2} & f_{1} \\ 0 & e_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & 0 & e_{3} & 0 & -e_{1} & -f_{2} \\ 0 & 0 & e_{0} & 0 & 0 & 0 & 0 & 0 & 0 & -e_{4} & 0 & 0 & e_{2} & e_{1} & 0 & f_{3} \\ 0 & 0 & 0 & e_{0} & 0 & 0 & 0 & 0 & e_{4} & 0 & 0 & 0 & -f_{1} & f_{2} & -f_{3} & 0 \\ 0 & 0 & 0 & 0 & e_{0} & 0 & 0 & 0 & 0 & -e_{3} & -e_{2} & -e_{1} & 0 & 0 & 0 & -f_{4} \\ 0 & 0 & 0 & 0 & 0 & e_{0} & 0 & 0 & e_{3} & 0 & f_{1} & -f_{2} & 0 & 0 & f_{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & e_{0} & 0 & e_{2} & -f_{1} & 0 & f_{3} & 0 & -f_{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{0} & e_{1} & f_{2} & -f_{3} & 0 & f_{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & -f_{4} & 0 & -f_{3} & -f_{2} & -f_{1} & f_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & f_{4} & 0 & f_{3} & 0 & e_{1} & -e_{2} & 0 & f_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -f_{4} & 0 & 0 & f_{2} & -e_{1} & 0 & e_{3} & 0 & 0 & f_{0} & 0 & 0 & 0 & 0 & 0 \\ f_{4} & 0 & 0 & 0 & f_{1} & e_{2} & -e_{3} & 0 & 0 & 0 & 0 & f_{0} & 0 & 0 & 0 & 0 \\ 0 & -f_{3} & -f_{2} & e_{1} & 0 & 0 & 0 & -e_{4} & 0 & 0 & 0 & 0 & f_{0} & 0 & 0 & 0 \\ f_{3} & 0 & -f_{1} & -e_{2} & 0 & 0 & e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & f_{0} & 0 & 0 \\ f_{2} & f_{1} & 0 & e_{3} & 0 & -e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{0} & 0 \\ -e_{1} & e_{2} & -e_{3} & 0 & e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{0}\end{array}\right]\left[\begin{array}{l}s_{3} \\ s_{4} \\ s_{5} \\ s_{6} \\ s_{7} \\ s_{8} \\ s_{9} \\ s_{10} \\ s_{11} \\ s_{12} \\ s_{13} \\ s_{14} \\ s_{15} \\ s_{16}\end{array}\right]=0$
where we have

$$
\begin{align*}
& s_{4} s_{16}=-s_{1} s_{13}-s_{2} s_{14}-s_{3} s_{15} \tag{91-1}\\
& s_{6} s_{16}=s_{1} s_{11}+s_{2} s_{12}-s_{5} s_{15} \tag{91-2}\\
& s_{7} s_{16}=s_{1} s_{10}-s_{3} s_{12}-s_{5} s_{14} \tag{91-3}\\
& s_{8} s_{16}=s_{2} s_{10}+s_{3} s_{11}+s_{5} s_{13} \tag{91-4}\\
& s_{9} s_{16}=s_{10} s_{15}-s_{11} s_{14}+s_{12} s_{13} \tag{91-5}
\end{align*}
$$

and

$$
\begin{align*}
& e_{0}=g^{0 v}\left(p_{v}+p_{v}^{\prime}\right), f_{0}=p_{0}-p_{0}^{\prime}, \\
& e_{1}=g^{1 v}\left(p_{v}+p_{v}^{\prime}\right), \quad f_{1}=p_{1}-p_{1}^{\prime}, \\
& e_{2}=g^{2 v}\left(p_{v}+p_{v}^{\prime}\right), \quad f_{2}=p_{2}-p_{2}^{\prime}, \tag{91-6}\\
& e_{3}=g^{3 v}\left(p_{v}+p_{v}^{\prime}\right), \quad f_{3}=p_{3}-p_{3}^{\prime}, \\
& e_{4}=g^{4 v}\left(p_{v}+p_{v}^{\prime}\right), \quad f_{4}=p_{4}-p_{4}^{\prime} .
\end{align*}
$$

and $v=0,1,2,3,4$. Notice that the algebraic conditions (91-1) - (91-5) are equivalent to the conditions (75).

The systems of linear equations that correspond to the relation (86) are also obtained as follows, respectively, for various space-time dimensions:
(where $p_{0}^{\prime}=-\frac{m_{0} c}{\sqrt{g^{00}}}$, if $\mu \neq 0: p_{\mu}^{\prime}=0$)

$$
\begin{gather*}
{\left[g^{00}\left(p_{0}-\frac{m_{0} c}{\sqrt{g^{00}}}\right)\right]\left[s_{1}\right]=0} \tag{92}\\
{\left[\begin{array}{cc}
g^{0 v} p_{v}-g^{00}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right) & p_{1} \\
-g^{1 v} p_{v}+g^{10}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right) & p_{0}+\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right)
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]=0} \tag{93}
\end{gather*}
$$

where $v=0,1$;

$$
\left[\begin{array}{cccc}
g^{0 v} p_{v}-g^{00}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right) & 0 & -g^{2 v} p_{v}+g^{20}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right) & p_{1} \tag{94}\\
0 & g^{0 v} p_{v}-g^{00}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right) & -g^{1 v} p_{v}+g^{10}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right) & -p_{2} \\
p_{2} & p_{1} & p_{0}+\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right) & 0 \\
-g^{1 v} p_{v}+g^{10}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right) & g^{2 v} p_{v}-g^{20}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right) & 0 & p_{0}+\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right)
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]=0
$$

where $v=0,1,2$;

$$
\left[\begin{array}{cccccccc}
e_{0} & 0 & 0 & 0 & 0 & -e_{3} & e_{2} & f_{1} \tag{95}\\
0 & e_{0} & 0 & 0 & e_{3} & 0 & -e_{1} & f_{2} \\
0 & 0 & e_{0} & 0 & -e_{2} & e_{1} & 0 & f_{3} \\
0 & 0 & 0 & e_{0} & -f_{1} & -f_{2} & -f_{3} & 0 \\
0 & -f_{3} & f_{2} & e_{1} & f_{0} & 0 & 0 & 0 \\
f_{3} & 0 & -f_{1} & e_{2} & 0 & f_{0} & 0 & 0 \\
-f_{2} & f_{1} & 0 & e_{3} & 0 & 0 & f_{0} & 0 \\
-e_{1} & -e_{2} & -e_{3} & 0 & 0 & 0 & 0 & f_{0}
\end{array}\right]\left[\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4} \\
s_{5} \\
s_{6} \\
s_{7} \\
s_{8}
\end{array}\right]=0
$$

where $v=0,1,2,3$ and

$$
\begin{align*}
& s_{4} s_{8}+s_{1} s_{5}+s_{2} s_{6}+s_{3} s_{7}=0, \tag{95-1}\\
& e_{0}=g^{0 v} p_{v}-g^{00}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right), \quad f_{0}=p_{0}+\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right), \\
& e_{1}=g^{1 v} p_{v}-g^{10}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right), \quad f_{1}=p_{1}, \tag{95-2}\\
& e_{2}=g^{2 v} p_{v}-g^{20}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right), \quad f_{2}=p_{2}, \\
& e_{3}=g^{3 v} p_{v}-g^{30}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right), \quad f_{3}=p_{3} .
\end{align*}
$$

Notice that here also the condition (95-1) is equivalent to the algebraic condition (68).
For $(1+4)$ dimensional case we obtain:

$$
\left[\begin{array}{cccccccccccccccc}
e_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -e_{4} & 0 & -e_{3} & -e_{2} & f_{1} \tag{96}\\
0 & e_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{4} & 0 & e_{3} & 0 & -e_{1} & -f_{2} \\
0 & 0 & e_{0} & 0 & 0 & 0 & 0 & 0 & 0 & -e_{4} & 0 & 0 & e_{2} & e_{1} & 0 & f_{3} \\
0 & 0 & 0 & e_{0} & 0 & 0 & 0 & 0 & e_{4} & 0 & 0 & 0 & -f_{1} & f_{2} & -f_{3} & 0 \\
0 & 0 & 0 & 0 & e_{0} & 0 & 0 & 0 & 0 & -e_{3} & -e_{2} & -e_{1} & 0 & 0 & 0 & -f_{4} \\
0 & 0 & 0 & 0 & 0 & e_{0} & 0 & 0 & e_{3} & 0 & f_{1} & -f_{2} & 0 & 0 & f_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & e_{0} & 0 & e_{2} & -f_{1} & 0 & f_{3} & 0 & -f_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & e_{0} & e_{1} & f_{2} & -f_{3} & 0 & f_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & -f_{4} & 0 & -f_{3} & -f_{2} & -f_{1} & f_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & f_{4} & 0 & f_{3} & 0 & e_{1} & -e_{2} & 0 & f_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -f_{4} & 0 & 0 & f_{2} & -e_{1} & 0 & e_{3} & 0 & 0 & f_{0} & 0 & 0 & 0 & 0 & 0 \\
f_{4} & 0 & 0 & 0 & f_{1} & e_{2} & -e_{3} & 0 & 0 & 0 & 0 & f_{0} & 0 & 0 & 0 & 0 \\
0 & -f_{3} & -f_{2} & e_{1} & 0 & 0 & 0 & -e_{4} & 0 & 0 & 0 & 0 & f_{0} & 0 & 0 & 0 \\
f_{3} & 0 & -f_{1} & -e_{2} & 0 & 0 & e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & f_{0} & 0 & 0 \\
f_{2} & f_{1} & 0 & e_{3} & 0 & -e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{0} & 0 \\
-e_{1} & e_{2} & -e_{3} & 0 & e_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f_{0}
\end{array}\right]\left[\begin{array}{l}
s_{3} \\
s_{3} \\
s_{5} \\
s_{6} \\
s_{7} \\
s_{8} \\
s_{9} \\
s_{10} \\
s_{11} \\
s_{12} \\
s_{13} \\
s_{14} \\
s_{15} \\
s_{16}
\end{array}\right]=0
$$

where we have

$$
\begin{align*}
& s_{4} s_{16}=-s_{1} s_{13}-s_{2} s_{14}-s_{3} s_{15}, \tag{96-1}\\
& s_{6} s_{16}=s_{1} s_{11}+s_{2} s_{12}-s_{5} s_{15}, \tag{96-2}\\
& s_{7} s_{16}=s_{1} s_{10}-s_{3} s_{12}-s_{5} s_{14}, \tag{96-3}\\
& s_{8} s_{16}=s_{2} s_{10}+s_{3} s_{11}+s_{5} s_{13}, \tag{96-4}\\
& s_{9} s_{16}=s_{10} s_{15}-s_{11} s_{14}+s_{12} s_{13} ; \tag{96-5}\\
& e_{0}=g^{0 v} p_{v}-g^{00}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right), \quad f_{0}=p_{0}+\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right), \\
& e_{1}=g^{1 v} p_{v}-g^{10}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right), \quad f_{1}=p_{1}, \\
& e_{2}=g^{2 v} p_{v}-g^{20}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right), \quad f_{2}=p_{2}, \tag{96-6}\\
& e_{3}=g^{3 v} p_{v}-g^{30}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right), \quad f_{3}=p_{3}, \\
& e_{4}=g^{4 v} p_{v}-g^{40}\left(\frac{m_{0} c}{\sqrt{g^{00}}}\right), \quad f_{4}=p_{4},
\end{align*}
$$

and $v=0,1,2,3,4$. Notice that the conditions (96-1) - (96-5) are equivalent to the conditions (75).

3-2. A Direct Derivation of the Lorentz Transformations for "Discrete" Momentums

From the matrix equations (87) - (91) obtained by our axiomatic discrete approach (based on the Axiom $1-2$, i.e. formula (23)), by linearization and simultaneous parameterization (as necessary algebraic conditions) of quadratic relation (85)) and the assumption of discreteness of the relativistic quantities p_{μ} and p_{μ}^{\prime}, and also the relations (90-2), (91-6), (95-2) and (96-6), and the parametric solutions corresponding to the matrix equations (87) - (91, i.e. solutions (64), (66), (67) and (74), the parametric linear transformations between two reference frames, that correspond to the Lorentz invariance, are derived directly. In fact, the general parametric form of linear transformations (corresponding to the Lorentz transformations) between two reference frames are determined directly from the matrix equations (87) - (91) and their parametric solutions. Notably via this approach, the discreteness of the relativistic energy-momentum (D-momentum) merely implies the linearity of these obtained parametric transformations.

For instance, we show that how these transformations for $(1+2)$ dimensional space-time are derived here. ${ }^{1}$ Hence from the matrix equation (89) and the integer-parametric solution (65) (for $m_{4}=1$, or equivalently for $s_{4}=1$ in (89)) and assuming the Minkowski metric, we get the following isomorphic linear transformations:

1. Lorentz transformations for higher space-time dimensions are derived by the same method for discrete momentums, and definitely the derived transformations could be extended and applied for other physical quantities which supposedly would take discrete values, such as space-time coordinates.

$$
\left[\begin{array}{ccc}
\frac{-1-s_{3}^{2}-s_{1}^{2}-s_{2}^{2}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{-2 s_{1}-2 s_{2} s_{3}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{-2 s_{1} s_{3}+2 s_{2}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} \tag{89-1}\\
\frac{-2 s_{1}+2 s_{2} s_{3}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{-s_{1}^{2}-1+s_{2}^{2}+s_{3}^{2}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{2 s_{2} s_{1}-2 s_{3}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} \\
\frac{2 s_{2}+2 s_{1} s_{3}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{2 s_{2} s_{1}+2 s_{3}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{-s_{2}^{2}+s_{3}^{2}-1+s_{1}^{2}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}}
\end{array}\right]\left[\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{c}
p_{0}^{\prime} \\
p_{1}^{\prime} \\
p_{2}^{\prime}
\end{array}\right]
$$

where s_{i} are arbitrary integer parameters, and the inverse of (89-1) is given by

$$
\left[\begin{array}{ccc}
-\frac{1+s_{3}^{2}+s_{1}^{2}+s_{2}^{2}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{2\left(s_{1}-s_{2} s_{3}\right)}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & -\frac{2\left(s_{2}+s_{1} s_{3}\right)}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} \tag{89-2}\\
\frac{2\left(s_{1}+s_{2} s_{3}\right)}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & -\frac{s_{1}^{2}+1-s_{2}^{2}-s_{3}^{2}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{2\left(s_{2} s_{1}+s_{3}\right)}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} \\
\frac{2\left(s_{1} s_{3}-s_{2}\right)}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{2\left(s_{2} s_{1}-s_{3}\right)}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{-s_{2}^{2}+s_{3}^{2}-1+s_{1}^{2}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}}
\end{array}\right]\left[\begin{array}{l}
p_{0}^{\prime} \\
p_{1}^{\prime} \\
p_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right]
$$

and for transformations (89-1) we also have:

$$
\operatorname{det}\left[\begin{array}{ccc}
\frac{-1-s_{3}^{2}-s_{1}^{2}-s_{2}^{2}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{-2 s_{1}-2 s_{2} s_{3}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{-2 s_{1} s_{3}+2 s_{2}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} \tag{89-3}\\
\frac{-2 s_{1}+2 s_{2} s_{3}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{-s_{1}^{2}-1+s_{2}^{2}+s_{3}^{2}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{2 s_{2} s_{1}-2 s_{3}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} \\
\frac{2 s_{2}+2 s_{1} s_{3}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{2 s_{2} s_{1}+2 s_{3}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}} & \frac{-s_{2}^{2}+s_{3}^{2}-1+s_{1}^{2}}{s_{2}^{2}+s_{1}^{2}-1-s_{3}^{2}}
\end{array}\right]=1
$$

The linear transformations (89-1) are equivalent to the Lorentz transformations, for certain values of parameters s_{i} obtaining from the initial conditions and given values (such as the relative velocity between the frames). As an example, from (89-1) and the following values specified for parameters s_{i}, the Lorentz transformations for momentums in standard configuration [59] are directly obtained in the x-direction:

$$
\begin{align*}
& s_{2}=s_{3}=0, s_{1}=-\frac{\beta}{1+\gamma}, \gamma=\frac{1}{\sqrt{1-\beta^{2}}}, \beta=\frac{v}{c}: \\
& {\left[\begin{array}{cc}
\frac{-1-s_{1}^{2}}{s_{1}^{2}-1} & \frac{-2 s_{1}}{s_{1}^{2}-1} \\
\frac{-2 s_{1}}{s_{1}^{2}-1} & \frac{-s_{1}^{2}-1}{s_{1}^{2}-1}
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1}
\end{array}\right]=\left[\begin{array}{c}
p_{0}^{\prime} \\
p_{1}^{\prime}
\end{array}\right] } \tag{89-4}
\end{align*}
$$

3-3. In this Section the geometrized units [9], the Einstein notation, and the following sign conventions will be used (So, we would assume that the speed of light $c=1$; however, for clarity and emphasis, in some essential relativistic relations " c " as a constant be restored and indicated formally):

- The Metric sign convention (+--...-),
- The Riemann curvature and Ricci tensors:
$R_{\sigma \mu \nu}^{\rho}=\partial_{\nu} \Gamma_{\mu \sigma}^{\rho}+\Gamma^{\rho}{ }_{\nu \lambda} \Gamma_{\mu \sigma}^{\lambda}-\partial_{\mu} \Gamma^{\rho}{ }_{v \sigma}-\Gamma_{\mu \lambda}^{\rho} \Gamma_{v \sigma}^{\lambda}, R_{\sigma \mu}=-R^{v}{ }_{\sigma \mu \nu}$,
- The Einstein tensor (sign): $G_{\mu \nu}=-8 \pi \mathrm{~T}_{\mu \nu}+\ldots$.

By "first" quantization of the linearized (and simultaneous parameterized, as necessary algebraic conditions) unique forms of the relativistic energy-momentum relation (86) (i.e. matrix relations (92) (96) formulated for various space-time dimensions), we may directly derive and formulate a unique and original set of the general relativistic (single-particle) wave equations directly. As we show below, these equations correspond uniquely to certain massive forms of the laws governing the fundamental forces of nature, including the Gravitational, Electromagnetic and Nuclear field equations (which based on our axiomatic approach are solely formulable in ($1+3$) dimensional space-time), and also the (half-integer spin) single-particle wave equations (that could be formulated solely in ($1+2$) dimensional space-time). In addition, when first quantization procedure (as a postulate) is applied to the linearized (and simultaneously parameterized) unique forms of the energy-momentum relation, i.e. formulas (92) - (96), as the principal substitution rule, we assume the following general covariant quantities and (quantummechanical) operator to be substituted by their corresponding quantities in algebraic matrix relations (92) - (96):

- General covariant kinetic energy-momentum operator:
- The metric tensor:

$$
\begin{align*}
& \hat{p}_{\mu}=i \hbar \breve{\nabla}_{\mu} \tag{98}\\
& \hat{g}^{\mu \nu}=g^{\mu \nu} \tag{99}
\end{align*}
$$

- There is a one-to-one correspondence between "the parameters s_{i} " and "the components of field strength tensor $X_{\mu \nu \ldots ., \zeta}$ and the components of covariant quantities $\varphi_{\rho \ldots, \zeta}^{(X)}$ (which by formula (101-3) defines a covariant current as the source of field $\left.X_{\mu \nu \nu_{., \zeta}}\right)$ ". We may show this correspondence by the following formula:

$$
\begin{equation*}
\hat{s}_{i}=X_{\mu \nu \rho \ldots, \zeta}, \varphi_{\nu \rho \ldots, \zeta}^{(X)} \tag{100}
\end{equation*}
$$

where \hat{s}_{i} are formally the quantities converted by first quantization of arbitrary parameters s_{i}. Thus the quantities (98) - (100) will be substituted by their corresponding quantities in relations (92) (96), that respectively, are p_{μ} (general relativistic kinetic energy-momentum vector), $g^{\mu \nu}$ (as constant values in these algebraic relations) and s_{i} (arbitrary algebraic parametric quantities). Hence, diffeomorphism invariance and substitutions (98) - (100) corresponding to the quantities in the relativistic energy-momentum (matrix) relations (92) - (96), directly yield a unique general relativistic (single-particle) wave equation, which will be written in Section 3-4 explicitly. In addition, in Appendix A we show that the field strength tensor $X_{\mu \nu \ldots, 5}$ (as a general tensor form) could solely two (separate) values $F_{\mu \nu}, R_{\mu \nu \rho \sigma}$. In the same manner, $\varphi^{(F)}, \varphi_{\mu \nu}^{(R)}$ (corresponding to these two particular fields) are also covariant quantities which will appear in the derived equations and their derivatives be equal to the sources of fields $F_{\mu \nu}, R_{\mu \nu \rho \sigma}$ (see below).

Furthermore, based on the assumption (3) in Section 1-1, and taking into account a notification presented in Appendix A, we show that there are only two kinds of definable and acceptable field strength tensors whose components could be substituted by the parametric quantities s_{i}, and they convert (by first quantization procedure, i.e. by applying the basic formal substitutions (98) - (100)) the matrix energymomentum relations (92) - (96) into a unique set of the general relativistic wave equations. These are a $2^{\text {nd }}$ and a $4^{\text {th }}$ rank anti-symmetric field strength tensors; where the $4^{\text {th }}$ rank tensor is (supposedly) equal to the Riemann curvature tensor $R_{\mu \nu \rho \sigma}$, and another tensor be represented by $F_{\mu \nu}$. Assuming the local gauge symmetry, we show that this $2^{\text {nd }}$ rank anti-symmetric tensor corresponds to certain massive Electromagnetic and Yang-Mills (single-particle) field strength tensors.

3-4. On this basis, the tensor representation of the general relativistic single-particle wave equations that are uniquely obtained and formulated by the (direct) logical derivation procedure described in Section 3-3, is as follows (see Section 3-6, formulas (120) - (121)) for the original matrix representation, i.e. the geometric algebra formulation of these equations):

$$
\begin{gather*}
\breve{\nabla}_{\lambda} X_{\mu \nu \rho \ldots, \zeta}+\breve{\nabla}_{\mu} X_{\nu \lambda \rho \ldots, \zeta}+\breve{\nabla}_{v} X_{\nu \mu \rho \ldots, \zeta}=M_{\lambda_{\mu}}^{\tau} X_{\tau v \rho \ldots, \zeta}+M_{\mu \nu}^{\tau} X_{\tau \lambda \rho \ldots \zeta}+M_{\nu \lambda}^{\tau} X_{\tau \mu \rho \ldots, \zeta}, \tag{101-1}\\
\breve{\nabla}_{\mu} X_{\nu \rho \ldots, \zeta}^{\mu}-\frac{i m_{0}^{(X)}}{\hbar} k_{\mu} X_{\nu \rho \ldots, \zeta}^{\mu}=-J_{v \rho \ldots, \zeta}^{(X)} . \tag{101-2}
\end{gather*}
$$

where

$$
\begin{gather*}
J_{\nu \rho \ldots, \zeta}^{(X)}=-\left(\breve{\nabla}_{\nu}+\frac{i m_{0}^{(X)}}{\hbar} k_{\nu}\right) \varphi_{\rho \ldots, \zeta}^{(X)}, \tag{101-3}\\
M_{\tau \mu \nu}=\frac{i m_{0}^{(X)}}{2 \hbar}\left(g_{\tau \mu} k_{v}-g_{\tau v} k_{\mu}\right), \quad M_{\nu}=M_{\mu \nu}^{\mu}=\frac{(D-1) i m_{0}^{(X)}}{2 \hbar} k_{v} . \tag{101-4}
\end{gather*}
$$

and where (according to our derivation approach) these field equations will be formulated solely in one in $\mathrm{D} \leq 4$ dimensional space-time. Furthermore, in the above field equations $X_{\mu v \rho, \zeta}$ is the field strength tensor, $m_{0}^{(X)}$ is the invariant mass of the (free and interacting) field carrier single-particle, $i \hbar \widetilde{\nabla}_{\mu}$ is the covariant kinetic energy-momentum operator (generally defined on a background space-time with the complex torsion $T_{\tau \mu \nu}$ generated by the invariant mass and given by formula (110), and $k^{\mu}=\left(c / \sqrt{g_{00}}, 0, \ldots, 0\right)$ is the general relativistic velocity of a static observer (that is a time-like contravariant vector). $J_{v \rho \ldots, \zeta}^{(X)}$ is the source of the field strength tensor $X_{\mu \nu \rho ., \zeta}$. Moreover, as it was notes in Section 3-3, field strength tensor $X_{\mu \nu \rho, .,}$ could take solely two separate tensor values, $X_{\mu \nu \nu, .,}=F_{\mu \nu}, R_{\mu \nu \rho \sigma}$, where $R_{\mu \nu \rho \sigma}$ be the Riemann curvature tensor, and $F_{\mu \nu}$ be a rank two antisymmetric field strength tensor corresponding to the known single-particle fields (including the Maxwell and Yang-Mills fields for $(1+3)$ dimensional space-time, and Dirac fields for ($1+2$) dimensional spacetime). Moreover, in Appendix A we show that in $(1+3)$ and higher space-time dimensions, the field strength tensor $X_{\mu \nu \rho \ldots, \zeta}$ should be presentable by a formula of the type: $X_{\mu v \rho \ldots, \zeta}=\hat{A}_{v} \hat{B}_{\mu \rho \ldots, \zeta}-\hat{A}_{\mu} \hat{B}_{v \rho \ldots, \zeta}$, for some quantities $\hat{A}_{\mu}, \hat{B}_{v \rho \ldots, \zeta}$, where this formula should be also "derivable" from the general relativistic single-particle field equations (101-1) - (101-4).

[^3]Hence in various space-time dimensions, the field equations (101-1) - (101-2) (for two separate field strength tensors $F_{\mu \nu}, R_{\mu \nu \rho \sigma}$, and taking into account a necessary condition mentioned above that be presented in Appendix A) be formulated as follows, respectively:

Relation (92) $\xrightarrow{\text { first quantizalion }} \quad \breve{\nabla}_{\mu} \widehat{F}^{\mu}-\left(i m_{0}^{(E)} / \hbar\right) k_{\mu} \widehat{F}^{\mu}=0$
where $g^{00}=1, \mu=0$, and $s_{1} \mapsto \hat{s}_{1}=\hat{F}_{0} .{ }^{1}$

Relation (93) $\xrightarrow{\text { first quantization }}$

$$
\begin{gather*}
\breve{\nabla}_{\lambda} F_{\mu \nu}+\breve{\nabla}_{\mu} F_{\nu \lambda}+\breve{\nabla}_{\nu} F_{\lambda \mu}=Z_{\lambda \mu}^{\tau} F_{\tau \nu}+Z_{\mu \nu}^{\tau} F_{\tau \lambda}+Z_{\nu \lambda}^{\tau} F_{\tau \mu}, \tag{103-1}\\
\breve{\nabla}_{\mu} F_{\nu}^{\mu}-\frac{i m_{0}^{(E)}}{\hbar} k_{\mu} F_{\nu}^{\mu}=-J_{\nu}^{(E)} \tag{103-2}
\end{gather*}
$$

where $\lambda, \rho, \sigma, \mu, v, \tau=0,1$, and

$$
s_{1} \mapsto \hat{s}_{1}=F_{10}, \quad s_{2} \mapsto \hat{s}_{2}=\varphi^{(E)}, \quad J_{v}^{(E)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)}, Z_{\tau \mu \nu}=\frac{i m_{0}^{(E)}}{2 \hbar}\left(g_{\tau \mu} k_{v}-g_{\tau v} k_{\mu}\right) .
$$

Relation (93) $\xrightarrow{\text { first quantization }}$

$$
\begin{gather*}
\breve{\nabla}_{\lambda} R_{\mu \nu \rho \sigma}+\breve{\nabla}_{\mu} R_{\nu \imath \rho \sigma}+\breve{\nabla}_{\nu} R_{\lambda \mu \rho \sigma}=T^{\tau}{ }_{\lambda \mu} R_{\tau \nu \rho \sigma}+T^{\tau}{ }_{\mu \nu} R_{\tau \lambda \rho \sigma}+T_{\nu \lambda}^{\tau} R_{\tau \mu \rho \sigma}, \tag{103-3}\\
\breve{\nabla}_{\mu} R_{v \rho \sigma}^{\mu}-\frac{i m_{0}^{(G)}}{\hbar} k_{\mu} R_{v \rho \sigma}^{\mu}=-J_{v \rho \sigma}^{(G)} \tag{103-4}
\end{gather*}
$$

where $\lambda, \rho, \sigma, \mu, v, \tau=0,1$, and

$$
s_{1} \mapsto \hat{s}_{1}=R_{10 \rho \sigma}, \quad s_{2} \mapsto \hat{s}_{2}=\varphi_{\rho \sigma}^{(G)}, \quad J_{v \rho \sigma}^{(G)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{\nu}\right) \varphi_{\rho \sigma}^{(G)}, T_{\tau \mu \nu}=\frac{i m_{0}^{(G)}}{2 \hbar}\left(g_{\tau \mu} k_{v}-g_{\tau v} k_{\mu}\right) .
$$

Relation (94) $\xrightarrow{\text { first } q u a n t i z a t i o n ~}$

$$
\begin{gather*}
\breve{\nabla}_{\lambda} F_{\mu \nu}+\breve{\nabla}_{\mu} F_{\nu \lambda}+\breve{\nabla}_{\nu} F_{\lambda \mu}=Z_{\mu \mu}^{\tau} F_{\tau \nu}+Z_{\mu \nu}^{\tau} F_{\tau \lambda}+Z_{\nu \lambda}^{\tau} F_{\tau \mu}, \tag{104-1}\\
\breve{\nabla}_{\mu} F_{\nu}^{\mu}-\frac{i m_{0}^{(E)}}{\hbar} k_{\mu} F_{\nu}^{\mu}=-J_{\nu}^{(E)} \tag{104-2}
\end{gather*}
$$

where $\lambda, \rho, \sigma, \mu, v, \tau=0,1,2$, and

$$
\begin{aligned}
& s_{1} \mapsto \hat{s}_{1}=F_{10}, s_{2} \mapsto \hat{s}_{2}=F_{02}, s_{3} \mapsto \hat{s}_{3}=F_{21}, \quad s_{4} \mapsto \hat{s}_{4}=\varphi^{(E)}, \quad J_{v}^{(E)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)}, \\
& Z_{\tau \mu \nu}=\left(i m_{0}^{(E)} / 2 \hbar\right)\left(g_{\tau \mu} k_{v}-g_{\tau v} k_{\mu}\right) .
\end{aligned}
$$

1. Exceptionally, the tensor equation corresponding to relation (92) (for one dimensional space-time, i.e. where only the time dimension exists) is a special and trivial case, where the Riemann tensor vanishes; so for this case, formally, we just assume a tensor such as \widehat{F}_{μ} that is substituted by the only parameter S_{1} in (92)).

Relation (94)

$$
\begin{gather*}
\breve{\nabla}_{\lambda} R_{\mu \nu \rho \sigma}+\breve{\nabla}_{\mu} R_{v \lambda \rho \sigma}+\breve{\nabla}_{v} R_{\lambda \mu \rho \sigma}=T_{\lambda \mu}^{\tau} R_{\tau \nu \rho \sigma}+T_{\mu \nu}^{\tau} R_{\tau \lambda \rho \sigma}+T_{\nu \lambda}^{\tau} R_{\tau \mu \rho \sigma} \tag{104-3}\\
\breve{\nabla}_{\mu} R_{v \rho \sigma}^{\mu}-\frac{i m_{0}^{(G)}}{\hbar} k_{\mu} R_{v \rho \sigma}^{\mu}=-J_{v \rho \sigma}^{(G)} \tag{104-4}
\end{gather*}
$$

where $\lambda, \rho, \sigma, \mu, v, \tau=0,1,2$, and $s_{1} \mapsto \hat{s}_{1}=R_{10 \rho \sigma}, \quad s_{2} \mapsto \hat{s}_{2}=R_{02 \rho \sigma}, \quad s_{3} \mapsto \hat{s}_{3}=R_{21 \rho \sigma}, s_{4} \mapsto \hat{s}_{4}=\varphi_{\rho \sigma}^{(G)}, \quad J_{\nu \rho \sigma}^{(G)}=-\left(\bar{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{v}\right) \varphi_{\rho \sigma}^{(G)}$, $T_{\tau \mu \nu}=\frac{i m_{0}^{(G)}}{2 \hbar}\left(g_{\tau \mu} k_{\nu}-g_{\tau v} k_{\mu}\right)$.

Relation (95) $\xrightarrow{\text { first quantization }}$

$$
\begin{gather*}
\breve{\nabla}_{\lambda} F_{\mu \nu}+\breve{\nabla}_{\mu} F_{v \lambda}+\breve{\nabla}_{v} F_{\lambda \mu}=Z_{\lambda \mu}^{\tau} F_{\tau \nu}+Z_{\mu \nu}^{\tau} F_{\tau \lambda}+Z_{v \lambda}^{\tau} F_{\tau \mu} \tag{105-1}\\
\breve{\nabla}_{\mu} F_{v}^{\mu}-\frac{i m_{0}^{(E)}}{\hbar} k_{\mu} F_{v}^{\mu}=-J_{v}^{(E)} \tag{105-2}
\end{gather*}
$$

where $\lambda, \rho, \sigma, \mu, v, \tau=0,1,2,3$, and

$$
\begin{aligned}
& s_{1} \mapsto \hat{s}_{1}=F_{10}=\hat{A}_{0} \hat{B}_{1}-\hat{A}_{1} \hat{B}_{0}, \quad s_{2} \mapsto \hat{s}_{2}=F_{20}=\hat{A}_{0} \hat{B}_{2}-\hat{A}_{2} \hat{B}_{0}, \\
& s_{3} \mapsto \hat{s}_{3}=F_{30}=\hat{A}_{0} \hat{B}_{3}-\hat{A}_{3} \hat{B}_{0}, \quad s_{4} \mapsto \hat{s}_{4}=0, \quad s_{5} \mapsto \hat{s}_{5}=F_{23}=\hat{A}_{3} \hat{B}_{2}-\hat{A}_{2} \hat{B}_{3}, \\
& s_{6} \mapsto \hat{s}_{6}=F_{31}=\hat{A}_{1} \hat{B}_{3}-\hat{A}_{3} \hat{B}_{1}, \quad s_{7} \mapsto \hat{s}_{7}=F_{12}=\hat{A}_{2} \hat{B}_{1}-\hat{A}_{1} \hat{B}_{2}, \quad s_{8} \mapsto \hat{s}_{8}=\varphi^{(E)}, \\
& J_{v}^{(E)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)}, \quad Z_{\tau \mu v}=\frac{i m_{0}^{(E)}}{2 \hbar}\left(g_{\tau \mu} k_{v}-g_{\tau v} k_{\mu}\right) \\
& s_{1}=A_{0} B_{1}-A_{1} B_{0}, \quad s_{2}=A_{0} B_{2}-A_{2} B_{0}, \quad s_{3}=A_{0} B_{3}-A_{3} B_{0}, \quad s_{4}=0, \\
& s_{5}=A_{3} B_{2}-A_{2} B_{3}, \quad s_{6}=A_{1} B_{3}-A_{3} B_{1}, \quad s_{7}=A_{2} B_{1}-A_{1} B_{2},
\end{aligned}
$$

$s_{8}:$ an arbitrary parameter $;$
where
$A_{0}=v_{4}, \quad B_{0}=u_{4}, A_{1}=v_{3}, \quad B_{1}=u_{3}$,
$A_{2}=v_{2}, \quad B_{2}=u_{2}, \quad A_{3}=v_{1}, \quad B_{3}=u_{1}$.

Relation (95) $\xrightarrow{\text { first quantization }}$

$$
\begin{gather*}
\breve{\nabla}_{\lambda} R_{\mu \nu \rho \sigma}+\breve{\nabla}_{\mu} R_{v \lambda \rho \sigma}+\breve{\nabla}_{v} R_{\lambda \mu \rho \sigma}=T_{\lambda \mu}^{\tau} R_{\tau v \rho \sigma}+T_{\mu \nu}^{\tau} R_{\tau \lambda \rho \sigma}+T_{v \lambda}^{\tau} R_{\tau \mu \rho \sigma} \tag{105-3}\\
\breve{\nabla}_{\mu} R_{v \rho \sigma}^{\mu}-\frac{i m_{0}^{(G)}}{\hbar} k_{\mu} R_{v \rho \sigma}^{\mu}=-J_{v \rho \sigma}^{(G)} \tag{105-4}
\end{gather*}
$$

where $\lambda, \rho, \sigma, \mu, v, \tau=0,1,2,3$, and
$s_{1} \mapsto \hat{S}_{1}=R_{10 \rho \sigma}=\hat{A}_{0} \hat{B}_{\rho \sigma 1}-\hat{A}_{1} \hat{B}_{\rho \sigma 0}, \quad s_{2} \mapsto \hat{S}_{2}=R_{20 \rho \sigma}=\hat{A}_{0} \hat{B}_{\rho \sigma 2}-\hat{A}_{2} \hat{B}_{\rho \sigma 0}$,
$s_{3} \mapsto \hat{s}_{3}=R_{30 \rho \sigma}=\hat{A}_{0} \hat{B}_{\rho \sigma 3}-\hat{A}_{3} \hat{B}_{\rho \sigma 0}, \quad s_{4} \mapsto \hat{s}_{4}=0, \quad s_{5} \mapsto \hat{s}_{5}=R_{23 \rho \sigma}=\hat{A}_{3} \hat{B}_{\rho \sigma 2}-\hat{A}_{2} \hat{B}_{\rho \sigma}$,
$s_{6} \mapsto \hat{s}_{6}=R_{31 \rho \sigma}=\hat{A}_{1} \hat{B}_{\rho \sigma 3}-\hat{A}_{3} \hat{B}_{\rho \sigma 1}, \quad s_{7} \mapsto \hat{s}_{7}=R_{12 \rho \sigma}=\hat{A}_{2} \hat{B}_{\rho \sigma 1}-\hat{A}_{1} \hat{B}_{\rho \sigma 2}, \quad s_{8} \mapsto \hat{s}_{8}=\varphi_{\rho \sigma}^{(N)}$, $J_{\nu \rho \sigma}^{(G)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{v}\right) \varphi_{\rho \sigma}^{(G)}, T_{\tau \mu \nu}=\frac{i m_{0}^{(G)}}{2 \hbar}\left(g_{\tau \mu} k_{v}-g_{\tau \nu} k_{\mu}\right) ;$
$s_{1}=A_{0} B_{\rho \sigma 1}-A_{1} B_{\rho \sigma 0}, \quad s_{2}=A_{0} B_{\rho \sigma 2}-A_{2} B_{\rho \sigma 0}, \quad s_{3}=A_{0} B_{\rho \sigma 3}-A_{3} B_{\rho \sigma 0}, \quad s_{4}=0$,
$s_{5}=A_{3} B_{\rho \sigma 2}-A_{2} B_{\rho \sigma 3}, \quad s_{6}=A_{1} B_{\rho \sigma 3}-A_{3} B_{\rho \sigma 1}, \quad s_{7}=A_{2} B_{\rho \sigma 1}-A_{1} B_{\rho \sigma 2}$,
$s_{8}:$ an arbitrary parameter ;
where
$A_{0}=v_{4}, \quad B_{\rho \sigma 0}=u_{4}, \quad A_{1}=v_{3}, \quad B_{\rho \sigma 1}=u_{3}$,
$A_{2}=v_{2}, \quad B_{\rho \sigma 2}=u_{2}, \quad A_{3}=v_{1}, \quad B_{\rho \sigma 3}=u_{1}$.

Relation (96) $\xrightarrow{\text { first quantization }}$

$$
\begin{gather*}
\breve{\nabla}_{\lambda} F_{\mu \nu}+\breve{\nabla}_{\mu} F_{\nu \lambda}+\breve{\nabla}_{\nu} F_{\lambda \mu}=Z_{\lambda \mu}^{\tau} F_{\tau \nu}+Z_{\mu \nu}^{\tau} F_{\tau \lambda}+Z_{\nu \lambda}^{\tau} F_{\tau \mu} \tag{106-1}\\
\breve{\nabla}_{\mu} F_{v}^{\mu}-\frac{i m_{0}^{(E)}}{\hbar} k_{\mu} F_{v}^{\mu}=-J_{v}^{(E)} \tag{106-2}
\end{gather*}
$$

where $\lambda, \rho, \sigma, \mu, v, \tau=0,1,2,3,4$, and
$s_{1} \mapsto \hat{s}_{1}=F_{10}=\hat{A}_{0} \hat{B}_{1}-\hat{A}_{1} \hat{B}_{0}, \quad s_{2} \mapsto \hat{S}_{2}=F_{02}=\hat{A}_{2} \hat{B}_{0}-\hat{A}_{0} \hat{B}_{2}$,
$s_{3} \mapsto \hat{s}_{3}=F_{30 \rho}=\hat{A}_{0} \hat{B}_{3}-\hat{A}_{3} \hat{B}_{0}, \quad s_{4} \mapsto \hat{s}_{4}=0, \quad s_{5} \mapsto \hat{s}_{5}=F_{04}=\hat{A}_{4} \hat{B}_{0}-\hat{A}_{0} \hat{B}_{4}$,
$s_{6} \mapsto \hat{s}_{6}=0, \quad s_{7} \mapsto \hat{s}_{7}=0, \quad s_{8} \mapsto \hat{s}_{8}=0 \quad s_{9} \mapsto \hat{s}_{9}=0, \quad s_{10} \mapsto \hat{s}_{10}=F_{43}=\hat{A}_{3} \hat{B}_{4}-\hat{A}_{4} \hat{B}_{3}$,
$s_{11} \mapsto \hat{s}_{11}=F_{42}=\hat{A}_{2} \hat{B}_{4}-\hat{A}_{4} \hat{B}_{2}, \quad s_{12} \mapsto \hat{s}_{12}=F_{41}=\hat{A}_{1} \hat{B}_{4}-\hat{A}_{4} \hat{B}_{1}$,
$s_{13} \mapsto \hat{s}_{13}=F_{32}=\hat{A}_{2} \hat{B}_{3}-\hat{A}_{3} \hat{B}_{2}, \quad s_{14} \mapsto \hat{s}_{14}=F_{31}=\hat{A}_{1} \hat{B}_{3}-\hat{A}_{3} \hat{B}_{1}$,
$s_{15} \mapsto \hat{s}_{15}=F_{21}=\hat{A}_{1} \hat{B}_{2}-\hat{A}_{2} \hat{B}_{1}, \quad s_{16} \mapsto \hat{s}_{16}=\varphi^{(N)}$,
$J_{v}^{(E)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)}, Z_{\tau \mu v}=\frac{i m_{0}^{(E)}}{2 \hbar}\left(g_{\tau \mu} k_{v}-g_{\tau v} k_{\mu}\right) ;$
$s_{1}=A_{0} B_{1}-A_{1} B_{0}, \quad s_{2}=A_{2} B_{0}-A_{0} B_{2}, \quad s_{3}=A_{0} B_{3}-A_{3} B_{0}$,
$s_{4}=0, s_{5}=A_{4} B_{0}-A_{0} B_{4}, \quad s_{6}=0, \quad s_{7}=0, \quad s_{8}=0, \quad s_{9}=0$,
$s_{10}=A_{3} B_{4}-A_{4} B_{3}, \quad s_{11}=A_{2} B_{4}-A_{4} B_{2}, \quad s_{12}=A_{1} B_{4}-A_{4} B_{1}$,
$s_{13}=A_{2} B_{3}-A_{3} B_{2}, \quad s_{14}=A_{1} B_{3}-A_{3} B_{1}, \quad s_{15}=A_{1} B_{2}-A_{2} B_{1}$,
s_{16} : an arbitrary parameter ;
where
$A_{0}=v_{5}, \quad B_{0}=u_{5}, A_{1}=v_{4}, B_{1}=u_{4}, A_{2}=-v_{3}$,
$B_{2}=-u_{3}, \quad A_{3}=-v_{2}, \quad B_{3}=-u_{2}, A_{4}=v_{1}, \quad B_{4}=u_{1}$.

Relation (96)

$$
\begin{gather*}
\breve{\nabla}_{\lambda} R_{\mu \nu \rho \sigma}+\breve{\nabla}_{\mu} R_{v \lambda \rho \sigma}+\breve{\nabla}_{v} R_{\lambda \mu \rho \sigma}=T_{\lambda \mu}^{\tau} R_{\tau v \rho \sigma}+T_{\mu \nu}^{\tau} R_{\tau \lambda \rho \sigma}+T_{\nu \lambda}^{\tau} R_{\tau \mu \rho \sigma} \tag{106-3}\\
\breve{\nabla}_{\mu} R_{v \rho \sigma}^{\mu}-\frac{i m_{0}^{(G)}}{\hbar} k_{\mu} R_{v \rho \sigma}^{\mu}=-J_{v \rho \sigma}^{(G)} \tag{106-4}
\end{gather*}
$$

where $\lambda, \rho, \sigma, \mu, v, \tau=0,1,2,3,4$, and
$s_{1} \mapsto \hat{s}_{1}=R_{10 \rho \sigma}=\hat{A}_{0} \hat{B}_{\rho \sigma 1}-\hat{A}_{1} \hat{B}_{\rho \sigma 0}, \quad s_{2} \mapsto \hat{s}_{2}=R_{02 \rho \sigma}=\hat{A}_{2} \hat{B}_{\rho \sigma 0}-\hat{A}_{0} \hat{B}_{\rho \sigma 2}$,
$s_{3} \mapsto \hat{s}_{3}=R_{30 \rho \sigma}=\hat{A}_{0} \hat{B}_{\rho \sigma 3}-\hat{A}_{3} \hat{B}_{\rho \sigma 0}, \quad s_{4} \mapsto \hat{s}_{4}=0, \quad s_{5} \mapsto \hat{s}_{5}=R_{04 \rho \sigma}=\hat{A}_{4} \hat{B}_{\rho \sigma 0}-\hat{A}_{0} \hat{B}_{\rho \sigma 4}$,
$s_{6} \mapsto \hat{s}_{6}=0, \quad s_{7} \mapsto \hat{s}_{7}=0, \quad s_{8} \mapsto \hat{s}_{8}=0 \quad s_{9} \mapsto \hat{s}_{9}=0, \quad s_{10} \mapsto \hat{s}_{10}=R_{43 \rho \sigma}=\hat{A}_{3} \hat{B}_{\rho \sigma 4}-\hat{A}_{4} \hat{B}_{\rho \sigma}$,
$s_{11} \mapsto \hat{s}_{11}=R_{42 \rho \sigma}=\hat{A}_{2} \hat{B}_{\rho \sigma 4}-\hat{A}_{4} \hat{B}_{\rho \sigma 2}, \quad s_{12} \mapsto \hat{s}_{12}=R_{41 \rho \sigma}=\hat{A}_{1} \hat{B}_{\rho \sigma 4}-\hat{A}_{4} \hat{B}_{\rho \sigma 1}$,
$s_{13} \mapsto \hat{s}_{13}=R_{32 \rho \sigma}=\hat{A}_{2} \hat{B}_{\rho \sigma 3}-\hat{A}_{3} \hat{B}_{\rho \sigma 2}, \quad s_{14} \mapsto \hat{s}_{14}=R_{31 \rho \sigma}=\hat{A}_{1} \hat{B}_{\rho \sigma 3}-\hat{A}_{3} \hat{B}_{\rho \sigma 1}$,
$s_{15} \mapsto \hat{s}_{15}=R_{21 \rho \sigma}=\hat{A}_{1} \hat{B}_{\rho \sigma 2}-\hat{A}_{2} \hat{B}_{\rho \sigma 1}, \quad s_{16} \mapsto \hat{s}_{16}=\varphi_{\rho \sigma}^{(G)}$,
$J_{\nu \rho \sigma}^{(G)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{\nu}\right) \varphi_{\rho \sigma}^{(G)}, T_{\tau \mu \nu}=\frac{i m_{0}^{(G)}}{2 \hbar}\left(g_{\tau \mu} k_{v}-g_{\tau v} k_{\mu}\right) ;$
$s_{1}=A_{0} B_{\rho \sigma 1}-A_{1} B_{\rho \sigma 0}, \quad s_{2}=A_{2} B_{\rho \sigma 0}-A_{0} B_{\rho \sigma 2}, \quad s_{3}=A_{0} B_{\rho \sigma 3}-A_{3} B_{\rho \sigma 0}$,
$s_{4}=0, \quad s_{5}=A_{4} B_{\rho \sigma 0}-A_{0} B_{\rho \sigma 4}, \quad s_{6}=0, \quad s_{7}=0, \quad s_{8}=0, \quad s_{9}=0$,
$s_{10}=A_{3} B_{\rho \sigma 4}-A_{4} B_{\rho \sigma 3}, \quad s_{11}=A_{2} B_{\rho \sigma 4}-A_{4} B_{\rho \sigma 2}, \quad s_{12}=A_{1} B_{\rho \sigma 4}-A_{4} B_{\rho \sigma 1}$,
$s_{13}=A_{2} B_{\rho \sigma 3}-A_{3} B_{\rho \sigma 2}, \quad s_{14}=A_{1} B_{\rho \sigma 3}-A_{3} B_{\rho \sigma 1}, \quad s_{15}=A_{1} B_{\rho \sigma 2}-A_{2} B_{\rho \sigma 1}$,
s_{16} : an arbitrary parameter ;
where
$A_{0}=v_{5}, \quad B_{\rho \sigma 0}=u_{5}, A_{1}=v_{4}, B_{\rho \sigma 1}=u_{4}, A_{2}=-v_{3}$,
$B_{\rho \sigma 2}=-u_{3}, \quad A_{3}=-v_{2}, \quad B_{\rho \sigma 3}=-u_{2}, \quad A_{4}=v_{1}, \quad B_{\rho \sigma 4}=u_{1}$.

1. We will show in Section 3-7, that the field equations (106-1) - (106-4), which correspond to the matrix relations (96) (i.e. for five dimensional space-time), as well as for higher space-time dimensions, are incompatible with some certain symmetry, where we'll also conclude that the universe cannot have more than four space-time dimensions.

Where in field equations (103-1) - (106-4) we have (see also Appendix A):

$$
\begin{gather*}
R_{\mu \nu \rho \sigma}=\left(\partial_{\nu} \Gamma_{\rho \sigma \mu}-\Gamma_{\rho \nu}^{\lambda} \Gamma_{\lambda \sigma \mu}\right)-\left(\partial_{\mu} \Gamma_{\rho \sigma \nu}-\Gamma_{\rho \mu}^{\lambda} \Gamma_{\lambda \sigma v}\right), \tag{107-1}\\
F_{\mu \nu}=\left(\breve{\nabla}_{\nu}+\frac{i m_{0}^{(E)}}{2 \hbar} k_{v}\right) A_{\mu}-\left(\breve{\nabla}_{\mu}+\frac{i m_{0}^{(E)}}{2 \hbar} k_{\mu}\right) A_{\nu} \tag{107-2}
\end{gather*}
$$

$\Gamma_{\sigma \mu}^{\rho}$ is the affine connection: $\Gamma_{\sigma \mu}^{\rho}=\bar{\Gamma}_{\sigma \mu}^{\rho}-K_{\sigma \mu}^{\rho}, \bar{\Gamma}_{\sigma \mu}^{\rho}$ is the Christoffel symbol (or the torsion-free connection), $K^{\rho}{ }_{\sigma \mu}$ is a definite complex contorsion tensor generated by the invariant mass (of the field carrier particle), given by: $K^{\rho}{ }_{\sigma \mu}=\frac{i m_{0}^{(G)}}{2 \hbar} g^{\rho}{ }_{\mu} k_{\sigma}$ (which is anti-symmetric in the first and last indices), A_{μ} is the vector potential, and $T_{\tau \mu \nu}$ is the torsion tensor defined by

$$
\begin{equation*}
T_{\tau \mu \nu}=-K_{\tau \mu \nu}+K_{\tau \nu \mu}=\frac{i m_{0}^{(G)}}{2 \hbar}\left(g_{\tau \mu} k_{v}-g_{\tau \nu} k_{\mu}\right), T_{\nu}=T_{\mu \nu}^{\mu}=\frac{(D-1) i m_{0}^{(G)}}{2 \hbar} k_{v} \tag{107-3}
\end{equation*}
$$

D is the number of space-time dimensions; ${ }^{1}$
Tensor $Z_{\tau \mu \nu}$ is also given by: $\quad Z_{\tau \mu \nu}=\frac{i m_{0}^{(E)}}{2 \hbar}\left(g_{\tau \mu} k_{\nu}-g_{\tau \nu} k_{\mu}\right)$
Moreover, according to our derivation approach (see Section 3-7), the above field equations are solely definable in $\mathrm{D} \leq 4$ dimensional space-time. So, only the equations (104-1) - (105-4) would be acceptable. In addition, in the above field equations, $m_{0}^{(G)}$ and $m_{0}^{(E)}$ are the invariant mass of the (free and interacting) fields carrier single-particles, $i \hbar \breve{\nabla}_{\mu}$ is the covariant kinetic energy-momentum operator (generally defined on a background space-time with the complex torsion $T_{\tau \mu \nu}$ generated by the invariant mass and given by formula (3)), $k^{\mu}=\left(c / \sqrt{g_{00}}, 0, \ldots, 0\right)$ is the general relativistic velocity of a static observer (that is a time-like contravariant vector), and the covariant currents $J_{v \rho \sigma}^{(G)}$ and $J_{v}^{(E)}$ are the sources of the above fields. In particular, for massless cases (i.e. $m_{0}^{(G)}=0, m_{0}^{(E)}=0$), the field equations (105-1) - (105-4) turn into the Maxwell, Yang-Mills (if assuming the local gauge invariance, see below) and the gravitational single-particle fields [68,69] (in fact, in the context of relativistic quantum mechanics, these relativistic fields could precisely describe single-particles, where the solutions are taken to be complex).
${ }^{1 .}$ In the general relativistic wave equations (102) - (106-4), quantities $\hat{\boldsymbol{B}}_{\mu}, \quad \hat{\boldsymbol{B}}_{\rho \mu v}$, and $\hat{\boldsymbol{A}}_{\mu}$ (as a differential operator) are defined as (See Appendix A):
$\hat{A}_{\mu} Y_{\alpha_{1} \alpha_{2} \ldots \alpha_{n}}=\partial_{\mu} Y_{\alpha_{1} \alpha_{2} \ldots \alpha_{n}}-\Gamma_{\alpha_{1} \mu}^{\lambda} Y_{\lambda \alpha_{2} \ldots \alpha_{n}}, \hat{A}_{\mu} Y^{\alpha_{1}}{ }_{\alpha_{2} \alpha_{3} . \ldots \alpha_{n}}=\partial_{\mu} Y^{\alpha_{1}} \alpha_{\alpha_{2} \alpha_{3} \ldots \alpha_{n}}+\Gamma_{\mu \lambda}^{\alpha_{1}} Y^{\lambda}{ }_{\alpha_{2} \alpha_{3}, \alpha_{n}}$,
$\hat{B}_{\mu}=A_{\mu}, \hat{B}_{\rho x v}=\Gamma_{\rho u v}$. The conservation laws would be $\left(\breve{\nabla}_{v}-\frac{i m_{0}^{(E)}}{2 \hbar} k_{v}\right) J^{(E) v}=0,\left(\breve{\nabla}_{v}-\frac{i m_{0}^{(G)}}{\hbar} k_{v}\right) J_{\rho \sigma}^{(G) v}=0$.
Moreover, the commutator of covariant derivative with torsion is [25,27]: $\left(\nabla_{\rho} \nabla_{\sigma}-\nabla_{\sigma} \nabla_{\rho}\right) V_{v}=V_{\mu} R_{\rho \sigma v}^{\mu}-T_{\rho \sigma}^{\mu} \nabla_{\mu} V_{v}$.

In Section 3-5 we show that the Einstein field equations (that necessarily include a cosmological constant) are derived directly from field equations (103-3) - (103-4), (104-3) - (104-4) and (105-3) -(105-4) and so on, for various space-time dimensions.

As an additional principal requirement, we show below (in Section 3-4-1) that we may also assume that the "massive" Lagrangian density for the obtained general relativistic single-particle wave equations (2-1) - (2-3), be locally gauge invariant as well - where these fields be still massive, and $\bar{\nabla}_{\mu}$ be equivalent to the general relativistic (with torsion (107-3), which is compatible with the local gauge invariance condition [9, 58, 60-63]) form of the (local) gauge-covariant derivative [67]. On this basis, in (1+3) dimensional space-time, equations (105-1) - (105-2) not only would describe a certain massive form of Maxwell's (single-photon) field based on the Abelian gauge group $U(1)$, but also would present a certain massive form of Yang-Mills (single-particle) fields based on the (non-Abelian) gauge groups $S U(N)$. For the latter case, the field strength tensor, vector gauge potential and the current in equations (105-1) - (105-2), are also written in component notation as: $F^{a}{ }_{\mu \nu}, A^{a}{ }_{\mu}, J_{\mu}^{a(E)}$, where the Latin index $a=1,2,3, \ldots, N^{2}-1$, and $N^{2}-1$ is the number of linearly independent generators of the group $S U(N)$ (as a real manifold) [58]. Hence, by requiring the local gauge invariance for general relativistic massive particle field equations (105-1) - (105-2), in Section 3-4-1, we show that the massive Lagrangian density specified for these fields could be locally gauge invariant - if these fields be formally re-presented on a background space-time with certain complex torsion which is generated by the invariant mass of the gauge field carrier particle. Subsequently, in agreement with certain experimental data, the invariant mass of a particle (that would actually be identified as massive photon) has been specified ($m_{0}^{(E)} \approx 1.4070696 \times 10^{-41} \mathrm{~kg}$), which is coupled with background space-time geometry. Note that the gauge theoretic approach for the field equations (104-1) - (104-2) could be applied, too.

It is noteworthy to recall that gauge symmetries can be viewed as analogues of the principle of general covariance of general relativity in which the coordinate system can be chosen freely under arbitrary diffeomorphism of space-time. Both gauge invariance and diffeomorphism invariance reflect a redundancy in the description of the system. In point of fact, a global symmetry is just a local symmetry whose group's parameters are fixed in space-time. The requirement of local symmetry, the cornerstone of gauge theories, is a stricter constraint [58]. However, our approach could be also considered in the framework of the theories that lie beyond the Standard Model [71], as it also includes new consequences such as a certain formulation for the gravitational particle field.

In addition, we should note that the field equations (104-1) - (104-4) and (105-1) - (105-4) would correspond to two different single-particle fields: (104-1) - (104-2) correspond to the tensor representation of the spin- $1 / 2$ single-particle fields formulated solely in ($1+2$) dimensional space-time [29, 31] - where we necessary have $F_{20}=F_{02}=0[29,31]$; and (105-1) - (105-2) describe the spin-1 single-particle fields formulated solely in (1+3) dimensional space-time [68, 69]. In the precisely same manner, the field equations (104-3) - (104-4) describe the spin-3/2 single-particle field (gravitational) formulated solely in (1+2) dimensional space-time - where $R_{\mu v \rho \sigma}$ is the Riemann curvature tensor, and we necessary have $R_{20 \rho \sigma}=R_{02 \rho \sigma}=0$. The field equations (105-3) - (105-4) also describe the spin-2 single-particle (gravitational) field formulated solely in $(1+3)$ dimensional space-time. However, it should be emphasized here (as we noted above) that, in general, for single-particle field equations (102) - (1054), the (quantum mechanical) solutions are taken to be complex [29, 30, 31, 68, 69]. However, in the context of relativistic quantum mechanics, the field equations (104-1) - (105-4) are subject to a process of $2^{\text {nd }}$ quantization anyhow; then these equations would describe solely the bosonic fields in $(1+3)$ dimensional space-time, and the fermionic fields in $(1+2)$ dimensional space-time. ${ }^{1}$

[^4]
3-4-1. The Local Gauge-Invariance of "Massive" Lagrangian Density of the (unique) Obtained Massive Forms of Maxwell and Yang-Mills Fields

In this section we present (for the first time) a complex torsion approach to the massive gauge field theory. Hence, corresponding to the general relativistic massive single-particle wave equations (103-1) - (103-2), (104-1) - (104-2), (105-1) - (105-2), and so on - as special cases of the generally derived field equations (101-1) - (101-4) in various space-time dimensions, which particularly represent the Maxwell and Yang-mills fields in $1+3$ dimensions - we may write formally the following their equivalent field equations (formulable solely for a "rank two anti-symmetric" field strength tensor):

$$
\begin{gather*}
\bar{\nabla}_{\lambda} F_{\mu \nu}+\overline{\bar{\nabla}}_{\mu} F_{\nu \lambda}+\overline{\bar{\nabla}}_{\nu} F_{\lambda \mu}=0, \tag{108-1}\\
\overline{\vec{\nabla}}_{\mu} F^{\mu}{ }_{\nu}=-J_{V}^{(E)} \tag{108-2}
\end{gather*}
$$

where we suppose the general covariant derivative $\breve{\bar{\nabla}}_{\lambda}$ is defined with the following complex torsion tensor (similar to the torsion tensor (107-3)) generated by both invariant masses $m_{0}^{(E)}$ and $m_{0}^{(G)}$:

$$
\begin{gather*}
\breve{\bar{\nabla}}_{\lambda} F_{\mu \nu}=\partial_{\lambda} F_{\mu \nu}-\left(\bar{\Gamma}_{\lambda \mu \nu}^{\tau}-\bar{K}_{\lambda \mu}^{\tau}\right) F_{\tau \nu}-\left(\bar{\Gamma}_{\lambda \nu}^{\tau}-\bar{K}_{\lambda \nu}^{\tau}\right) F_{\mu \tau}, \tag{109}\\
\vec{K}_{\tau \mu \nu}=\frac{i\left(m_{0}^{(G)}+m_{0}^{(E)}\right)}{2 \hbar} g_{\tau \nu} k_{\mu} ; \tag{109-1}
\end{gather*}
$$

where $\bar{\Gamma}_{\sigma \mu}^{\rho}$ is the Christoffel symbol (or the torsion-free connection), $\vec{K}_{\tau \mu \nu}$ is contorsion tensor, and the torsion tensor read

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\tau}_{\tau \mu \nu}=T_{\tau \mu \nu}+Z_{\tau \mu \nu}=\frac{i m_{0}^{(G)}}{2 \hbar}\left(g_{\tau \mu} k_{v}-g_{\tau \nu} k_{\mu}\right)+\frac{i m_{0}^{(E)}}{2 \hbar}\left(g_{\tau \mu} k_{v}-g_{\tau \nu} k_{\mu}\right) \tag{110}
\end{equation*}
$$

Using formula (110) in the field equations (108-1) - (108-2), we may get a general relativistic wave equation formally similar to massive field (103-1) - (103-2), ... , (105-1) - (105-2), as follows

$$
\begin{gather*}
\breve{\nabla}_{\lambda} F_{\mu \nu}+\breve{\nabla}_{\mu} F_{\nu \lambda}+\breve{\nabla}_{v} F_{\lambda \mu}=Z^{\tau}{ }_{\mu \mu} F_{\tau \nu}+Z_{\mu \nu}^{\tau} F_{\tau \lambda}+Z_{\nu \lambda}^{\tau} F_{\tau \mu}, \tag{108-3}\\
\breve{\nabla}_{\mu} F^{\mu}{ }_{\nu}-\frac{i m_{0}^{(E)}}{\hbar} k_{\mu} F^{\mu}{ }_{\nu}=-J_{\nu}^{(E)} \tag{108-4}
\end{gather*}
$$

however, here the background space-time is defined with torsion $\vec{T}_{\tau \mu \nu}$, and the covariant derivative $\breve{\vec{\nabla}}_{\lambda}$ is defined by (109).

The Lagrangian density for source-free $\left(J_{v}^{(E)}=0\right)$ case of the fields of the type $(108-1)-(108-2)$, is given by [58],

$$
\begin{equation*}
L^{(E)}=-\frac{1}{4} \sqrt{-g} F^{\mu \nu} F_{\mu \nu} \tag{111}
\end{equation*}
$$

where g is the metric's determinant.

Assuming the local gauge invariance for field (108-1) - (108-2), in component notation formula (111) is also written as

$$
\begin{equation*}
L_{g f}^{(E)}=-\frac{1}{4} \sqrt{-g} F_{\mu v}^{\alpha} F_{\alpha}^{\mu v} \tag{112}
\end{equation*}
$$

Now as for the trace part of torsion tensor $\vec{T}_{\tau \mu \nu}$ (110) we have

$$
\begin{align*}
& \vec{T}_{\mu \nu}^{\mu}=\vec{T}_{v}=(D-1) \frac{i\left(m_{0}^{(G)}+m_{0}^{(E)}\right)}{2 \hbar} k_{v} \tag{113}\\
& =(D-1) \alpha \partial_{v} \varphi
\end{align*}
$$

where D is the number of space-time dimensions, and

$$
\begin{equation*}
\exists \varphi: \quad k_{v}=\breve{\nabla}_{\mu} \varphi=\partial_{\nu} \varphi, \quad \alpha=\frac{i\left(m_{0}^{(G)}+m_{0}^{(E)}\right)}{2 \hbar} \tag{114}
\end{equation*}
$$

we may simply conclude that the conditions (113) - (114) are sufficient for the general relativistic field equations (108-1) - (108-2) and the Lagrangian density (112) to be locally gauge-invariant [9, 58, 60-63].

Now, using the torsion tensor geometrical properties, in the above gauge fields if we assume that the background space-time be re-defined with torsion $T_{\tau \mu \nu}=\left(\operatorname{im}_{0}^{(G)} / 2 \hbar\right)\left(g_{\tau \mu} k_{v}-g_{\tau v} k_{\mu}\right)$, as a geometrical abject, and $Z_{\tau \mu \nu}=\left(\operatorname{im}_{0}^{(E)} / 2 \hbar\right)\left(g_{\tau \mu} k_{v}-g_{\tau v} k_{\mu}\right)$ as an independent tensor field generated by $m_{0}^{(E)}$ (as the invariant mass of the gauge field carrier particle), which its trace part, i.e.

$$
\begin{equation*}
Z_{\mu v}^{\mu}=Z_{v}=(D-1)\left(i m_{0}^{(E)} / 2 \hbar\right) k_{v}=(D-1) \gamma \partial_{v} \varphi, \quad \gamma=i m_{0}^{(E)} / 2 \hbar \tag{115-1}
\end{equation*}
$$

couples to the gauge fields $(108-1)-(108-2)$, then these fields be formally equivalent to certain massive Maxwell and Yang-Mills single-particle fields. Hence the field strength tensor $F_{\mu \nu}^{\alpha}$ and the locally gauge invariant massive Lagrangian density (112) could be equivalently re-written as follows, respectively:

$$
\begin{gather*}
F_{\mu \nu}^{\alpha}=\breve{\nabla}_{\nu} A_{\mu}^{a}-\breve{\nabla}_{\mu} A_{v}^{a}+\frac{i m_{0}^{(E)}}{2 \hbar}\left(k_{v} A_{\mu}^{a}-k_{\mu} A_{v}^{a}\right) \tag{115-2}\\
L_{g f}^{(E)}=-\frac{1}{4} \sqrt{-g}\left[(\breve { \nabla } ^ { v } A _ { \alpha } ^ { \mu } - \breve { \nabla } ^ { \mu } A _ { \alpha } ^ { v } + \frac { i m _ { 0 } ^ { (E) } } { 2 \hbar } (k ^ { \nu } A _ { \alpha } ^ { \mu } - k ^ { \mu } A _ { \alpha } ^ { v })] \left[\left(\breve{\nabla}_{\nu} A_{\mu}^{a}-\breve{\nabla}_{\mu} A_{v}^{a}+\frac{i m_{0}^{(E)}}{2 \hbar}\left(k_{v} A_{\mu}^{a}-k_{\mu} A_{v}^{a}\right)\right]\right.\right. \tag{115-3}
\end{gather*}
$$

where $A^{a}{ }_{\mu}$ is the gauge field vector (potential) and $\breve{\nabla}_{\mu}$ denotes the general relativistic form of the local gauge-covariant derivative [67]. In addition, it is noteworthy that since $\left(\mathrm{im}_{0}^{(E)} / 2 \hbar\right) k^{\mu}$ is a contravarint "time-like" vector, the obtained unique massive Lagrangian density (115-3) for Maxwell and Yang-Mills (single-particle) fields could be also considered in the framework of both three and four dimensional cases of the Chern-Simons gauge theory [64, 65].

It is noteworthy that for the case of electromagnetic field, according to [60 - 63], based on certain experimental data we can establish a lower bound for γ (as a constant) in (115-1): $|\gamma| \geq 20$. Thus, in agreement with these experimental results, the invariant mass of a particle (that actually would be identified as massive photon), which is coupled with background space-time geometry, can be approximately specified as follows:

$$
\begin{equation*}
m_{0}^{(E)} \approx 1.4070696 \times 10^{-41} \mathrm{~kg} \tag{115-4}
\end{equation*}
$$

The above torsion (generally defined by formulas (110) and (115-1)) approach could be also applied for massive neutrino which is coupled with background space-time geometry. Such massive particle fields which are coupled to background space-time geometry (with complex torsion defined above) could be fully responsible for the dark energy and dark matter as well [75].
We should note that the above particular approach for formulating the (local) gauge-invariance formulation of massive Maxwell and Yang-Mills field equations (as well as the half-integer relativistic single-particle wave equations such as the Dirac equation), by using a certain (coupled) complex torsion tensor field (generated by the invariant mass of the gauge field carrier particle), may be also considered via the teleparallel geometry - where for example the gravitation whether requires a curved or a torsionned space-time, is a matter of convention [72-74]. In fact on this basis, the torsion tensor can always be treated as an independent tensor field, or equivalently, as part of the space-time geometry. That's it.

Furthermore, the mass gap in quantum Yang-Mills theory may be connected with the background space-time geometry with the above complex torsion. As professors A. Jaffe and E. Witten in the conclusion of their famous article [70] concerning the mass gap problem in Yang-Mills theory, in particular, have mentioned: "... One view of the mass gap in Yang-Mills theory suggests that it may be tied to curvature in the space of connections".

3-4-2. A Direct Proving of the Absence of Magnetic Monopoles in Nature

As a direct consequence of the assumption (3) in Section 1-1, and also the unique structure of derived general relativistic single-particle field equations (101-1) - (101-4), as well as one of their particular case for four dimensional space-time, i.e. equations (105-1) - (105-2) corresponding to the Electromagnetic field (and also Yang-Mills field equations, see Section 3-4) we may conclude that magnetic monopoles - in contrast with electric charges - cannot exist in nature. This conclusion is based solely on certain algebraic properties of linearized (and simultaneously parameterized, as necessary algebraic conditions) unique forms of the relativistic energy-momentum relation (95).

3-5. Deriving the Einstein Field Equations with a Cosmological Constant

The massless cases of general relativistic wave equations (103-3) - (103-4), (104-3) - (104-4) and (1053) - (105-4), are given by $\left(m_{0}^{(G)}=0\right)$:

$$
\begin{gather*}
\breve{\nabla}_{\lambda} R_{\mu v \rho \sigma}+\breve{\nabla}_{\mu} R_{\nu \lambda \rho \sigma}+\breve{\nabla}_{\nu} R_{\lambda \mu \rho \sigma}=0, \tag{116-1}\\
\breve{\nabla}_{\mu} R_{v \rho \sigma}^{\mu}=-J_{\nu \rho \sigma}^{(G)} \tag{116-2}
\end{gather*}
$$

Hence, by contraction the $2^{\text {nd }}$ Bianchi identity (116-1) and assuming the sign conventions (97), we get

$$
\begin{equation*}
\nabla_{\sigma} R_{\mu \nu \rho}{ }^{\sigma}=\nabla_{\nu} R_{\mu \rho}-\nabla_{\mu} R_{\nu \rho} \tag{117}
\end{equation*}
$$

Then from (116-2) and (117) and the following definition

$$
\begin{equation*}
J_{v \rho \sigma}^{(G)}=-8 \pi\left(\nabla_{\sigma} T_{v \rho}-\nabla_{\rho} T_{v \sigma}\right)+8 \pi B\left(\nabla_{\sigma} T g_{v \rho}-\nabla_{\rho} T g_{v \sigma}\right), \tag{118}
\end{equation*}
$$

where $T_{\mu \nu}$ is the stress-energy tensor $\left(T=T^{\mu}{ }_{\mu}\right), g_{\mu \nu}$ is the metric and ' B ' is a constant (which be specified for each space-time dimension), we easily obtain the Einstein field equations as follows:

$$
\begin{equation*}
R_{\mu \nu}=-8 \pi\left(T_{\mu \nu}-B T g_{\mu \nu}\right)-\Lambda g_{\mu \nu} \tag{119}
\end{equation*}
$$

where Λ is a cosmological constant (emerged naturally in the course of obtaining (119)). Hence for $(1+1)$ dimensional case from (119) we get

$$
\begin{equation*}
R_{\mu \nu}=-4 \pi T g_{\mu \nu}+1 / 2 \Lambda g_{\mu \nu} \tag{119-1}
\end{equation*}
$$

where $B=0$. For (1+2) dimensional case we have (however, for this case as we show in Section 3-7, we have $R_{02 \rho \sigma}=0$):

$$
\begin{equation*}
R_{\mu \nu}-1 / 2 R g_{\mu \nu}=-8 \pi T_{\mu \nu}-2 \Lambda g_{\mu \nu} \tag{119-2}
\end{equation*}
$$

where $B=1$. For $(1+3)$ dimensional space-time, we obtain

$$
\begin{equation*}
R_{\mu \nu}-1 / 2 R g_{\mu \nu}=-8 \pi T_{\mu \nu}-\Lambda g_{\mu \nu} \tag{119-3}
\end{equation*}
$$

where $B=1 / 2$.

3-6. Geometric Algebra Representation of the Derived General Relativistic (Single-Particle) Wave Equations (103-1) - (106-4)

It should be mentioned that the general relativistic single-particle wave equations (103-1) - (106-4) derived by first quantization (as a postulate) of the energy-momentum matrix relations (92) - (96) (including matrices that are hermitian and generate a Clifford algebra), in matrix representation, i.e. in the geometric algebra formulation, are written as follows:

$$
\begin{align*}
& \left(i \hbar \alpha^{\mu} \breve{\nabla}_{\mu}-m_{0} \tilde{\alpha}^{\mu} k_{\mu}\right) \Psi_{F}=0, \tag{120}\\
& \left(i \hbar \alpha^{\mu} \breve{\nabla}_{\mu}-m_{0} \tilde{\alpha}^{\mu} k_{\mu}\right) \Psi_{R}=0 \tag{121}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha^{\mu}=\beta^{\mu}+\beta^{\mu}, \tilde{\alpha}^{\mu}=\beta^{\mu}-\beta^{\prime \mu} \tag{122}
\end{equation*}
$$

In matrix equations (120) - (121) - which each equation could be written in the form of two coupled equations that assumedly have chiral symmetry if the single-particle field equation be source-free (see Section 3-7) - Ψ_{E} and Ψ_{R} are column matrices (representing the single-particle wave functions) and matrices β^{μ} and $\beta^{\prime \mu}$ are the contravariant square matrices (corresponding to a Clifford algebra, see Appendix B for special relativistic cases), are as follow ${ }^{1}$ (for various space-time dimensions). Hence for $(1+1)$ dimensional case (corresponding to equations (103-1) - (103-4)) we have

$$
\begin{align*}
& \beta^{0}=\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right], \quad \beta_{0}^{\prime}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \beta^{1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \beta_{1}^{\prime}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \\
& \Psi_{F}=\left[\begin{array}{c}
F_{10} \\
\varphi^{(E)}
\end{array}\right], \Psi_{R}=\left[\begin{array}{c}
R_{10 \rho \sigma} \\
\varphi_{\rho \sigma}^{(G)}
\end{array}\right], \tag{123}\\
& J_{v \rho \sigma}^{(G)}=-\left[\breve{\nabla}_{v}+\left(i m_{0}^{(G)} / 2 \hbar\right) k_{v}\right] \varphi_{\rho \sigma}^{(G)}, \quad J_{v}^{(E)}=-\left[\breve{\nabla}_{v}+\left(i m_{0}^{(E)} / 2 \hbar\right) k_{v}\right] \varphi^{(E)} .
\end{align*}
$$

[^5]Using (123), the special relativistic cases of equations (120) - (121) in (1+1) dimensions (corresponding to equations (103-1) - (103-4)) are given by, respectively:

$$
\left[\begin{array}{cc}
i \hbar \breve{\nabla}_{0}-m_{0}^{(E)} & i \hbar \breve{\nabla}_{1} \tag{120-1}\\
-i \hbar \breve{\nabla}_{1} & -i \hbar \breve{\nabla}_{0}-m_{0}^{(E)}
\end{array}\right]\left[\begin{array}{c}
\psi_{(F) L} \\
\psi_{(F) R}
\end{array}\right]=0
$$

where

$$
\begin{align*}
\Psi_{F}= & {\left[\begin{array}{c}
\psi_{(F) L} \\
\psi_{(F) R}
\end{array}\right]=\left[\begin{array}{c}
F_{10} \\
\varphi^{(E)}
\end{array}\right], \psi_{(F) L}=\left[F_{10}\right], \psi_{(F) R}=\left[\varphi^{(E)}\right] ; } \\
& {\left[\begin{array}{cc}
i \hbar \breve{\nabla}_{0}-m_{0}^{(G)} & i \hbar \breve{\nabla}_{1} \\
-i \hbar \bar{\nabla}_{1} & -i \hbar \bar{\nabla}_{0}-m_{0}^{(G)}
\end{array}\right]\left[\begin{array}{l}
\psi_{(R) L} \\
\psi_{(R) R}
\end{array}\right]=0 } \tag{121-1}
\end{align*}
$$

where (for this special case we may suppose: $m_{0} \neq 0 \Rightarrow T_{\tau \mu \nu} \neq 0$)

$$
\Psi_{R}=\left[\begin{array}{c}
\psi_{(R) L} \\
\psi_{(R) R}
\end{array}\right]=\left[\begin{array}{c}
R_{10 \rho \sigma} \\
\varphi_{\rho \sigma}^{(G)}
\end{array}\right], \psi_{(R) L}=\left[R_{10 \rho \sigma}\right], \psi_{(R) R}=\left[\varphi_{\rho \sigma}^{(G)}\right] .
$$

For (1+2) dimensional case (corresponding to equations (104-1) - (104-4)) we get

$$
\begin{align*}
& \beta^{0}=\left[\begin{array}{cc}
0 & 0 \\
0 & -\left(\sigma^{0}+\sigma^{1}\right)
\end{array}\right], \beta_{0}^{\prime}=\left[\begin{array}{cc}
\sigma^{0}+\sigma^{1} & 0 \\
0 & 0
\end{array}\right], \beta^{1}=\left[\begin{array}{cc}
0 & \sigma^{2} \\
-\sigma^{2} & 0
\end{array}\right], \beta_{1}^{\prime}=\left[\begin{array}{cc}
0 & \sigma^{3} \\
-\sigma^{3} & 0
\end{array}\right], \\
& \beta^{2}=\left[\begin{array}{cc}
0 & -\sigma^{1} \\
-\sigma^{0} & 0
\end{array}\right], \beta_{2}^{\prime}=\left[\begin{array}{cc}
0 & -\sigma^{0} \\
-\sigma^{1} & 0
\end{array}\right] ; \\
& \Psi_{R}=\left[\begin{array}{c}
R_{10 \rho \sigma} \\
R_{02 \rho \sigma} \\
R_{21 \rho \sigma} \\
\varphi_{\rho \sigma}^{(G)}
\end{array}\right], \Psi_{F}=\left[\begin{array}{c}
F_{10} \\
F_{02} \\
F_{21} \\
\varphi^{(E)}
\end{array}\right], J_{v \rho \sigma}^{(G)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{v}\right) \varphi_{\rho \sigma}^{(G)}, J_{v}^{(E)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)} \tag{124}
\end{align*}
$$

where

$$
\sigma^{0}=\left[\begin{array}{ll}
1 & 0 \tag{124-1}\\
0 & 0
\end{array}\right], \quad \sigma^{1}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \quad \sigma^{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \sigma^{3}=\left[\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right] .
$$

Using (124) and (124-1), the special relativistic cases of equations (120) - (121) in (1+2) dimensions, are given by, respectively:

$$
\left[\begin{array}{cc}
i \hbar \breve{\nabla}_{0}\left(\sigma^{0}+\sigma^{1}\right)-m_{0}^{(E)} & i \hbar\left[\breve{\nabla}_{1}\left(\sigma^{2}-\sigma^{3}\right)+\breve{\nabla}_{2}\left(-\sigma^{1}+\sigma^{0}\right)\right] \tag{120-2}\\
-i \hbar\left[\breve{\nabla}_{1}\left(\sigma^{2}-\sigma^{3}\right)+\breve{\nabla}_{2}\left(-\sigma^{1}+\sigma^{0}\right)\right] & -i \hbar \breve{\nabla}_{0}\left(\sigma^{0}+\sigma^{1}\right)-m_{0}^{(E)}
\end{array}\right]\left[\begin{array}{l}
\psi_{(F) L} \\
\psi_{(F) R}
\end{array}\right]=0
$$

where

$$
\begin{align*}
\Psi_{F}= & {\left[\begin{array}{l}
\psi_{(F) L} \\
\psi_{(F) R}
\end{array}\right]=\left[\begin{array}{c}
F_{10} \\
F_{02} \\
F_{21} \\
\varphi^{(E)}
\end{array}\right], \psi_{(F) L}=\left[\begin{array}{c}
F_{10} \\
F_{02}
\end{array}\right], \psi_{(F) R}=\left[\begin{array}{c}
F_{21} \\
\varphi^{(E)}
\end{array}\right] ; } \\
& {\left[\begin{array}{cc}
i \hbar \breve{\nabla}_{0}\left(\sigma^{0}+\sigma^{1}\right)-m_{0}^{(G)} & i \hbar\left[\breve{\nabla}_{1}\left(\sigma^{2}-\sigma^{3}\right)+\breve{\nabla}_{2}\left(-\sigma^{1}+\sigma^{0}\right)\right] \\
-i \hbar\left[\breve{\nabla}_{1}\left(\sigma^{2}-\sigma^{3}\right)+\breve{\nabla}_{2}\left(-\sigma^{1}+\sigma^{0}\right)\right] & -i \hbar \breve{\nabla}_{0}\left(\sigma^{0}+\sigma^{1}\right)-m_{0}^{(G)}
\end{array}\right]\left[\begin{array}{l}
\psi_{(R) L} \\
\psi_{(R) R}
\end{array}\right]=0 } \tag{121-2}
\end{align*}
$$

where (for this special case we may suppose: $m_{0} \neq 0 \Rightarrow T_{\tau \mu \nu} \neq 0$)

$$
\Psi_{R}=\left[\begin{array}{c}
\psi_{(R) L} \\
\psi_{(R) L}
\end{array}\right]=\left[\begin{array}{c}
R_{10 \rho \sigma} \\
R_{02 \rho \sigma} \\
R_{21 \rho \sigma} \\
\varphi_{\rho \sigma}^{G)}
\end{array}\right], \psi_{(R) L}=\left[\begin{array}{c}
R_{10 \rho \sigma} \\
R_{02 \rho \sigma}
\end{array}\right], \psi_{(R) R}=\left[\begin{array}{c}
R_{21 \rho \sigma} \\
\varphi_{\rho \sigma}^{(G)}
\end{array}\right] .
$$

For $(1+3)$ dimensional casees (corresponding to the field equations (105-1) - (105-4)) of equations (120) - (121), we have

$$
\begin{align*}
& \beta^{0}=\left[\begin{array}{cc}
0 & 0 \\
0 & -\left(\gamma^{0}+\gamma^{1}\right)
\end{array}\right], \beta_{0}^{\prime}=\left[\begin{array}{cc}
\left(\gamma^{0}+\gamma^{1}\right) & 0 \\
0 & 0
\end{array}\right], \beta^{1}=\left[\begin{array}{cc}
0 & \gamma^{2} \\
-\gamma^{3} & 0
\end{array}\right], \beta_{1}^{\prime}=\left[\begin{array}{cc}
0 & \gamma^{3} \\
-\gamma^{2} & 0
\end{array}\right], \\
& \beta^{2}=\left[\begin{array}{cc}
0 & \gamma^{4} \\
\gamma^{5} & 0
\end{array}\right], \beta_{2}^{\prime}=\left[\begin{array}{cc}
0 & -\gamma^{5} \\
-\gamma^{4} & 0
\end{array}\right], \beta^{3}=\left[\begin{array}{cc}
0 & \gamma^{6} \\
-\gamma^{7} & 0
\end{array}\right], \beta_{3}^{\prime}=\left[\begin{array}{cc}
0 & \gamma^{7} \\
-\gamma^{6} & 0
\end{array}\right], \\
& \Psi_{R}=\left[\begin{array}{c}
R_{10 \rho \sigma} \\
R_{20 \rho \sigma} \\
R_{30 \rho \sigma} \\
0 \\
R_{23 \rho \sigma} \\
R_{31 \rho \sigma} \\
R_{12 \rho \sigma} \\
\varphi_{\rho \sigma}^{(G)}
\end{array}\right], \Psi_{F}=\left[\begin{array}{c}
F_{10} \\
F_{20} \\
F_{30} \\
0 \\
F_{23} \\
F_{31} \\
F_{12} \\
\varphi^{(E)}
\end{array}\right], \quad J_{v \rho \sigma}^{(G)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{v}\right) \varphi_{\rho \sigma}^{(G)}, J_{v}^{(E)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)} \tag{125}
\end{align*}
$$

where we have

$$
\begin{align*}
& \gamma^{0}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \gamma^{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \gamma^{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right], \gamma^{3}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 \\
0 & 1 & 0 \\
0 \\
0 & 0 & 0
\end{array} 00\right] . \\
& \gamma^{4}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \gamma^{5}=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \gamma^{6}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right], \gamma^{7}=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] . \tag{125-1}
\end{align*}
$$

Using (125) and (125-1), the special relativistic cases of equations (120) - (121) in (1+3) dimensions, are given by, respectively:

$$
\left[\begin{array}{cc}
i \hbar \breve{\nabla}_{0}\left(\gamma^{0}+\gamma^{1}\right)-m_{0}^{(E)} & i \hbar\left[\breve{\nabla}_{1}\left(\gamma^{2}-\gamma^{3}\right)+\breve{\nabla}_{2}\left(\gamma^{4}+\gamma^{5}\right)+\breve{\nabla}_{3}\left(\gamma^{6}-\gamma^{7}\right)\right] \\
i \hbar\left[\breve{\nabla}_{1}\left(\gamma^{2}-\gamma^{3}\right)+\stackrel{\nabla}{\nabla}_{2}\left(\gamma^{4}+\gamma^{5}\right)+\breve{\nabla}_{3}\left(\gamma^{6}-\gamma^{7}\right)\right] & -i \hbar \bar{\nabla}_{0}\left(\gamma^{0}+\gamma^{1}\right)-m_{0}^{(E)}
\end{array}\right]\left[\begin{array}{l}
\psi_{(F) L} \\
\psi_{(F) R}
\end{array}\right]=0
$$

where

$$
\Psi_{F}=\left[\begin{array}{c}
\psi_{(F) L} \\
\psi_{(F) R}
\end{array}\right]=\left[\begin{array}{c}
F_{10} \\
F_{20} \\
F_{30} \\
0 \\
F_{23} \\
F_{31} \\
F_{12} \\
\varphi^{(E)}
\end{array}\right], \psi_{(F) L}=\left[\begin{array}{c}
F_{10} \\
F_{20} \\
F_{30} \\
0
\end{array}\right], \psi_{(F) R}=\left[\begin{array}{c}
F_{23} \\
F_{31} \\
F_{12} \\
\varphi^{(E)}
\end{array}\right] ;
$$

$$
\left[\begin{array}{cc}
i \hbar \breve{\nabla}_{0}\left(\gamma^{0}+\gamma^{1}\right)-m_{0}^{(G)} & i \hbar\left[\breve{\nabla}_{1}\left(\gamma^{2}-\gamma^{3}\right)+\breve{\nabla}_{2}\left(\gamma^{4}+\gamma^{5}\right)+\breve{\nabla}_{3}\left(\gamma^{6}-\gamma^{7}\right)\right] \\
i \hbar\left[\breve{\nabla}_{1}\left(\gamma^{2}-\gamma^{3}\right)+\breve{\nabla}_{2}\left(\gamma^{4}+\gamma^{5}\right)+\breve{\nabla}_{3}\left(\gamma^{6}-\gamma^{7}\right)\right] & -i \hbar \breve{\nabla}_{0}\left(\gamma^{0}+\gamma^{1}\right)-m_{0}^{(G)}
\end{array}\right]\left[\begin{array}{l}
\psi_{(R) L} \\
\psi_{(R) R}
\end{array}\right]=0
$$

where (for this special case we may suppose: $m_{0} \neq 0 \Rightarrow T_{\tau \mu \nu} \neq 0$)
$\Psi_{R}=\left[\begin{array}{c}\psi_{(R) L} \\ \psi_{(R) R}\end{array}\right]=\left[\begin{array}{c}R_{10 \rho \sigma} \\ R_{20 \rho \sigma} \\ R_{30 \rho \sigma} \\ 0 \\ R_{23 \rho \sigma} \\ R_{31 \rho \sigma} \\ R_{12 \rho \sigma} \\ \varphi_{\rho \sigma}^{(G)}\end{array}\right], \psi_{(R) L}=\left[\begin{array}{c}R_{10 \rho \sigma} \\ R_{20 \rho \sigma} \\ R_{30 \rho \sigma} \\ 0\end{array}\right], \psi_{(R) R}=\left[\begin{array}{c}R_{23 \rho \sigma} \\ R_{31 \rho \sigma} \\ R_{12 \rho \sigma} \\ \varphi_{\rho \sigma}^{(G)}\end{array}\right]$.

And for $(1+4)$ dimensional case of $(120)-(121)$, corresponding to the field equations (106-1) - (106-4), we obtain: ${ }^{1}$

1. For this case (just for clarity) the square matrices β^{μ} and β_{μ}^{\prime} have been written in detail, however, these square matrices, definitely, could be written by formulations similar to relations (123) and (12-1) (including the special relativistic cases (120-1) - (120-3) and (121-1) -(121-3)).

$$
\beta^{0}=\left[\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right],
$$

$$
\beta^{1}=\left[\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

$$
\beta^{2}=\left[\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

$$
\beta_{2}^{\prime}=\left[\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

$$
\beta^{3}=\left[\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

$$
\beta^{4}=\left[\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

$$
\beta_{4}^{\prime}=\left[\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

$$
\Psi_{F}=\left[\begin{array}{c}
F_{10} \tag{126}\\
F_{02} \\
F_{30} \\
0 \\
F_{04} \\
0 \\
0 \\
0 \\
0 \\
F_{43} \\
F_{42} \\
F_{41} \\
F_{32} \\
F_{31} \\
F_{21} \\
\varphi^{(E)}
\end{array}\right], \Psi_{R}=\left[\begin{array}{c}
R_{10 \rho \sigma} \\
R_{02 \rho \sigma} \\
R_{30 \rho \sigma} \\
0 \\
R_{04 \rho \sigma} \\
0 \\
0 \\
0 \\
0 \\
R_{43 \rho \sigma} \\
R_{42 \rho \sigma} \\
R_{41 \rho \sigma} \\
R_{32 \rho \sigma} \\
R_{31 \rho \sigma} \\
R_{21 \rho \sigma} \\
\varphi_{\rho \sigma}^{(G)}
\end{array}\right], J_{v \rho \sigma}^{(G)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{v}\right) \varphi_{\rho \sigma}^{(G)}, J_{v}^{(E)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)} .
$$

The size of matrices α_{μ} and $\tilde{\alpha}_{\mu}$ in field equations (120) - (121) for (1+5) dimensional space-time is 32×32, and the column matrices Ψ_{F} and Ψ_{R} are defined as follows:

$$
\left[\begin{array}{c}
F_{10} \tag{127}\\
F_{20} \\
F_{30} \\
0 \\
F_{40} \\
0 \\
0 \\
0 \\
F_{50} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
F_{45} \\
0 \\
R_{40 \rho \sigma} \\
0 \\
0 \\
0 \\
F_{53} \\
F_{25} \\
F_{51} \\
0 \\
F_{34} \\
F_{42} \\
F_{14} \\
F_{32} \\
F_{13} \\
F_{21} \\
\varphi^{(E)}
\end{array}\right],\left[\begin{array}{c}
R_{10 \rho \sigma} \\
R_{20 \rho \sigma} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
R_{45 \rho \sigma} \\
0 \\
R_{53 \rho \sigma} \\
R_{25 \rho \sigma} \\
R_{51 \rho \sigma} \\
0 \\
R_{34 \rho \sigma} \\
R_{42 \rho \sigma} \\
R_{14 \rho \sigma} \\
R_{32 \rho \sigma} \\
R_{13 \rho \sigma} \\
R_{21 \rho \sigma} \\
\varphi_{\rho \sigma}^{(G)}
\end{array}\right], J_{v \rho \sigma}^{(G)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{v}\right) \varphi_{\rho \sigma}^{(G)}, J_{v}^{(E)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)}
$$

3-7. In this Section, as another direct consequence of the assumption (3) in Section 1-1, and also the unique structure of the derived general relativistic wave equations (101-1) - (101-4) (including equations (102) - (105-4) and so on as particular cases of these equations for various space-time dimensions), we conclude that the universe cannon have more than four space-time dimensions.

As it was mentioned in Section 3-4, in the context of relativistic quantum mechanics, the relativistic (single-particle) wave equations (120) - (121) (equivalent to equations (101-1) - (101-4), including equations (102) - (106-4) and so on for various dimensions) give an equivalent tensor representation of the half-integer spin single-particle fields (defined solely in $(1+2)$ dimensional space-time by the matrices (124-1), or matrices (B-2) for the special relativistic case in Appendix B), as well as a tensor representation of the integer spin single-particle fields (defined solely in $(1+3)$ dimensional space-time by the matrices (125-1), or matrices (B-3) for the special relativistic case in Appendix B).

Meanwhile, it is noteworthy that the half-integer spin particle fields derived solely by this approach, is compatible with various experimental data related to two (spatial) dimensional property for electrons. These experiments include two-dimensional electron gas (2DEG), that is a gas of electrons free to move in two dimensions, but tightly confined in the third [38, 39]. For the latter case, it has been shown in several works that the Dirac spinor field in $(1+2)$ dimensional space-time, could be also isomorphically represented by (anti-symmetric two-index) tensor representation of the Lorentz group - which is equivalent to three dimensional case of the single-particle tensor field (120) defined by matrices (124-1) (or matrices (B-2) for the special relativistic case in Appendix B) [29, 31]. In fact, it has been shown that in three dimensional space-time all the basic effects attributed to spinors can be also explained using the tensor formulation of the relativistic wave equation for particles of spin $-1 / 2$ (as well as any particle of half-integer spin exhibit Fermi-Dirac statistics). Moreover, for a particle of spin-1 (as well as any particle of integer spin exhibit Bose-Einstein statistics) it has also been shown that its spinor representation could be equivalent to an anti-symmetric two-index tensor representation of the Lorentz group [30, 31].

The relativistic wave equations could be also represented by the left and right handed components of the wave-functions $\psi_{\mu \nu \rho \sigma}, \psi_{\mu \nu}$ (defined by formulas (123)-(127)). We can basically show that by the assumption that the source-free particle fields preserve chiral symmetry [32-37], some or all the components of the wave functions $\psi_{\mu \nu \rho \sigma}, \psi_{\mu \nu}$ in relativistic single-particle wave equations (120) (121) should vanish in certain space-time dimensions (for dimensions $D>5$ all the wave-functions' components will vanish).

Hence, if the components of tensor fields $R_{\mu \nu \rho \sigma}, F_{\mu \nu}$ equivalently be represented by the wave-functional components $\psi_{\mu \nu \rho \sigma}, \psi_{\mu \nu}$, using the formula (123) for two dimensional case of equations (120) - (121) (corresponding to the field equations (103-1) - (103-4), where $\mu, \nu, \rho, \sigma=0,1$; and $\psi_{\mu \nu}=-\psi_{\nu \mu}$, $\left.\psi_{\mu \nu \rho \sigma}=-\psi_{\nu \mu \rho \sigma}\right)$, we have:

$$
\left[\begin{array}{cc}
i \hbar \breve{\nabla}_{0}-m_{0}^{(E)} & i \hbar \breve{\nabla}_{1} \tag{128}\\
-i \hbar \breve{\nabla}_{1} & -i \hbar \breve{\nabla}_{0}-m_{0}^{(E)}
\end{array}\right]\left[\begin{array}{l}
\psi_{(F) L} \\
\psi_{(F) R}
\end{array}\right]=0,\left[\begin{array}{cc}
i \hbar \breve{\nabla}_{0}-m_{0}^{(G)} & i \hbar \breve{\nabla}_{1} \\
-i \hbar \breve{\nabla}_{1} & -i \hbar \breve{\nabla}_{0}-m_{0}^{(G)}
\end{array}\right]\left[\begin{array}{l}
\psi_{(R) L} \\
\psi_{(R) R}
\end{array}\right]=0
$$

and

$$
\begin{align*}
& \Psi_{F}=\left[\begin{array}{l}
\psi_{(F) L} \\
\psi_{(F) R}
\end{array}\right]=\left[\begin{array}{c}
\psi_{10} \\
0
\end{array}\right], \psi_{(F) L}=\left[\psi_{10}\right], \psi_{(F) R}=[0], \\
& \Rightarrow \psi_{(F) L}=[0] ; \\
& \Psi_{R}=\left[\begin{array}{c}
\psi_{(R) L} \\
\psi_{(R) R}
\end{array}\right]=\left[\begin{array}{c}
\psi_{10 \rho \sigma} \\
0
\end{array}\right], \psi_{(R) L}=\left[\psi_{10 \rho \sigma}\right], \psi_{(R) R}=[0], \tag{128-1}\\
& \Rightarrow \psi_{(R) L}=[0] .
\end{align*}
$$

So, in (1+1) dimensional cases of the relativistic wave equations (120) - (121), chiral symmetry implies that the wave-function vanishes.

For three dimensional space-time case of equations (120) - (121), i.e. equations (120-2) - (121-2) (corresponding to the field equations (104-1) - (104-4), where $\mu, \nu, \rho, \sigma=0,1,2 ; \psi_{\mu \nu}=-\psi_{\nu \mu}, \psi_{\mu \nu \rho \sigma}=-$ $\left.\psi_{\nu \mu \rho \sigma}\right)$, we get

$$
\begin{align*}
& \Psi_{F}=\left[\begin{array}{c}
\psi_{(F) L} \\
\psi_{(F) R} \\
0
\end{array}\right]=\left[\begin{array}{c}
\psi_{10} \\
\psi_{02} \\
\psi_{21} \\
0
\end{array}\right], \psi_{(F) L}=\left[\begin{array}{l}
\psi_{10} \\
\psi_{02}
\end{array}\right], \psi_{(F) R}=\left[\begin{array}{c}
\psi_{21} \\
0
\end{array}\right] \\
& \Rightarrow \psi_{02}=0 ; \\
& \Psi_{R}=\left[\begin{array}{c}
\psi_{(R) L} \\
\psi_{(R) R} \\
0
\end{array}\right]=\left[\begin{array}{c}
\psi_{10 \rho \sigma} \\
\psi_{02 \rho \sigma} \\
\psi_{21 \rho \sigma} \\
0
\end{array}\right], \psi_{(R) L}=\left[\begin{array}{l}
\psi_{10 \rho \sigma} \\
\psi_{02 \rho \sigma}
\end{array}\right], \psi_{(R) R}=\left[\begin{array}{c}
\psi_{21 \rho \sigma} \\
0
\end{array}\right] \tag{129}\\
& \Rightarrow \psi_{02 \rho \sigma}=0
\end{align*}
$$

Thus, the components $\psi_{02}, \psi_{02 \rho \sigma}$ in (129) vanish, due to assumption of the chiral symmetry, and the particle fields be represented by two components wave-functions Ψ_{F} and Ψ_{R}. This result (for example) for Ψ_{F} is fully compatible with the tensor representation of the Dirac spinor field in (1+2) dimensional space-time [29, 48].

Subsequently, for four dimensional cases of equations (120) - (121), i.e. equations (120-3) - (121-3) (corresponding to the field equations (105-1) - (105-4), where $\mu, \nu, \rho, \sigma=0,1,2,3$, and $\psi_{\mu \nu}=-\psi_{v \mu}$, $\left.\psi_{\mu \nu \rho}=-\psi_{\nu \mu \rho}, \psi_{\mu \nu \rho \sigma}=-\psi_{\nu \mu \rho \sigma}\right)$ we obtain, respectively:

$$
\begin{gather*}
\Psi_{F}=\left[\begin{array}{c}
\psi_{(F) L} \\
\psi_{(F) R} \\
0
\end{array}\right]=\left[\begin{array}{c}
\psi_{10} \\
\psi_{20} \\
\psi_{30} \\
0 \\
\psi_{23} \\
\psi_{31} \\
\psi_{12} \\
0
\end{array}\right], \psi_{(F) L}=\left[\begin{array}{l}
\psi_{10} \\
\psi_{20} \\
\psi_{30} \\
0
\end{array}\right], \psi_{(F) R}=\left[\begin{array}{c}
\psi_{23} \\
\psi_{31} \\
\psi_{12} \\
0
\end{array}\right] ; \\
\Psi_{R}=\left[\begin{array}{c}
\psi_{(R) L} \\
\psi_{(R) R} \\
0
\end{array}\right]=\left[\begin{array}{c}
\psi_{10 \rho \sigma} \\
\psi_{20 \rho \sigma} \\
\psi_{30 \rho \sigma} \\
0 \\
\psi_{23 \rho \sigma} \\
\psi_{31 \rho \sigma} \\
\psi_{12 \rho \sigma} \\
0
\end{array}\right], \psi_{(R) L}=\left[\begin{array}{c}
\psi_{10 \rho \sigma} \\
\psi_{20 \rho \sigma} \\
\psi_{30 \rho \sigma} \\
0
\end{array}\right], \psi_{(R) R}=\left[\begin{array}{c}
\psi_{23 \rho \sigma} \\
\psi_{31 \rho \sigma} \\
\psi_{12 \rho \sigma} \\
0
\end{array}\right] . \tag{130}
\end{gather*}
$$

This result for ψ_{F} and ψ_{R} is also fully compatible with the integer spin particle fields describing solely by six components wave-functions [35, 49].

For relativistic wave equations (120) - (121) in five dimensional space-time (corresponding to the singleparticle field equations (106-1) - (106-4), where $\left.\mu, \nu, \rho, \sigma=0,1,2,3,4 ; \psi_{\mu \nu}=-\psi_{\nu \mu}, \psi_{\mu \nu \rho \sigma}=-\psi_{\nu \mu \rho \sigma}\right)$, we obtain
$\Psi_{F}=\left[\begin{array}{c}\psi_{(F) L} \\ \psi_{(F) R} \\ 0\end{array}\right]=\left[\begin{array}{c}\psi_{10} \\ \psi_{02} \\ \psi_{30} \\ 0 \\ \psi_{04} \\ 0 \\ 0 \\ 0 \\ 0 \\ \psi_{43} \\ \psi_{42} \\ \psi_{41} \\ \psi_{32} \\ \psi_{31} \\ \psi_{21} \\ 0\end{array}\right], \psi_{(F) L}=\left[\begin{array}{c}\psi_{10} \\ \psi_{02} \\ \psi_{30} \\ 0 \\ \psi_{04} \\ 0 \\ 0 \\ 0\end{array}\right], \psi_{(F) R}=\left[\begin{array}{c}0 \\ \psi_{43} \\ \psi_{42} \\ \psi_{41} \\ \psi_{32} \\ \psi_{31} \\ \psi_{21} \\ 0\end{array}\right] \Rightarrow \psi_{10}=\psi_{41}=\psi_{31}=\psi_{21}=0$

$$
\Rightarrow \psi_{(F) L}=\left[\begin{array}{c}
0 \\
\psi_{02} \\
\psi_{30} \\
0 \\
\psi_{04} \\
0 \\
0 \\
0
\end{array}\right], \psi_{(F) R}=\left[\begin{array}{c}
0 \\
\psi_{43} \\
\psi_{42} \\
0 \\
\psi_{32} \\
0 \\
0 \\
0
\end{array}\right] ;
$$

$$
\begin{align*}
\\
\Psi_{R}=\left[\begin{array}{c}
\psi_{10 \rho \sigma} \\
\psi_{02 \rho \sigma} \\
\psi_{30 \rho \sigma} \\
\psi_{(R) R} \\
0
\end{array}\right]=\left[\begin{array}{c}
{\left[\begin{array}{c}
\\
\psi_{04 \rho \sigma} \\
0 \\
0 \\
0 \\
0 \\
\psi_{43 \rho \sigma} \\
\psi_{42 \rho \sigma} \\
\psi_{41 \rho \sigma} \\
\psi_{32 \rho \sigma} \\
\psi_{31 \rho \sigma} \\
\psi_{21 \rho \sigma} \\
0
\end{array}\right], \psi_{(R) L}=\left[\begin{array}{c}
\psi_{10 \rho \sigma} \\
\psi_{02 \rho \sigma} \\
\psi_{30 \rho \sigma} \\
0 \\
\psi_{04 \rho \sigma} \\
0 \\
0 \\
0 \\
0
\end{array}\right], \psi_{(R) R}=\left[\begin{array}{c}
0 \\
\psi_{43 \rho \sigma} \\
\psi_{42 \rho \sigma} \\
\psi_{41 \rho \sigma} \\
\psi_{32 \rho \sigma} \\
\psi_{31 \rho \sigma} \\
\psi_{21 \rho \sigma} \\
0
\end{array}\right] \Rightarrow \psi_{10 \rho \sigma}=\psi_{41 \rho \sigma}=\psi_{31 \rho \sigma}=\psi_{21 \rho \sigma}=0} \\
\psi_{02 \rho \sigma} \\
\psi_{30 \rho \sigma} \\
0 \\
\psi_{04 \rho \sigma} \\
0 \\
0 \\
0
\end{array}\right], \psi_{(R) R}=\left[\begin{array}{c}
\\
0 \\
\psi_{32 \rho \sigma} \\
0 \\
\psi_{43 \rho \sigma} \\
\psi_{42 \rho \sigma} \\
0 \\
0 \\
0
\end{array}\right] \tag{131}
\end{align*}
$$

Thus, assuming that the source-free cases of the relativistic (single-particle) wave equations (120) - (121) in five dimensional space-time (specified by (131)) must preserve chiral symmetry, implies the wave function's components $\psi_{10}, \psi_{41}, \psi_{31}, \psi_{21}, \psi_{10 \rho}, \psi_{41 \rho}, \psi_{31 \rho}, \psi_{21 \rho}$ and $\psi_{10 \rho \sigma}, \psi_{41 \rho \sigma}, \psi_{31 \rho \sigma}, \psi_{21 \rho \sigma}$ vanish, where, consequently, one of the spatial components (that is \hat{p}_{1}) of the covariant derivative vanishes as well. Thus the equations (120) - (121) are not formulable in five dimensional space-time, and reduced to (be equivalent to) their four dimensional cases, i.e. (130). Therefore, based on the assumption (3) in Section $1-1$, and also the unique structure of general relativistic single-particle wave equations derived, the universe is not definable in $(1+4)$ dimensional space-time.

In addition, the size of matrices α_{μ} and $\tilde{\alpha}_{\mu}$ in equations (120) - (121) in six dimensional space-time is 32×32, and the wave functions Ψ_{F} and Ψ_{R} representing by their left and right handed components, are given by (where $\mu, \nu, \rho, \sigma=0,1,2,3,4,5 ; \psi_{\mu \nu}=-\psi_{\nu \mu}, \psi_{\mu \nu \rho \sigma}=-\psi_{\nu \mu \rho \sigma}$):

$$
\begin{aligned}
& \Rightarrow \psi_{10}=\psi_{20}=\psi_{30}=\psi_{40}=\psi_{50}=\psi_{45}=\psi_{53}=\psi_{25}=\psi_{51}=\psi_{34}=\psi_{42}=\psi_{14}= \\
& =\psi_{32}=\psi_{13}=\psi_{21}=0 \Rightarrow \psi_{(F) L}=\psi_{(F) R}=[0] ;
\end{aligned}
$$

$\Rightarrow \psi_{10 \rho \sigma}=\psi_{20 \rho \sigma}=\psi_{30 \rho \sigma}=\psi_{40 \rho \sigma}=\psi_{50 \rho \sigma}=\psi_{45 \rho \sigma}=\psi_{53 \rho \sigma}=\psi_{25 \rho \sigma}=\psi_{51 \rho \sigma}=$
$=\psi_{34 \rho \sigma}=\psi_{42 \rho \sigma}=\psi_{14 \rho \sigma}=\psi_{32 \rho \sigma}=\psi_{13 \rho \sigma}=\psi_{21 \rho \sigma}=0 \Rightarrow \psi_{(R) L}=\psi_{(R) R}=[0]$.

Thus due to the chiral symmetry, in six dimensional space-time all the components of wave-functions Ψ_{F} and Ψ_{R} should vanish. Consequently, the equations (120) - (121) are not formulable in (1+5) dimensional space-time. Hence based on the assumption (3) in Section 1-1 and also the unique structure of the general relativistic particle wave equations derived, the universe is not definable in ($1+5$) dimensional space-time as well. There is precisely the same result for the higher dimensional cases of relativistic wave equations (120) - (121). Consequently, based on our axiomatic approach (including the basic assumptions (1) - (3) in Section 1-1, the universe cannot have more than four space-time dimensions.

3-8. On the Asymmetry of Left and Right Handed (interacting) Particles

In Section 3-7, we concluded that the general relativistic (single-particle) wave equations (120) - (121) are definable solely in $\mathrm{D} \leq 4$ dimensional space-time. In particular, three and four dimensional cases of equations $(120)-(121)$, i.e. equations $(120-2)-(121-2)$ and $(120-3)-(121-3)$, each equation particularly includes a set of equations that merely contain the divergences of wave-functions $\psi_{\mu \nu}$ and $\psi_{\rho \sigma \mu \nu}$. These sets of massive equations for the non source-free cases (i.e. for $J_{v}^{(E)} \neq 0, J_{v \rho \sigma}^{(G)} \neq 0$) of equations (120) - (121), respectively are as follows:

For three dimensional case we obtain,

$$
\begin{align*}
& (120-2) \quad \Rightarrow\left\{\left(\breve{\nabla}_{1}-\frac{i m_{0}^{(E)}}{\hbar} k_{1}\right) \psi_{0}^{1}=\left(\breve{\nabla}_{0}+\frac{i m_{0}^{(E)}}{\hbar} k_{0}\right) \varphi^{(E)}\right. \tag{133-1}\\
& (121-2) \quad \Rightarrow\left\{\left(\breve{\nabla}_{1}-\frac{i m_{0}^{(G)}}{\hbar} k_{1}\right) \psi_{0 \rho \sigma}^{1}=\left(\breve{\nabla}_{0}+\frac{i m_{0}^{(G)}}{\hbar} k_{0}\right) \varphi_{\rho \sigma}^{(G)}\right. \tag{121-2}
\end{align*}
$$

where we have (using (129)):

$$
\begin{gathered}
\Psi_{F}=\left[\begin{array}{l}
\psi_{(F) L} \\
\psi_{(F) R}
\end{array}\right]=\left[\begin{array}{c}
\psi_{10} \\
0 \\
\psi_{21} \\
\varphi^{(E)}
\end{array}\right], \psi_{(F) L}=\left[\begin{array}{c}
\psi_{10} \\
0
\end{array}\right], \psi_{(F) R}=\left[\begin{array}{c}
\psi_{21} \\
\varphi^{(E)}
\end{array}\right] \\
\Psi_{R}=\left[\begin{array}{c}
\psi_{(F) L} \\
\psi_{(F) R}
\end{array}\right]=\left[\begin{array}{c}
\psi_{10 \rho \sigma} \\
0 \\
\psi_{21 \rho \sigma} \\
\varphi_{\rho \sigma}^{(G)}
\end{array}\right], \psi_{(F) L}=\left[\begin{array}{c}
\psi_{10 \rho \sigma} \\
0
\end{array}\right], \psi_{(F) R}=\left[\begin{array}{c}
\psi_{21 \rho \sigma}^{(G)} \\
\varphi_{\rho \sigma}
\end{array}\right] \\
J_{v}^{(E)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)}, J_{v \rho \sigma}^{(G)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{v}\right) \varphi_{\rho \sigma}^{(G)}
\end{gathered}
$$

And for four dimensional cases, the mentioned sets of equations read,

$$
\begin{align*}
& (120-3) \Rightarrow \\
& \left\{\begin{array}{l}
\left(\breve{\nabla}_{1}-\frac{i m_{0}^{(E)}}{\hbar} k_{1}\right) \psi_{0}^{1}+\left(\breve{\nabla}_{2}-\frac{i m_{0}^{(E)}}{\hbar} k_{2}\right) \psi_{0}^{2}+\left(\breve{\nabla}_{3}-\frac{i m_{0}^{(E)}}{\hbar} k_{3}\right) \psi_{0}^{3}=\left(\breve{\nabla}_{0}+\frac{i m_{0}^{(E)}}{\hbar} k_{0}\right) \varphi^{(E)} \\
\left(\breve{\nabla}_{1}+\frac{i m_{0}^{(E)}}{\hbar} k_{1}\right) \psi_{23}+\left(\breve{\nabla}_{2}+\frac{i m_{0}^{(E)}}{\hbar} k_{2}\right) \psi_{31}+\left(\breve{\nabla}_{3}+\frac{i m_{0}^{(E)}}{\hbar} k_{3}\right) \psi_{12}=0
\end{array}\right. \tag{134-1}
\end{align*}
$$

$$
(121-3) \Rightarrow
$$

$$
\left\{\begin{array}{l}
\left(\breve{\nabla}_{1}-\frac{i m_{0}^{(G)}}{\hbar} k_{1}\right) \psi_{0 \rho \sigma}^{1}+\left(\breve{\nabla}_{2}-\frac{i m_{0}^{(G)}}{\hbar} k_{2}\right) \psi_{0 \rho \sigma}^{2}+\left(\breve{\nabla}_{3}-\frac{i m_{0}^{(G)}}{\hbar} k_{3}\right) \psi_{0 \rho \sigma}^{3}=\left(\breve{\nabla}_{0}+\frac{i m_{0}^{(G)}}{\hbar} k_{0}\right) \varphi_{\rho \sigma}^{(G)} \tag{134-2}\\
\left(\breve{\nabla}_{1}+\frac{i m_{0}^{(G)}}{\hbar} k_{1}\right) \psi_{23 \rho \sigma}+\left(\breve{\nabla}_{2}+\frac{i m_{0}^{(G)}}{\hbar} k_{2}\right) \psi_{31 \rho \sigma}+\left(\breve{\nabla}_{3}+\frac{i m_{0}^{(G)}}{\hbar} k_{3}\right) \psi_{12 \rho \sigma}=0
\end{array}\right.
$$

where we have (using (130)):

$$
\begin{gathered}
\Psi_{F}=\left[\begin{array}{l}
\psi_{(F) L} \\
\psi_{(F) R}
\end{array}\right]=\left[\begin{array}{c}
\psi_{10} \\
\psi_{20} \\
\psi_{30} \\
0 \\
\psi_{23} \\
\psi_{31} \\
\psi_{12} \\
\varphi^{(E)}
\end{array}\right], \psi_{(F) L}=\left[\begin{array}{l}
\psi_{10} \\
\psi_{20} \\
\psi_{30} \\
0
\end{array}\right], \psi_{(F) R}=\left[\begin{array}{l}
\psi_{23} \\
\psi_{31} \\
\psi_{12} \\
\varphi^{(E)}
\end{array}\right], \\
\Psi_{R}=\left[\begin{array}{l}
\psi_{(R) L} \\
\psi_{(R) R}
\end{array}\right]==\left[\begin{array}{c}
\psi_{10 \rho \sigma} \\
\psi_{20 \rho \sigma} \\
\psi_{30 \rho \sigma} \\
0 \\
\psi_{23 \rho \sigma} \\
\psi_{31 \rho \sigma} \\
\psi_{12 \rho \sigma} \\
\varphi_{\rho \sigma}^{(G)}
\end{array}\right], \psi_{(R) L}=\left[\begin{array}{c}
\psi_{10 \rho \sigma} \\
\psi_{20 \rho \sigma} \\
\psi_{30 \rho \sigma} \\
0
\end{array}\right], \psi_{(R) R}=\left[\begin{array}{c}
\psi_{23 \rho \sigma} \\
\psi_{31 \rho \sigma} \\
\psi_{12 \rho \sigma} \\
\varphi_{\rho \sigma}^{(G)}
\end{array}\right] ; \\
J_{v}^{(E)}=-\left(\breve{\nabla}_{v}+\frac{i m_{0}^{(E)}}{\hbar} k_{v}\right) \varphi^{(E)}, J_{v \rho \sigma}^{(G)}=-\left(\bar{\nabla}_{v}+\frac{i m_{0}^{(G)}}{\hbar} k_{v}\right) \varphi_{\rho \sigma}^{(G)} .
\end{gathered}
$$

Equations (133-1) - (133-2) and (134-1) - (134-2) describe the relationship between the static fields (corresponding solely to the left handed components of fields $\psi_{\mu \nu}, \psi_{\rho o \mu \nu}$) and the charged (or massive in case of gravitational field) particles as the sources of these fields. On this basis, massive and non source-free cases of the relativistic particle field equations (120) - (121) (including equations (133-1) - (133-2) and (134-1) - (134-2)) definitely, violate chiral symmetry of these relativistic (single-particle) wave equations. Moreover, this also expressly means that the sources of all the interacting massive fields should be made solely by the left-handed particles.

4. Conclusion

This article is based on my previous publications (Refs. [1], [2], [3], 1997-1998), and also my thesis work [4] (but in a new generalized and axiomatized framework). As it was mentioned in Sections 1 and 2, the main arguments and consequences presented in this article (particularly in connection with the mathematical structure of the laws governing the fundamental forces of nature) followed from these three basic assumptions:
(1)- "Generalization of the algebraic axiom of nonzero divisors for integer elements (based on the ring theory and the matrix representation of generalized Clifford algebra, and subsequently, constructing a definite algebraic linearization theory);"

This is one of the new and axiomatic concepts presented in this article (see Section 2-1, formula (23)).

(2)- "Discreteness of the relativistic energy-momentum (D-momentum);"

This is a basic quantum mechanical assumption. Quantum theory, particularly, tells us that energy and momentum are only transferred in discrete quantities, i.e., as integer multiples of the quantum of action (Planck constant) h.
(3)- "The general relativistic massive forms of the laws governing the fundamental forces of nature, including the gravitational, electromagnetic and nuclear field equations, in addition to the relativistic (half-integer spin) single-particle wave equations, are derived solely by first quantization (as a postulate) of linearized (and simultaneously parameterized, as necessary algebraic conditions) unique forms of the relativistic energy-momentum relation - which are defined algebraically for a single particle with invariant mass $\boldsymbol{m}_{\mathbf{0}}$)." We also assume that the source-free cases of these fields have "chiral symmetry".

In Section 2, we presented a new axiomatic matrix approach based on the algebraic structure of ring theory (including the integral domains [5]) and the generalized Clifford algebra [40-47], and subsequently, we constructed a linearization theory. In Section 3, on the basis of this (primary) mathematical approach and also the assumption of discreteness of the relativistic energy-momentum (Dmomentum), by linearization (and simultaneous parameterization, as necessary algebraic conditions), followed by first quantization of the special relativistic energy-momentum relation (defined algebraically for a single particle with invariant mass m_{0}), we derived a unique and original set of the general relativistic (single-particle) wave equations directly. These equations were shown to correspond uniquely to certain massive forms of the laws governing the fundamental forces of nature, including the Gravitational, Electromagnetic and Nuclear field equations (which based on our approach were solely formulable in ($1+3$) dimensional space-time), in addition to the (half-integer spin) single-particle wave equations (that were formulated solely in $(1+2)$ dimensional space-time). Each derived relativistic wave equation is in a complex tensor form, that in the matrix representation (i.e. in the geometric algebra formulation, including equations (120) and (121)) it could was written in the form of two coupled symmetric equations - which assumedly have chiral symmetry if the particle wave equation be source-free. In fact, the complex relativistic (single-particle) wave equations so uniquely obtained,
corresponded to certain massive forms of classical fields including the Einstein, Maxwell and YangMills field equations, in addition to the (half-integer spin) single-particle wave equations such as the Dirac equation (where the Dirac spinor field is isomorphically re-presented solely by a tensor field in three dimensional space-time $[29,31]$). We should note that the unique set of general relativistic wave equations derived by our approach doesn't include the Klein-Gordon equation - and so on which describes the spinless elementary particles; thus based on our assumption (3) of Section 1-1, we may conclude that any spinless particle should be a composite particle (this includes the Higgs particle as well, however the Higgs mechanism could be formulated by a composite Higgs particle as well). In particular, in Section 3-5, a unique massive form of the general theory of relativity - with a definite complex torsion - was shown to be obtained solely by first quantization of a special relativistic algebraic matrix relation. Moreover, in Section 3-4-1, it was shown that the "massive" Lagrangian density of the obtained Maxwell and Yang-Mills fields could be also locally gauge invariant - where these fields were formally re-presented on a background space-time with certain (coupled) complex torsion which is generated by the invariant mass of the gauge field carrier particle. Subsequently, in agreement with certain experimental data, the invariant mass of a particle (that actually would be identified as massive photon) was specified (formula (115-4)), which is coupled with background space-time geometry. In Section 3-7, based on the unique mathematical structure of the general relativistic single-particle fields derived (i.e. equations (120) - (121)) and also the assumption of chiral symmetry as a basic discrete symmetry of the source-free cases of these fields, we showed that the universe cannot have more than four space-time dimensions. Furthermore, in Section 3-8, a basic argument for asymmetry of the left and right handed (interacting) particles was presented. In addition, in Section 3-4-2, on the basis of definite mathematical structure of the field equations derived, we also concluded that magnetic monopoles - in contrast with electric monopoles - could not exist in nature.

The results obtained in this article, demonstrate the efficiency of linearization theory as a new mathematical axiomatic approach formulated for certain algebraic structures (presented in Section 2) and a wide range of its possible applications in mathematics and fundamental physics.

Acknowledgment

Special thanks are extended to Prof. and Academician Vitaly L. Ginzburg (Russia), Prof. and Academician Dmitry V. Shirkov (Russia), Prof. Leonid A . Shelepin (Russia), Prof. Vladimir Ya. Fainberg (Russia), Prof. Wolfgang Rindler (USA), Prof. Roman W. Jackiw (USA), Prof. Roger Penrose (UK), Prof. Steven Weinberg (USA), Prof. Ezra T. Newman (USA), Prof. Graham Jameson (UK), Prof. Sergey A. Reshetnjak (Russia), Prof. Sir Michael Atiyah (UK) (who, in particular, kindly encouraged me to continue this work as a new unorthodox (primary) mathematical approach to fundamental physics), and many others for their support and valuable guidance during my studies and research.

References:

[1]- Zahedi, Ramin A., "Linearization Method in the Ring Theory", Russian Academy of Sciences (RAS), Bulletin of the Lebedev Physics Institute, New York, Springer-Verlag, No. 5-6, 1997.
[2]- Zahedi, Ramin A., "On Applied Aspects of the Ring Theory", Russian Academy of Sciences (RAS), Bulletin of the Lebedev Physics Institute, New York, Springer-Verlag, No. 3-4, 1997.
[3]- Zahedi, Ramin A., "On the Connection Between Methods of the Ring Theory and the Group Approach", Russian Academy of Sciences (RAS), Bulletin of the Lebedev Physics Institute, New York, Springer-Verlag, No. 7-8, 1997.
[4]- Zahedi, Ramin A., "The Linearization Method Based on the Ring Theory and its Applications in Physics", Russian Academy of Sciences (RAS) Publs., Russia, 1998;
http://dlib.rsl.ru/viewer/01000049410 .
[5]- Durbin, J. R., "Modern Algebra: An Introduction", (3rd ed.), John Wiley and Sons, USA, 1993; Blyth , T.S.; Robertson, E.F. "Groups, rings and fields: Algebra through practice," Book 3. Cambridge University Press, UK, 1985.
[6]- Dickson, L. E., "History of the Theory of Numbers", Volume II: Diophantine Analysis, Mineola, Dover Publications, NY, USA, 2005.
[7]- Mordell, L. J., "Diophantine Equations", Pure and Applied Mathematics, 30, Academic Press, 1969.
[8]- Ireland, K.; Rosen, M. "A Classical Introduction to Modern Number Theory", 2nd ed., SpringerVerlag, New York, USA, 1998.
[9]- Guidry, M. W. "Gauge Field Theories: An Introduction with Applications", John Wiley \& Sons, USA, 1991.
[10]- Byrnes, J. (ed.) "Computational Noncommutative Algebra and Applications", Springer-Verlag, pp. 363-387, 2004.
[11]- Bourbaki, N., "Algebra", Berlin, New York, Springer-Verlag, 1988.
[12]- McMahon, D., "Quantum Field Theory", Mc Graw Hill (USA), 2008.
[13]- Woan, G., "The Cambridge Handbook of Physics Formulas", Cambridge University Press, 2010.
[14]- Martin, B. R.; Shaw, G., "Particle Physics", Manchester Physics Series (3rd ed.). John Wiley \& Sons, 2008.
[15]- Noyes, H. P.; van den Berg, J. C., "Bit-string Physics: A Finite and Discrete Approach to Natural Philosophy", World Scientific, 2001.
[16]- Morel, John Henry, "The Manual of Quants: Discrete Physics and Quantitative Analysis", Laguna Beach, CA (USA), 2009.
[17]- Noyes, H. P., "Some thoughts on discrete physics and the reconstruction of quantum mechanics", Stanford Linear Accelerator Center (Menlo Park), CA (USA), SLAC-PUB--7145 (C96-06-03.10), 1996.
[18]- Kauffman, L. H., "Knots and Physics", 3rd Edition, World Scientific, 2001.
[19]- Svozil, K., "Randomness \& Undecidability in Physics: Chapter 3: Discrete Physics", World Scientific, 1993.
[20]- Ilachinski, A., "Cellular Automata: A Discrete Universe", World Scientific, 2001.
[21]- Amoroso, R. L.; Kauffman, L. H.; Rowlands, P., "The Physics of Reality: Space, Time, Matter;
Section I: Laws of Forms, Majorana Fermions, and Discrete Physics", Cosmos, World Scientific, 2013.
[22]- Zenil, H.; Penrose, R., "A Computable Universe: Understanding and Exploring Nature as Computation", World Scientific, 2013.
[23]- Penrose, R.; Rindler , W., "Spinors and Space-Time", vol. 1, 2, Cambridge Uni. Press, 1984, 1986.
[24]- Fulling, S.A., "Aspects of Quantum Field Theory in Curved Space-Time", Cambridge University Press, 1996.
[25]- Freedman, D. Z.; van Proeyen, A., 'Supergravity", Cambridge University Press, 2012.
[26]- Lawson, H. B., Jr.; Michelsohn, Marie-L., "Spin Geometry," Princeton University Press, 1989.
[27]- Straumann, N., "General Relativity: With Applications to Astrophysics", Springer-Verlag, 2013.
[28]- Wald, R. M., "General Relativity", University of Chicago Press, 2010.
[29]- Elton, D.; Vassiliev, D., "The Dirac equation without spinors", Operator Theory: Advances and Applications, Springer-Verlag, vol. 110. pp. 133-152, 1999.
[30]- Griesshammer, H.W.; Lehmann, D.; Seeger, M., "Introduction to Supersymmetry and Exact Nonperturbative Results in SUSY-QCD", Lecture Notes in Physics, 481, Springer-Verlag, 1997.
[31]- Illge, R., "Massive Fields of Arbitrary Spin in Curved Space-Times", Commun. Math. Phys., 158, Springer-Verlag, 1993.
[32]- Pilkuhn, H., "Relativistic Quantum Mechanics", Springer-Verlag, p. 156, 2003.
[33]- Weinberg, S., Phys. Rev. 133, B1318, 1964; 134, B882, 1964.
[34]- Joos, H., "Zur Darstellungstheorie der inhomogenen Lorentzgruppe als Grundlage
quantenmechanischer Kinematik", Fortschr. Phys. 10, pp.65-146, 1962.
[35]- Weinberg, S., "The Quantum Theory of Fields", Cambridge University Press, 1995.
[36]- Pal, P. B., "An Introductory Course of Particle Physics", CRC Press, Taylor \& Francis Publications , p. 151, 2014.
[37]- Ticciati, R., "Quantum Field Theory for Mathematicians", Cambridge University Press, 1999.
[38]- Devreese, J.T.; Peeters, F.M., "The Physics of the Two-Dimensional Electron Gas", SpringerVerlag, 2012.
[39]- Andrei, E.Y., "Two-Dimensional Electron Systems: on Helium and other Cryogenic Substrates", Springer-Verlag, 2012.
[40]- Tesser, S. B., "Generalized Clifford algebras and their representations", Micali, A.; Boudet, R.; Helmstetter, J. (eds.), Clifford algebras and their applications in mathematical physics, Springer-Verlog, pp. 133-141, 2011.
[41]- Ramakrishnan, A., "Generalized Clifford Algebra and its applications - A new approach to internal quantum numbers", Proceedings of the Conference on Clifford algebra, its Generalization and Applications, (January 30 - February 1, 1971), Matscience (IMSc), Madras, 20, pp. 87-96, 1971.
[42]- Morris, O., "On a Generalized Clifford Algebra I \& II", Quart. J. Math (Oxford), 18, pp. 7-12, 1967, 19, pp. 289-299, 1968.
[43]- Pappacena, C. J., "Matrix pencils and a generalized Clifford algebra", Linear Algebra and its Applications 313 (1-3), Elsevier, pp. 1-20, 2000.
[44]- Chapman, A.; Kuo, J., "On the generalized Clifford algebra of a monic polynomial", Linear Algebra and its Applications 471, Elsevier, pp. 184-202, 2015.
[45]- Coskun, E.; Kulkarni, R. S.; Mustopa, Y., "On representations of Clifford algebras of Ternary cubic forms", Contemporary Mathematics, Vol. 562, Amer. Math. Soc., pp. 91-99, 2012.
[46]- Ablamowicz, R.; Parra, J.; Lounesto, P., (eds.) "Clifford Algebras with Numeric and Symbolic Computations", Springer-Verlog, 2012.
[47]- Smith, T., "Decomposition of generalized Clifford algebras", Quart. J. Math., Oxford 42, pp.105112, 1991.
[48]- Witten, E., "Three Lectures On Topological Phases Of Matter", arXiv:1510.07698, 2015.
[49]- Sidharth, B.; Altaisky, M.V., "Frontiers of Fundamental Physics 4", Springer-Verlog, 2001.
[50]- Wigner, E., "The Unreasonable Effectiveness of Mathematics in the Natural Sciences", Communications in Pure and Applied Mathematics, vol. 13, no. 1, John Wiley \& Sons, New York, 1960.
[51]- Lucas, J. R., "Gödel's Incompleteness Theorems", Oxford University Press, 1999.
[52]- Kaye, R., "Models of Peano arithmetic", Oxford University Press, 1991.
[53]- Mendelson, E., "Introduction to Mathematical Logic", 4th ed., Chapman \& Hall, 1997.
[54]- Smullyan, R., "Conceptual Roots of Mathematics", Routledge, 1991.
[55]- Oxford English Dictionary, "Law of Nature", Oxford University Press, 2015.
[56]- Swartz, N,. "The Concept of Physical Law", Cambridge Uni. Press, New York, 1985.
[57]- Barrow, J., "Theories of Everything: The Quest for Ultimate Explanations", 2nd Ed. (New Ed.), Oxford University Press, 2007.
[58]- Frampton, P., "Gauge Field Theories", $3^{\text {rd }}$ ed., Wiley-VCH, 2008.
[59]- Forshaw, J. R.; Smith, A.G., "Dynamics and Relativity", Manchester Physics Series, John Wiley \& Sons, 2009.
[60]- Fresneda, R.; Baldiotti, M. C.; Pereira, T. S., "Maxwell Field with Torsion", Brazilian Journal of Physics, vol. 45, No. 3, Springer-Verlog, pp. 353-358, 2015.
[61]- Gasperini, M.,Gen. Relat. Gravit. 16(11), 1031, 1984; (also see : A.M. Nobili, D.M. Lucchesi, M.T. Crosta, M. Shao, S.G. Turyshev, R. Peron, G. Catastini, A. Anselmi, G. Zavattini, Am. J. Phys. 81(7), 527, 2013).
[62]- Hehl, F.W.; Obukhov, Y.N., "How Does the Electromagnetic Field Couple to Gravity, in Particular to Metric, Nonmetricity, Torsion, and Curvature? in Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space", Lecture Notes in Physics, Volume 562, Springer-Verlog, Berlin, pp. 479-504, 2001. [63]- Baldiotti, M. C.; Elias, W. S.; Molina, C.; Pereira, T. S., Phys. Rev. D 90(10), 104025, 2014.
[64]- Deser, S.; Jackiw, R.; Templeton, S., "Three-Dimensional Massive Gauge Theories", Phys. Rev. Lett., No. 48, pp. 975-978, 1982.
[65]- Jackiw, R.; Pi, S.-Y., "Chern-Simons modification of general relativity", Phys.Rev., D68, 2003.
[67]- Hollands, S., "Renormalized Quantum Yang-Mills Fields in Curved Spacetime", Rev. Math. Phys., 20, pp. 1033-1172, 2008.
[68]- Bialinicki, B., "On the Wave Function of the Photon", ACTA PIIYSICA POLONICA A, Vol. 86 , No. 1-2, pp. 97-116, 1994; (see also: Raymer, M. G.; Smith, B. J., "The Maxwell wave function of the photon", Proc. SPIE 5866, pp. 293-297, 2005; Gersten A., "Maxwell Equations-The One-Photon Quantum Equation", Foundations of Physics, 31 (8), pp. 1211-1231, 2001).
[69]- Mohr, P. J., "Solutions of the Maxwell equations and photon wave functions", Annals of Physics 325, pp. 607-663, 2010.
[70]- Jaffe, A.; Witten, E., "Quantum Yang-Mills theory", In: Carlson, J.; Jaffe, A.; Wiles, A. (Eds.), The Millennium Prize Problems, American Mathematical Society, Providence, RI, pp. 129-152, 2006.
[71]- Sushkov, A. O.; Kim, W. J.; Dalvit, D. A. R.; Lamoreaux, S. K., "New Experimental Limits on Non-Newtonian Forces in the Micrometer Range", Physical Review Letters, 107 (17): 171101, 2011.
[72]- Hehl, F. W., "Four lectures in Poincare gauge field theory", In Cosmology and Gravitation, Bergmann, P. G.; de Sabbata, V. (Eds.), Plenum Press, New York, pp. 5-61, 1980.
[73]- Aldrovandi, R.; Pereira, J. G., "An Introduction to Geometrical Physics", World Scientific, Singapore, 1995.
[74]- de Andrade, V. C.; Pereira, J. G., "Gravitational Lorentz Force and the Description of the Gravitational Interaction", Phys. Rev. D 56, pp. 4689-4695,1997.
[75]- Kouwn, S.; Oh, P.; Park, Chan-G., "Massive Photon and Dark Energy", Phys. Rev. D 93, 083012, 2016;
(See also: Chandler, David L., "Seeing the dark: New MIT-led experiment could finally shed light on the mysteries of dark matter", MIT News, 2013;
https://dmtpc.mit.edu/DarkLight/DarkLightProposal_PAC39.pdf, https://news.mit.edu/2013/dark-matter1025).

Appendix A.

As it was mentioned in Sections 3-3 and 3-4, the field strength tensor $X_{\mu \nu \rho,, \zeta}$ in the derived general relativistic single-particle field equations (101-1) - (101-4), for $(1+3)$ and higher space-time dimensions should be presentable by a formula of the type: $X_{\mu \nu \rho ., \zeta}=\hat{A}_{\nu} \hat{B}_{\mu \rho \ldots, \zeta}-\hat{A}_{\mu} \hat{B}_{\nu \rho \ldots, \zeta}$, for some quantities $\hat{A}_{\mu}, \hat{B}_{v \rho ., \zeta}$, where this formula should be also "derivable" from the equations (101-1) - (101-4). As we show below, this condition follows from the conditions that appeared for integer parameters s_{i} in relativistic matrix energy-momentum relations (95) - (96) (formulated for four and five space-time dimensions), i.e. conditions (95-1) and (96-1) - (96-5), and also taking into account the substitution rule (100) as part of the first quantization (as a postulate) procedure and shows that there is one-to-one correspondence between "the parameters s_{i} " and "the components of field strength tensor $X_{\mu \nu \rho ., \zeta}$ and the components of covariant quantities $\varphi_{\rho \ldots, \zeta}^{(X)}$ (which by formula (101-3) defines a covariant current as the source of field $\left.X_{\mu \nu \rho ., \zeta}\right)$ ". We should note that in the same manner, for the higher dimensional cases of matrix energy-momentum relations (obtained in Section 3-1), there are the similar conditions.

First, using the solutions (73) and (84) obtained in Section 2-6 for quadratic equations (68) and (75), the general solutions of conditions (95-1) and (96-1) - (96-5) can be written as follows, respectively:

$$
\begin{aligned}
& s_{1}=u_{3} v_{4}-u_{4} v_{3}, \quad s_{2}=u_{2} v_{4}-u_{4} v_{2}, \\
& s_{3}=u_{1} v_{4}-u_{4} v_{1}, \quad s_{5}=u_{2} v_{1}-u_{1} v_{2}, \\
& s_{6}=u_{1} v_{3}-u_{3} v_{1}, \quad s_{7}=u_{3} v_{2}-u_{2} v_{3}, s_{4}=0, \\
& s_{8}: \text { arbitrary parameter }
\end{aligned}
$$

and

$$
\begin{aligned}
& s_{1}=u_{4} v_{5}-u_{5} v_{4}, \quad s_{2}=u_{3} v_{5}-u_{5} v_{3}, \quad s_{3}=u_{5} v_{2}-u_{2} v_{5}, \\
& s_{4}=0, \quad s_{5}=u_{5} v_{1}-u_{1} v_{5}, \quad s_{6}=0, \quad s_{7}=0, \quad s_{8}=0, \quad s_{9}=0, \\
& s_{10}=u_{2} v_{1}-u_{1} v_{2}, \quad s_{11}=u_{3} v_{1}-u_{1} v_{3}, \quad s_{12}=u_{1} v_{4}-u_{4} v_{1}, \\
& s_{13}=u_{2} v_{3}-u_{3} v_{2}, \quad s_{14}=u_{4} v_{2}-u_{2} v_{4}, \quad s_{15}=u_{4} v_{3}-u_{3} v_{4}, \\
& s_{16}: \text { arbitrary parameter }
\end{aligned}
$$

The substitution rule (100) as part of the first quantization procedure of matrix relations (95) and (96) (along with the obtained field equations (101-1) - (101-4) by first quantization of relations (92) - (96) and so on), and also the general solutions (A-1) and (A-2) imply, respectively:
$s_{1} \mapsto \hat{s}_{1}=X_{10 \rho \ldots, \zeta}=\hat{A}_{0} \hat{B}_{1 \rho \ldots, \zeta}-\hat{A}_{1} \hat{B}_{0 \rho \ldots, \zeta}, \quad s_{2} \mapsto \hat{s}_{2}=X_{20 \rho \ldots, \zeta}=\hat{A}_{0} \hat{B}_{2 \rho_{\ldots, \zeta}}-\hat{A}_{2} \hat{B}_{0 \rho \ldots, \zeta}$,
$s_{3} \mapsto \hat{s}_{3}=X_{30 \rho \ldots, \zeta}=\hat{A}_{0} \hat{B}_{3 \rho \ldots, \zeta}-\hat{A}_{3} \hat{B}_{0 \rho \ldots, \zeta}, \quad s_{4} \mapsto \hat{s}_{4}=0, \quad s_{5} \mapsto \hat{s}_{5}=X_{23 \rho \ldots, \zeta}=\hat{A}_{3} \hat{B}_{2 \rho \ldots, \zeta}-\hat{A}_{2} \hat{B}_{3 \rho \ldots, \zeta}$,
$s_{6} \mapsto \hat{s}_{6}=X_{31 \rho \ldots, \zeta}=\hat{A}_{1} \hat{B}_{3 \rho \ldots, \zeta}-\hat{A}_{3} \hat{B}_{1 \rho \ldots, \zeta}, \quad s_{7} \mapsto \hat{s}_{7}=X_{12 \rho \ldots, \zeta}=\hat{A}_{2} \hat{B}_{1 \rho \ldots, \zeta}-\hat{A}_{1} \hat{B}_{2 \rho \ldots, \zeta}, \quad s_{8} \mapsto \hat{s}_{8}=\varphi_{\rho \ldots, \zeta}^{(X)}$,
where
$s_{1}=A_{0} B_{1}-A_{1} B_{0}, \quad s_{2}=A_{0} B_{2}-A_{2} B_{0}, \quad s_{3}=A_{0} B_{3}-A_{3} B_{0}, \quad s_{4}=0$,
$s_{5}=A_{3} B_{2}-A_{2} B_{3}, \quad s_{6}=A_{1} B_{3}-A_{3} B_{1}, \quad s_{7}=A_{2} B_{1}-A_{1} B_{2}$,
$s_{8}:$ an arbitrary parameter $;$
and
$A_{0}=v_{4}, \quad B_{0}=u_{4}, \quad A_{1}=v_{3}, \quad B_{1}=u_{3}$,
$A_{2}=v_{2}, \quad B_{2}=u_{2}, \quad A_{3}=v_{1}, \quad B_{3}=u_{1}$.
$s_{1} \mapsto \hat{s}_{1}=X_{10 \ldots \ldots, \zeta}=\hat{A}_{0} \hat{B}_{1 \rho \ldots, 5}-\hat{A}_{1} \hat{B}_{0 \rho \ldots, \zeta}, \quad s_{2} \mapsto \hat{s}_{2}=X_{02 \rho \ldots, \zeta}=\hat{A}_{2} \hat{B}_{0 \rho \ldots, \zeta}-\hat{A}_{0} \hat{B}_{2 \rho \ldots, \zeta}$,
$s_{3} \mapsto \hat{s}_{3}=X_{30 \rho \ldots, \zeta}=\hat{A}_{0} \hat{B}_{3 \rho \ldots, \zeta}-\hat{A}_{3} \hat{B}_{0 \ldots \ldots \zeta}, \quad s_{4} \mapsto \hat{s}_{4}=0, \quad s_{5} \mapsto \hat{s}_{5}=X_{04 \rho \ldots, \zeta}=\hat{A}_{4} \hat{B}_{0 \rho \ldots, \zeta}-\hat{A}_{0} \hat{B}_{4 \rho \ldots, \zeta}$,
$s_{6} \mapsto \hat{s}_{6}=0, \quad s_{7} \mapsto \hat{s}_{7}=0, \quad s_{8} \mapsto \hat{s}_{8}=0 \quad s_{9} \mapsto \hat{s}_{9}=0, \quad s_{10} \mapsto \hat{s}_{10}=X_{43 \rho \ldots, 5}=\hat{A}_{3} \hat{B}_{4 \rho \ldots, \zeta}-\hat{A}_{4} \hat{B}_{3 \rho \ldots, \zeta}$,
$s_{11} \mapsto \hat{s}_{11}=X_{42 \rho \ldots, \zeta}=\hat{A}_{2} \hat{B}_{4 \rho \ldots \zeta}-\hat{A}_{4} \hat{B}_{2 \rho \ldots, \zeta}, \quad s_{12} \mapsto \hat{s}_{12}=X_{41 \rho \ldots \zeta}=\hat{A}_{1} \hat{B}_{4 \ldots \ldots \zeta}-\hat{A}_{4} \hat{B}_{1 \rho \ldots,}$,
$s_{13} \mapsto \hat{s}_{13}=X_{32 \rho \ldots \zeta}=\hat{A}_{2} \hat{B}_{3 \rho \ldots \zeta}-\hat{A}_{3} \hat{B}_{2 \rho \ldots \zeta}, \quad s_{14} \mapsto \hat{s}_{14}=X_{31 \rho \ldots \zeta}=\hat{A}_{1} \hat{B}_{3 \rho \ldots, \zeta}-\hat{A}_{3} \hat{B}_{1 \rho \ldots \zeta,}$,
$s_{15} \mapsto \hat{s}_{15}=X_{21 \rho \ldots, \zeta}=\hat{A}_{1} \hat{B}_{2 \rho \ldots, \zeta}-\hat{A}_{2} \hat{B}_{1 \rho \ldots, \zeta}, \quad s_{16} \mapsto \hat{s}_{16}=\varphi_{\rho \ldots, \zeta}^{(X)}$,
where
$s_{1}=A_{0} B_{1}-A_{1} B_{0}, \quad s_{2}=A_{2} B_{0}-A_{0} B_{2}, \quad s_{3}=A_{0} B_{3}-A_{3} B_{0}$,
$s_{4}=0, \quad s_{5}=A_{4} B_{0}-A_{0} B_{4}, \quad s_{6}=0, \quad s_{7}=0, \quad s_{8}=0, \quad s_{9}=0$,
$s_{10}=A_{3} B_{4}-A_{4} B_{3}, \quad s_{11}=A_{2} B_{4}-A_{4} B_{2}, \quad s_{12}=A_{1} B_{4}-A_{4} B_{1}$,
$s_{13}=A_{2} B_{3}-A_{3} B_{2}, \quad s_{14}=A_{1} B_{3}-A_{3} B_{1}, \quad s_{15}=A_{1} B_{2}-A_{2} B_{1}$,
s_{16} : an arbitrary parameter ;
and
$A_{0}=v_{5}, B_{0}=u_{5}, A_{1}=v_{4}, B_{1}=u_{4}, A_{2}=-v_{3}$,
$B_{2}=-u_{3}, A_{3}=-v_{2}, B_{3}=-u_{2}, A_{4}=v_{1}, B_{4}=u_{1}$.
Thus, we should try to derive and specify the quantities \hat{A}_{μ} and $\hat{B}_{v \rho \ldots, \zeta}$ from the field equations (101-1) -(101-4), for various rank (such as $F_{\mu \nu}, H_{\mu \nu \rho}, R_{\mu \nu \rho \sigma}, \ldots$) of the general field strength tensor $X_{\mu \nu \rho ., \zeta}$. As it was mentioned in Section 3-4, the case of rank four of tensor $X_{\mu \nu \rho, .,}$ is compatible with Riemann curvature tensor, and we principally assume that these are equivalent. So, let we start with the Riemann curvature tensor (as a mathematical tensor with a definite structure), we have

$$
\begin{array}{ll}
& R_{\sigma \mu v}^{\rho}=\left(\partial_{\nu} \Gamma_{\mu \sigma}^{\rho}+\Gamma_{v \lambda}^{\rho} \Gamma_{\mu \sigma}^{\lambda}\right)-\left(\partial_{\mu} \Gamma_{v \sigma}^{\rho}+\Gamma_{\mu \lambda}^{\rho} \Gamma_{v \sigma}^{\lambda}\right) \\
\Rightarrow \quad & R_{\rho \sigma \mu v}=\left(\partial_{v} \Gamma_{\rho \mu \sigma}-\Gamma_{v \rho}^{\lambda} \Gamma_{\mu \mu \sigma}\right)-\left(\partial_{\mu} \Gamma_{\rho v \sigma}-\Gamma_{\mu \rho}^{\lambda} \Gamma_{\lambda v \sigma}\right) \tag{A-6}
\end{array}
$$

From (A-5) and (A-6) we get

$$
\begin{equation*}
R_{\rho \sigma \mu \nu}=\left(\hat{A}_{\nu} \hat{B}_{\rho \mu \sigma}-\hat{A}_{\mu} \hat{B}_{\rho \nu \sigma}\right) \tag{A-7}
\end{equation*}
$$

where

$$
\begin{gather*}
\hat{A}_{\mu}=\hat{D}_{\mu}, \quad \hat{B}_{\rho \mu \sigma}=\Gamma_{\rho \mu \sigma} \tag{A-8}\\
R_{\rho \sigma \mu \nu}=\hat{D}_{v} \Gamma_{\rho \mu \sigma}-\hat{D}_{\mu} \Gamma_{\rho v \sigma} \tag{A-9}
\end{gather*}
$$

or

$$
\begin{equation*}
R_{\sigma \mu \nu}^{\rho}=\left(\hat{A}_{\nu} \hat{B}_{\mu \sigma}^{\rho}-\hat{A}_{\mu} \hat{B}_{v \sigma}^{\rho}\right) \tag{A-10}
\end{equation*}
$$

where

$$
\begin{gather*}
\hat{A}_{\mu}=\hat{D}_{\mu}, \hat{B}_{\mu \sigma}^{\rho}=\Gamma_{\mu \sigma}^{\rho} . \tag{A-11}\\
R_{\sigma \mu \nu}^{\rho}=\hat{D}_{v} \Gamma_{\mu \sigma}^{\rho}-\hat{D}_{\mu} \Gamma_{v \sigma}^{\rho} \tag{A-12}
\end{gather*}
$$

and \hat{D}_{μ} is a differential operator \hat{D}_{μ} given by

$$
\begin{align*}
& \hat{D}_{\mu} A^{\alpha_{1}}{ }_{\alpha_{2} \alpha_{3} \ldots \alpha_{n}}=\partial_{\mu} A^{\alpha_{1}}{ }_{\alpha_{2} \alpha_{3} \ldots \alpha_{n}}+\Gamma_{\mu \lambda}^{\alpha_{1}} A_{\alpha_{2} \alpha_{3} \ldots \alpha_{n}}^{\lambda} \tag{A-13}\\
& \hat{D}_{\mu} A_{\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n}}=\partial_{\mu} A_{\alpha_{1} \alpha_{2} \alpha_{3} \ldots \alpha_{n}}-\Gamma_{\mu \alpha_{1}}^{\lambda} A_{\lambda \alpha_{2} \alpha_{3} \ldots \alpha_{n}} \tag{A-14}
\end{align*}
$$

As the next step, let we consider a rank two field strength tensor $F_{\mu \nu}$ (as a particular case of general field strength tensor $X_{\mu \nu \rho ., 5}$, with a minimum rank). Hence from the field equations (101-1) - (101-4) we can obtain

$$
\begin{equation*}
F_{\mu \nu}=\breve{\nabla}_{v} A_{\mu}-\breve{\nabla}_{\mu} A_{v}, \tag{A-15}
\end{equation*}
$$

Where we can also re-write formula (A-15) as follows,

$$
\begin{equation*}
F_{\mu \nu}=\hat{A}_{\nu} \hat{B}_{\mu}-\hat{A}_{\mu} \hat{B}_{v} \tag{A-16}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{A}_{\mu}=\breve{\nabla}_{\mu}, \quad \hat{B}_{\mu}=A_{\mu} \tag{A-17}
\end{equation*}
$$

For a rank three field strength tensor $H_{\mu \nu \rho}$ (as a special case of general field strength tensor $X_{\mu \nu \rho,, \zeta}$) and higher rank field strength tensors, from the field equations (101-1) - (101-4) the formulas similar to (A-7) and (A-15) (which are determinable for rank two and rank four field strength tensors $F_{\mu \nu}, R_{\mu \nu \rho \sigma}$) could not be obtained. Therefore, we may conclude that $F_{\mu \nu}, R_{\mu \nu \rho \sigma}$ are the only field strength tensors which are compatible with formula (100) and the general field equations (101-1) - (101-4).

Appendix B.

In this Appendix we write (explicitly) the special relativistic cases of contravariant real matrices α_{μ} and $\tilde{\alpha}_{\mu}$ - that are hermitian and generate Clifford algebras $\mathrm{C} \ell_{1,1}, \mathrm{C} \ell_{1,2}, \mathrm{C} \ell_{1,3}, \mathrm{C} \ell_{1,4}$ and so on - indicated in the general covariant single-particle wave equations (120) - (121). Note that for special relativistic cases of these equations, matrices $\tilde{\alpha}_{\mu}$ are simply given by relation $m_{0} \tilde{\alpha}^{\mu} k_{\mu}=m_{0} I$, where I is the identity matrix. So, below only the matrices α_{μ} are written (where the signature is ($+--\ldots-$), see the sign conventions (97)):

Hence for (1+1) dimensional space-time we have

$$
\alpha^{0}=\left[\begin{array}{cc}
1 & 0 \tag{B-1}\\
0 & -1
\end{array}\right], \quad \alpha^{1}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

For (1+2) dimensional space-time we get

$$
\begin{align*}
& \alpha^{0}=\left[\begin{array}{cc}
\sigma^{0}+\sigma^{1} & 0 \\
0 & -\left(\sigma^{0}+\sigma^{1}\right)
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right], \alpha^{1}=\left[\begin{array}{cc}
0 & \sigma^{2}-\sigma^{3} \\
-\sigma^{2}+\sigma^{3} & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right], \\
& \alpha^{2}=\left[\begin{array}{cc}
0 & -\sigma^{1}+\sigma^{0} \\
\sigma^{1}-\sigma^{0} & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] . \tag{B-2}
\end{align*}
$$

Subsequently, for $(1+3)$ dimensional cases of equations (120) - (121) (corresponding to particle field equations (105-1) - (105-4)) we have, respectively:

$$
\begin{align*}
& \alpha^{0}=\left[\begin{array}{cc}
\gamma^{0}+\gamma^{1} & 0 \\
0 & -\left(\gamma^{0}+\gamma^{1}\right)
\end{array}\right]=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right], \\
& \alpha^{1}=\left[\begin{array}{cc}
0 & \gamma^{2}-\gamma^{3} \\
\gamma^{2}-\gamma^{3} & 0
\end{array}\right]=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& \alpha^{2}=\left[\begin{array}{cc}
0 & \gamma^{4}+\gamma^{5} \\
\gamma^{4}+\gamma^{5} & 0
\end{array}\right]=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \\
& \alpha^{3}=\left[\begin{array}{cc}
0 & \gamma^{6}-\gamma^{7} \\
\gamma^{6}-\gamma^{7} & 0
\end{array}\right]=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] . \tag{B-3}
\end{align*}
$$

In addition, matrices α^{μ} for five dimensional cases of equations (120) - (121) (corresponding to equations (106-1) - (106-4)) are given by, respectively

$$
\alpha_{0}=\left[\begin{array}{cccccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right],
$$

$$
\alpha_{1}=\left[\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

$$
\alpha_{2}=\left[\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

$$
\alpha_{4}=\left[\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \tag{B-4}\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

[^0]: * Email: zahedi@let.hokudai.ac.jp, zahedi.r@gmail.com.

 1. http://eprints.lib.hokudai.ac.jp/dspace/handle/2115/60272/, https://inspirehep.net/record/1387680/, https://cds.cern.ch/record/1980381/, https://archive.org/details/R.A.Zahedi1Forces.of.naturesLawsApr.2015, https://ui.adsabs.harvard.edu/\#abs/2015arXiv150101373Z, https://indico.cern.ch/event/344173/contribution/1740565/attachments/1140145/1726912/R.A.Zahedi--Forces.of.Nature.Laws-Jan.2015-signed.pdf, https://indico.cern.ch/event/344173/contribution/1740565/attachments/1140145/1646101/R.a.Zahedi--OnDiscretePhysics-Jan.2015-signed.pdf., (up-to-date version).
 Copyright: CC Attribution-NonCommercial-NoDerivatives 4.0 International License. License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/
[^1]: 1. Besides, we may argue that our presented axiomatic matrix approach (for a direct derivation and formulating the fundamental laws of nature uniquely) is not subject to the Gödel's incompleteness theorems [51]. As in our axiomatic approach, firstly, we've basically changed (i.e. replaced and generalized) one of the main Peano axioms (when these axioms algebraically are augmented with the operations of addition and multiplication [52,53,54]) for integers, which is the algebraic axiom of nonzero divisors.
 Secondly, based on our approach, one of the axiomatic properties of integers (i.e. axiom of nonzero divisors) could be accomplished solely by the arbitrary square matrices (with integer components). This axiomatic reformulation of algebraic properties of integers thoroughly has been presented in Section 2 of this article.
[^2]: 1. This is a primary quantum mechanical assumption. However, for general and expanded cases of the discreteness, and concerning discrete physics, it is noteworthy that in many modern and standard quantum theories (Lorentz invariance), it is assumed that certain physical quantities are discrete. These theories include the lattice field gauge theories such as lattice QCD, quantum gravity theories, etc. [15-22]. However, the discrete axiomatic approach presented in this article directly yields to parametric linear transformations corresponding directly to the Lorentz transformations.
[^3]: 1. We will show in Section 3-7, that the field equations (101-1) - (101-4) in five dimensional space-time, which correspond to the matrix relations (96), and also for the higher space-time dimensions, are incompatible with some certain supposed essential symmetry - where we'll conclude that the universe cannot have more than four space-time dimensions.
[^4]: 1. We will show in Section 3-7, that the field equations (106-1) - (106-4), corresponding to the matrix relations (96) (i.e. for five space-time dimensions), as well as for higher space-time dimensions, are incompatible with some certain symmetry and are not definable, where we'll also conclude that the universe cannot have more than four space-time dimensions.
[^5]: 1. The covariant matrices β_{μ}^{\prime} has been written instead of $\beta^{\prime \mu}$.
