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On the Logical Origin of the Laws Governing the Fundamental Forces  
of Nature: A New Axiomatic Matrix Approach 

Ramin Zahedi 
* 

Logic and Philosophy of Science Research Group, Hokkaido University, Japan         

                                                                                                          28 Jan 2015                 

 

The main idea of this article is based on my previous publications (Refs. [1], [2], [3], [4], 1997-1998). In this article 

we present a new axiomatic matrix approach (and subsequently constructing a linearization theory) based on the ring 

theory and the generalized Clifford algebra. On the basis of this (primary) mathematical approach and also the 

assumption of discreteness of the relativistic energy-momentum (D-momentum), by linearization (and simultaneous 

parameterization, as necessary algebraic conditions), followed by "first" quantization of the relativistic energy-

momentum relation, a unique and original set of the general relativistic single-particle wave equations are derived 

directly. These equations are shown to correspond to certain massive forms of the laws governing the fundamental 

forces of nature, including the Gravitational, Electromagnetic and Nuclear field equations (which based on this 

approach are solely formulable in (1+3) dimensional space-time), in addition to the (half-integer spin) single-particle 

wave equations such as the Dirac equation (formulated solely in (1+2) dimensional space-time). Each derived single-

particle field equation is in a complex tensor form, where in matrix representation (i.e. in the geometric algebra 

formulation) it could be written in the form of two coupled symmetric equations – which assumedly have chiral 

symmetry if the particle wave equation be source-free. We show that the massless cases of the complex relativistic 

wave equations so obtained correspond to the classical fields including the Einstein, Maxwell and Yang-Mills field 

equations. In particular, a unique massive form of the general theory of relativity – with a definite complex torsion – is 

shown to be obtained solely by first quantization of a special relativistic algebraic matrix relation. Moreover, it is 

shown that the massive Lagrangian density of the obtained Maxwell and Yang-Mills fields could be also locally gauge 

invariant – where these fields are formally re-presented on a background space-time with certain (coupled) complex 

torsion which is generated by the invariant mass of the gauge field carrier particle. Subsequently, in agreement with 

certain experimental data, the invariant mass of a particle (that would be identified as massive photon) has been 

specified (m0 ≈ 1.4070696 ×10
-41

 kg), which is coupled with background space-time geometry. Assuming our 

approach is the unique and principal way for deriving (all) the laws governing the fundamental forces of nature, then 

based on the unique structure of general relativistic single-particle wave equations derived and also the assumption of 

chiral symmetry as a basic discrete symmetry of the source-free cases of these fields, it is shown that the universe 

cannot have more than four space-time dimensions. In addition, a mathematical argument for the asymmetry of left 

and right handed (interacting) particles is presented. Furthermore, on the basis of definite mathematical structure of the 

field equations derived, we also conclude that magnetic monopoles (in contrast with electric monopoles) could not 

exist in nature.
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1.  Introduction and Summary                                       

Why do the fundamental forces acting on the Universe (i.e., the forces that appear to cause all the 
movements and interactions) manifest in the way, shape, and form they do? This is one of the 
greatest ontological questions that science can investigate. In this article, we are going to consider 
this question by a mathematical axiomatic (matrix) approach. 
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Eugene Wigner's foundational paper, ―On the Unreasonable Effectiveness of Mathematics in the 

Natural Sciences‖, famously observed that purely mathematical structures and relations often lead to 

deep physical insights, in turn serving as the basis of highly successful physical theories [50]. 

Referring to the Oxford English dictionary,  a law of physics (or a scientific law) is: "A theoretical 

principle deduced from particular facts, applicable to a defined group or class of phenomena, and 

expressible by the statement that a particular phenomenon always occurs if certain conditions be 

present [55]. In actual fact, laws of physics (including the fundamental laws) are typically 

conclusions based on repeated scientific experiments and observations over many years and which 

have become accepted universally within the scientific communities, and one of the most 

fundamental and operational aims of the human race has been to acknowledge (as truths) and 

formulate a summary description of the natural world in the form of such laws [56, 57]. In this 

article, based on our axiomatic approach, we show that one of the most fundamental logical blocks of 

the universe's structure are certain "matrices", which their components are the quantized (discrete) 

basic physical quantities (i.e. are "integer" multiples of the quantum of action "h"). Subsequently, we 

provide a unique logical foundation to the most acknowledged fundamental (empirical) laws of 

nature, i.e. the laws governing the fundamental forces of nature. 

This article is based on my previous publications (Refs. [1], [2], [3], 1997-1998), and also my thesis 

work [4] (but in a new generalized and axiomatized framework). We present a new axiomatic matrix 

approach based on the algebraic structure of ring theory (including the integral domains [5]) and the 

generalized Clifford algebra [40 - 47], and subsequently, we construct a linearization theory. On the 

basis of this (primary) mathematical approach and the assumption of discreteness of the relativistic 

energy-momentum (D-momentum), by linearization (and simultaneous parameterization, as 

necessary algebraic conditions), followed by first quantization of the special relativistic energy-

momentum relation (defined algebraically for a single particle with invariant mass m0), we 

derive a unique and original set of the general relativistic (single-particle) wave equations directly. 

These equations are shown to correspond uniquely to certain massive forms of the laws governing 

the fundamental forces of nature, including the Gravitational, Electromagnetic and Nuclear field 

equations (which are solely formulable in (1+3) dimensional space-time), in addition to the (half-

integer spin) single-particle wave equations (formulated solely in (1+2) dimensional space-time).  

   Each derived relativistic wave equation is in a complex tensor form, that in the matrix 

representation (i.e. in the geometric algebra formulation) it could be written in the form of two 

coupled symmetric equations – which assumedly have chiral symmetry if the particle wave equation 

be source-free. In fact, the complex relativistic (single-particle) wave equations so uniquely obtained, 

correspond to certain massive form of classical fields including the Einstein, Maxwell and Yang-

Mills field equations, in addition to the (half-integer spin) single-particle wave equations such as the 

Dirac equation (where the Dirac spinor field is isomorphically re-presented solely by a tensor field in 

three dimensional space-time [29, 31]). 
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In particular, a unique massive form of the general theory of relativity – with a definite complex 

torsion – is shown to be obtained solely by first quantization of a special relativistic algebraic matrix 

relation. Moreover, it is shown that the massive Lagrangian density of the obtained Maxwell and 

Yang-Mills fields could be also locally gauge invariant – where these fields are formally re-presented 

on a background space-time with certain (coupled) complex torsion, which is generated by the 

invariant mass of the gauge field carrier particle. Subsequently, in agreement with certain 

experimental data, the invariant mass of a particle (that actually would be identified as massive 

photon) has been specified (m0 ≈ 1.4070696 ×10-41 kg), which is coupled with background space-

time geometry (see Section 3-4-1). 

Assuming our approach is the unique and principal way for deriving (all) the laws governing the 

fundamental forces of nature, then based on the unique structure of general relativistic single-particle 

fields derived and also the assumption of chiral symmetry as a basic discrete symmetry of the source-

free cases of these fields, it has been shown that the universe cannot have more than four space-time 

dimensions. In addition, on the basis of definite structure of the field equations derived, we also 

conclude that magnetic monopoles - in contrast with electric monopoles - could not exist in nature. 

Furthermore, a basic argument for the asymmetry of left and right handed (interacting) particles is 

presented.  

 

1-1. The main arguments and consequences presented in this article (particularly in connection 

with the logical origin of the laws governing the fundamental forces) follow from these three 

basic and primary assumptions:  

 

(1)- “Generalization of the algebraic axiom of nonzero divisors for integer elements (based on the 

ring theory and the matrix representation of generalized Clifford algebra, and subsequently, 

constructing a definite algebraic linearization theory);” 

   This is one of the new and principal concepts presented in this article (see Section 2-1, formula (23)). 

 
(2)- “Discreteness of the relativistic energy-momentum (D-momentum);”                              

    This is a basic and original quantum mechanical assumption. Quantum theory, particularly, tells us that 

energy and momentum are only transferred in discrete quantities, i.e., as integer multiples of the quantum 

of action (Planck constant) h.  

 

(3)- “The general relativistic massive forms of the laws governing the fundamental forces of nature, 

including the gravitational, electromagnetic and nuclear field equations, in addition to the 

relativistic (half-integer spin) single-particle wave equations, are derived solely by first quantization 

(as a postulate) of linearized (and simultaneously parameterized, as necessary algebraic conditions) 

unique forms of the relativistic energy-momentum relation –  which are defined algebraically for a 

single particle with invariant mass m0).”        

    We also assume that the source-free cases of these fields have ―chiral symmetry‖. 
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Following is a summary description of some notable consequences of the axiomatic matrix 

approach presented in this article (note that the geometrized units, metric signature (+ − ... −) and 

the sign conventions (97) will be used): 

 

 1-2. Two categories of the general relativistic (single-particle) wave equations are derived directly by 

linearization (and simultaneous parameterization, as necessary algebraic conditions), followed by first 

quantization (as a postulate) of the special relativistic energy-momentum relation (defined for a particle 

with rest mass m0), as follows: 

 

 

                      

,







 RTRTRTRRR 


             (1-1) 
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where 

  is the affine connection, T  is a definite complex torsion tensor given by 
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2
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G
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)(

0                       (3)    

 

D is the number of dimensions; and the sources of the fields R  and F  are defined by 
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0)()(
)(

0)( )(,)( E
E

EG
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G k
im
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im
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                     (4) 

 

 

Tensor Z is also given by:             )(
2

)(

0
 kgkg

im
Z

E




                                              (5) 
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where (based on the assumption (3) in Section 1-1) these field equations are formulable solely in D ≤ 4 

dimensional space-time. Moreover, in the above equations 
)(

0

Gm  and )(

0

Em are the invariant masses of the 

(free and interacting) fields carrier single-particles, 


i  is the covariant kinetic energy-momentum 

operator (generally defined on a background space-time with the complex torsion T  generated by the 

invariant mass (of the field carrier particle) and given by formula (3)), )0,...,0,( 00gck 
 is the 

general relativistic velocity of a static observer (that is a time-like contravariant vector), and 
)(GJ  and 

)(EJ  are the sources for these fields.  

 
As an additional principal requirement, we show that we may also assume that the Lagrangian 
density for the obtained general relativistic ―massive‖ single-particle wave equations (2-1) – (2-3), be 

locally gauge invariant as well – where these fields be still massive, and 


 be equivalent to the 

general relativistic (with torsion (3), which is compatible with the local gauge invariance condition 
[9, 58, 60 - 63]) form of the (local) gauge-covariant derivative [67]. On this basis, in (1+3) 
dimensional space-time, equations (2-1) – (2-3) not only would describe a certain massive form of 
Maxwell‘s (single-photon) field based on the Abelian gauge group )1(U ,  but also would present a 
certain massive form of Yang–Mills (single-particle) fields based on the (non-Abelian) gauge groups 

)(NSU . For the latter case, the field strength tensor, vector gauge potential and the current in 

equations (2-1) - (2-3), are also written in component notation as: 
aF  , 

aA  , 
)(EaJ  , where the Latin 

index  a = 1, 2, 3, …, N2 -1, and  N2 -1 is the number of linearly independent generators of the group 
)(NSU  (as a real manifold) [58]. Hence, by requiring the local gauge invariance for general 

relativistic massive particle field equations (2-1) – (2-3), in Section 3-4, we show that the massive 
Lagrangian density specified for these fields could be locally gauge invariant – if these fields be 
formally re-presented on a background space-time with certain complex torsion which is generated 
by the invariant mass of the gauge field carrier particle. Subsequently, in agreement with certain 
experimental data, the invariant mass of a particle (that would be identified as massive photon) has 
been specified ( )(

0

Em ≈ 1.4070696×10
-41

 kg), which is coupled with background space-time geometry. 

    It is noteworthy to recall that gauge symmetries can be viewed as analogues of the principle of 
general covariance of general relativity in which the coordinate system can be chosen freely under 
arbitrary diffeomorphism of space-time. Both gauge invariance and diffeomorphism invariance 
reflect a redundancy in the description of the system. In point of fact, a global symmetry is just a 
local symmetry whose group's parameters are fixed in space-time. The requirement of local 
symmetry, the cornerstone of gauge theories, is a stricter constraint [58]. However, our approach 
could be also considered in the framework of the theories that lie beyond the Standard Model [71], as 
it also includes new consequences such as a certain formulation for the gravitational particle field. 

In addition, we should note that the field equations (2-1) – (2-3) would correspond to two different 
particle fields: they describe the spin-1/2 single-particle fields formulated solely in (1+2) dimensional 

space-time – where we necessary have 00220  FF
 
[29, 31];  these equations also describe the spin-1 

single-particle fields formulated solely in (1+3) dimensional space-time [68, 69]. In the precisely same 
manner, the field equations (1-1) – (1-2) describe the spin-3/2 single-particle field (gravitational) 

formulated solely in (1+2) dimensional space-time – where R
 
is the Riemann curvature tensor, and 

we necessary have 00220   RR . The field equations (1-1) – (1-2) also describe the spin-2 single-

particle (gravitational) field formulated solely in (1+3) dimensional space-time. However, it should be 
emphasize here that for single-particle field equations (1-1) – (2-3), the (quantum mechanical) solutions 
are taken to be complex [29, 30, 31, 68, 69].  

   In particular, for massless cases (i.e. 0)(

0 Gm , 0)(

0 Em ), the field equations (1-1) – (2-3) turn into the 

classical fields including the Einstein (with a cosmological constant), Maxwell and Yang-Mills field 
equations, and only these fields. In the context of relativistic quantum mechanics, equations (1-1) – (2-3) 

are subject to a process of 
nd2 quantization anyhow; then these equations would describe the bosonic 

fields in (1+3) dimensional space-time, and the fermionic fields in (1+2) dimensional space-time. 
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As it was mentioned above, in this article the geometrized units, metric signature (+ − ... −) and the sign 

conventions (97) will be used. So particularly, we assume the speed of light 1c . However, for clarity 

and emphasis, in some essential relativistic relations ""c  as a constant be restored and indicated formally. 

1-3. The field equations (1-1) – (2-3) that are obtained straightforwardly by first quantization of 

linearized (and  simultaneously parameterized, as necessary algebraic conditions) unique forms of the 

relativistic energy-momentum (matrix) relation, i.e. formulas (92) – (96), could be also written in matrix 

representation, (or in the geometric algebra formulation, as we show in Section 3-4), as follows: 

 

                                                         
,0)~( 0  Rkmi 




 


                                              (1-A)
 

                                                         
0)~( 0  Fkmi 




 


                                                (2-A)      

      

where
                                             

   ~,                                              (6) 

 

,R E  are column matrices, 
 and 

   are contravariant square matrices (corresponding to the 

generalized Clifford algebra, see Sections 2-4, 3-3, 3-6, 3-7 and Appendix B); these matrices in (1+2) and 

(1+3) dimensional space-time given by, respectively                                    
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In relations (7) it is assumed that 0,0 20022002  FFRR  ; in Section 3-7 we show that a 

certain symmetric assumption yields these conditions. 
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For (1+3) dimensional space-time we have: 
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F

F

F

F

F

R

R

R

R

R

R
































































































          (8) 

 

 

where 

 

.

0000

0000

0001

0010

,

0100

1000

0000

0000

,

0000

0001

0000

0100

,

0010

0000

1000

0000

.

0000

0010

0100

0000

,

0001

0000

0000

1000

,

1000

0100

0000

0000

,

0000

0000

0010

0001

7654

3210

















 









































 
















































































































     (8-1) 

 

1-4. In Section 3, we show that from the gravitational field equations (1-1) – (1-2), or their equivalent 

matrix formulation, i.e. equation (1-A) (for 0)(

0 Gm ), the Einstein field equations (including the 

cosmological constant  , which emerges naturally via derivation process) are derived straightforwardly 

as follows: 

                                                           gBTgTR  )(8                                                (9) 

where )(8)(8)(

  TgTgBTTJ G  , T is the stress-energy tensor( 
TT  ), 

  is a cosmological constant, and 
2

1,1,0B  for two, three and four dimensional space-time, respectively.
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1-5. Based on the unique structure of general relativistic single-particle fields derived and also the 

assumption of chiral symmetry as a basic discrete symmetry of the source-free cases of these fields, we 

conclude (in Section 3-7) that the universe cannot have more than (1+3) space-time dimensions. In 

addition, a basic argument for the asymmetry of left and right handed (interacting) particles is presented 

(in Section 3-8). Furthermore, on this basis, we may conclude that the miscellaneous and various 

relativistic wave equations (which has been written on the basis of experiments and so on) such as the 

Majorana, Breit, Proca, Rarita–Schwinger, Bargmann–Wigner equations, etc. [12 – 14], should be 

modified and/or replaced by the uniquely derived general relativistic (single-particle) wave equations (1-

A) – (2-A) (or their equivalent formulations, i.e. equations (1-1) – (2-3)). 

 

1-6. According to the definite mathematical structure of derived field equations (2-1) – (2-3) that 

correspond to the Maxwell’s equations (and also the Yang-Mills equations as the generalization of these 

equations, see Sections 3-4 and 3-4-1), in Section 3-4-2 we conclude that magnetic monopoles (in 

contrast with electric monopoles) could not exist in nature. 

 
Let we emphasize again that the above noted results are direct outcomes of a new primary and 

axiomatic mathematical approach
1
. In this article we try generally to present the main schemes of 

applications of this new axiomatic approach in mathematics and particularly in fundamental 

physics. Hence, in Section 2, we present and develop this new mathematical approach, where we 

formulate a theory of linearization based on the ring theory (including the integral domains) and the 

generalized Clifford algebra. In Section 3, we show one of the main applications of this (primary) 

mathematical approach in the foundations of physics, where particularly in connection with the laws 

governing the fundamental forces and their logical origin, we‘ll focus on the direct ―mathematical 

derivation‖ of a definite set of the general relativistic (single-particle) wave equations which uniquely 

represent these laws as the most fundamental laws of nature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

--------------------------------------------------------------------------------------------------------- 
1.

  Besides, we may argue that our presented axiomatic matrix approach (for a direct derivation and formulating the fundamental laws of nature 

uniquely) is not subject to the Gödel's incompleteness theorems [51]. As in our axiomatic approach, firstly, we've basically changed (i.e. replaced 

and generalized) one of the main Peano axioms (when these axioms algebraically are augmented with the operations of addition and 

multiplication [52, 53, 54]) for integers, which is the algebraic axiom of nonzero divisors.              

Secondly, based on our approach, one of the axiomatic properties of integers (i.e. axiom of nonzero divisors) could be accomplished solely by the 

arbitrary square matrices (with integer components). This axiomatic reformulation of algebraic properties of integers thoroughly has been 

presented in Section 2 of this article.
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2. The Theory of Linearization: A New Axiomatic Matrix Approach 

“Based on the Ring Theory (Including the Integral Domains) and the Matrix Representation            

 of Generalized Clifford Algebra” 

 

Mathematical models of physical processes include certain classes of mathematical objects and relations 

between these objects. The models of this type, which are most commonly used, are groups, rings, vector 

spaces, and linear algebras. A group is a set G with a single operation (multiplication) cba  ;

Gcba ,,  which obeys the known conditions [5]. A ring is a set of elements R, where two binary 

operations, namely, addition and multiplication, are defined. 

With respect to addition this set is a group, and multiplication is connected with addition by the 

distributivity laws ),()()( cabacba  )()()( acabacb  ; Rcba ,, . The rings 

reflect the structural properties of the set R. As distinct from the group models, those connected with rings 

are not frequently applied, although in physics various algebras of matrices, algebras of hypercomplex 

numbers, Grassman and Clifford algebras are widely used. This is due to the intricacy of finding a 

connection between the binary relations of addition and multiplication and the element of the rings [5, 2].  

This article is devoted to the development of a rather simple approach of establishing such a connection 

and an analysis of concrete problems on this basis. 

I find out that if we axiomatically generalize the set of single-integer elements   to the set of nn  

square matrix elements (as axioms‘ elements with single-integer components, which we show it by nn ), 

fruitful new relations and results hold. Thus in this Section, we present a matrix generalization of the 

algebraic axiom of nonzero divisors for the ring of integers. Then, we axiomatically formulate a matrix 

model for constructing a linearization theory over this ring. On this basis, we introduce the necessary and 

sufficient conditions for transforming the homogeneous non-linear equations (of any order) to their 

equivalent systems of linear equations (or matrix equations). These matrix equations definitely 

correspond to the matrix representation of the generalized Clifford algebras. In Section 2-4, quadratic 

forms (and relevant equations) are studied and analyzed on this basis explicitly. 

 

2-1. The algebraic axioms of the domain of integers   with binary operations ),,(   usually are 

defined as follows [5]:             

- ,,...,, 321 aaa                      

-  Closure: 
                                                

, lk aa     lk aa                                                  (10)
                                                                  

                                                 

-  Associativity:               ,)()( plkplk aaaaaa    plkplk aaaaaa  )()(              (11) 

-  Commutativity:                                ,kllk aaaa    kllk aaaa                                       (12) 

-  Existence of an identity element:
             

,0 kk aa    kk aa 1                                                 (13)
 

-  Existence of inverse element (for addition):
    

0)(  kk aa                                                         (14)
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-  Distributivity:  ),()()( pklkplk aaaaaaa   )()()( plpkplk aaaaaaa      (15) 

-  No zero divisors:                             0)00(  lklk aaaa                                             (16) 

 

It is easy to show that the axiom (16), equivalently, could be also presented as follows
  

 

                                                             0)0,0(  kllk amma                                           (16-1)          
 

In axioms (10) – (15), we may simply suppose that the single elements ka  are 11  matrices with 

integer components: 
 

),(),...(][),(][),(][ 11311321121111 Zaaaaaa    then equivalently, the 

axioms (10) – (15) could also be written by square matrices (with integer components) as follows: 

- ][
ijkk mM   ,  

 


ijkm ,  
 

njin ,...,3,2,1,:   ,   ,,...,, 321 nnMMM          

-  Closure: 
                                       

,nnlk MM     nnlk MM                                           (17)
                                                                  

                                                 

-  Associativity:   ,)()( plkplk MMMMMM   plkplk MMMMMM  )()(    (18) 

-  Commutativity (for addition):                 kllk MMMM                                                      (19-1) 

-  Property of the transpose for matrix multiplication:                                                        

                                                                   
T

k

T

l

T

lk MMMM  )(                                              (19-2) 

where 
T

kM is the transpose of  matrix kM  .                       
 

-  Existence of an identity element:
      

,0 kk MM     knnk MIM                                           (20)                                  
 

-  Existence of the inverse element (for addition):  

                                                                         
0)(  kk MM                                                         (21)

 

-  Distributivity:                          ),()()( pklkplk MMMMMMM                        

                                                   
);()()( plpkplk MMMMMMM                                (22) 

 

Note that from the axioms (10) – (15), we can obtain the matrix-formulation axioms (17) – (22) and 

vice versa. 
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In this article, we principally take into account the set of matrix-formulation axioms (17) – (22) for 

integers, and present the following new additional axiom (formulated ―solely‖ via square matrices) as 

a new algebraic property of the ring (or domain) of integers – which is a generalized matrix- 

formulation of axiom (16-1), and be replaced by (16-1): 

 

Axiom 2-1. “ Let ),...,,,( 321 sbbbbF  be a homogeneous polynomial of degree r ≥ 2 over the 

integer elements ),( 11 Zbp  we have the following axiom:  

,, nnMA 
 

      0),...,,,()]),...,,,(()0,0[( 321321  sns

r bbbbFIbbbbFAMMA                   (23) 

 

where ][ ijaA  , ,
1





s

p

pijpij bHa   and ),( 11 Zbp   :,sn ,,...,3,2,1, nji 
 

,,...,3,2,1 sp     

ijpH  are coefficients, )0( MM is a parametric arbitrary matrix, and nI is the identity 

matrix.” 

 

In fact, axiom (16) (or its equivalent, i.e. axiom (16-1)) can be obtained from Axiom 2-1, but definitely 

not vice versa. Only for special case 1n , the set of axioms (17) – (23) (formulated by square 

matrices) become equivalent to the set of ordinary axioms (10) – (16-1) for integer elements. Axiom 2-1 

is formulated ―solely‖ by square matrices (with integer components), and definitely is a new axiom for 

integers. In this Section and Section 3 we will demonstrate its main and direct consequences and fruitful 

applications. 

 

Remark 2-1.  Note that in Axiom 2-1, according to the arbitrariness of all the parametric components of  

nn  matrix M  ( 0M ), without loss of generality, we may replace matrix M
 
with a 1n  matrix 

1nM  in equations 0AM  (with the same condition ,0M
 
but only with ―n‖ number of arbitrary 

parametric components).   

Remark 2-2.  Algebraic axiomatic relation (23) presents a new fundamental matrix structure and 
framework for constructing a basic linearization theory in the ring theory (including the integral 

domains), which will be described below. Also note that the elements ija  are the ―linear‖  homogeneous 

forms of integer elements pqb . Furthermore, (using the definition ][ ijaA  , 



s

p

pijpij bHa
1

), we may 

simply represent matrix A  by this linear formula: 



s

p

pp EbA
1

, where pE  are square matrices; then the 

relation ns

r IbbbbFA ),...,,,( 321  will definitely express the standard definition of the generalized 

Clifford algebra associated with homogeneous form ),...,,,( 321 sbbbbF , and generated by matrices pE  

[43- 47]. Thus based on the definition of Axiom 2-1 (formula (23)) over the integer elements, the 
Clifford algebra (and its matrix representation) as a very well known and studied 
mathematical theory, is the main and central characteristic of the axiomatic approach 
presented in this article. We use this essential property in Section 2-4, for a unique determination of 

square matrices A  that generate a generalized Clifford algebra associated with quadratic homogeneous 
forms of the type (25) (defined below).  
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2-2. Generally, there are standard and certain methods for solving homogeneous linear 

equations over the ring of integers [7]. Moreover, on the basis of the Axiom 2-1, the necessary 

and sufficient condition for solving an homogeneous equation of the r
th

 order such as  

0),...,,,( 321 sbbbbF , is the transforming or converting it (by “linearization” and simultaneous 

parameterization, as necessary algebraic conditions) into an equivalent system of linear 

equations of type 0AM  (where 1:,0  nMM matrix with parametric components). On 

this basis, below we‘ll obtain merely the systems of linear equations that equivalently correspond to the 

various homogeneous quadratic equations, and also systems of linear equations corresponding to some of 

the higher order equations. 

On the methodological standpoint, firstly, for obtaining and specifying a system of linear equations that 

corresponds to a given equation 0),...,,,( 321 sbbbbF , we definitely should assume and take the 

minimum value for  n (i.e. the size of nn   matrix A  defined in (23)). Secondly, by replacing the 

components of matrix A
 
with the linear forms  




s

p

pijpij bHa
1

 (defined in (23)), in the equation 

ns

r IbbbbFA ),...,,,( 321 , we basically should calculate the coefficients  ijpH  (which are independent 

of elements pb ), by ordinary and standard methods of solving certain equations over the ring of integers. 

 

2-3. In particular, an arbitrary homogeneous quadratic form such as                                             

                                                              
 


s

ii p

iiis p
cBccccF

1,

2

1

321

21

21
),...,,,(                                          (24) 

could be transformed into a simpler quadratic form of the type 

                                                          


 


s

q p

pqs bbbbbbQ
1

2

1

222122111 ),...,,,,(                                        (25) 

by the following linear isomorphic transformations: 

              





s

i

isisss

s

i

iii

s

i

i cBbcbcBbcbcBbcb
1

21

1

222212

1

121111

2

22

2

222

2

2
,...,,,,,       (24-1) 

Furthermore, as we‘ll also show later, the following quadratic form could be transformed into quadratic 

forms of the type (25) as well (by a similar isomorphic transformations): 

                             

  
  


s

ii p

iii

s

ii p

iiiss pp
dBcBddddccccQ

1,

2

11,

2

1

321321

21

21

21

21
),...,,,,,...,,,(                   (26) 
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Remark 2-3. In addition, concerning the formula (25), the following general relations could be proven 

easily: 

         

  

,0)()0,0(
1 1

)1()1(

1 1

)1(

1 1

)1( 
 



 



 

 
s

q

r

p

qrqrpq

s

q

r

p

qrpq

s

q

r

p

qrpq dcbdbcb      (25-1) 

                                            
 



 

 
s

q

r

p

qrpq

s

q

r

p

qrpq tcbcb
1 1

)1(

1 1

)1( 0)(0                              (25-2) 

where the parameter  t

 

is an arbitrary non-zero integer.  

 

2-4. According to the general forms of homogeneous quadratic equations (24) – (26), and the isomorphic 

linear transformations (24-1), below we merely write the systems of linear equations that correspond to 

the following quadratic equation (moreover, as we mentioned in Section 2-2, according to the Axiom 2-1 

(formula (23)), only one system of linear equations – with the minimum number of equations – for each 

particular case is sufficient): 

                                               
0),...,,,,(

1

2

1

222122111 
 

s

q p

pqs bbbbbbQ
    

                               (25-3) 

 

Now according to Axiom 2-1 (formula (23)), the following relation should be specified for equation (25-

3), which by to formulate its equivalent system of linear equations 0AM , 

 

                                      ns

p

s

q

pqpq IbbbbbQEbA ),...,,,,()( 222122111

2

1 1

22  
                             

(25-4) 

where 
12  sn , and matrices pqE  generate a generalized Clifford algebra associated with form 

),...,,,,( 222122111 sbbbbbQ . 

 

We should note here that the matrix equations, which will be obtained on this basis for the above 

homogeneous quadratic equations, also could simply be modified to be hermitian (and we will do it for 

these equations). The hermiticity is a necessary condition for these matrix equations (i.e. matrix equations 

(32), (34), (36), (37), (38), corresponding quadratic equation (24)), which we will use to formulate the 

relativistic wave equations of physics, in Section 3 (see Sections 3-3, 3-6, 3-7 and Appendix B). 
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Thus let we expand the equation (25-3) as follows, respectively: 

 

                                                                

,02111

1

1

2

1


 

bbb
q p

pq                                              (27) 

                                                           

,022122111

2

1

2

1


 

bbbbb
q p

pq                                      (28) 

                                                   

,0231322122111

3

1

2

1


 

bbbbbbb
q p

pq                                (29) 

                                            

,02414231322122111

4

1

2

1


 

bbbbbbbbb
q p

pq                         (30) 

                                     

;025152414231322122111

5

1

2

1


 

bbbbbbbbbbb
q p

pq                   (31) 

… 

 

Hence, based on the Axiom 2-1 (formula (23)), Remark 2-2 and our methodology mentioned in Section 2-

2, the equivalent matrix equations (here we mean a system of linear equations) corresponding (uniquely) 

to the quadratic equations (27) – (31) are, respectively, as follows:  

 

   First, the equivalent  matrix equation corresponding to quadratic equation (27) is given by 

                                                           

0
0

0

2

1

0

0



















m

m

f

e
MA                                         (32) 

where 210110 , bfbe  , and we have 

                                                        

200

0

0

0

02 )(
0

0

0

0
Ife

f

e

f

e
A 
















                           (32-1) 

 

  For (28) we have the following equivalent matrix equation 

                                                 

0

00

00

00

00

4

3

2

1

01

10

01

10












































m

m

m

m

ee

ff

fe

fe

MA                               (33) 

where 221121210110 ,,, bfbebfbe  , and we have 
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41100

01

10

01

10

01

10

01

10

2 )(

00

00

00

00

00

00

00

00

Ifefe

ee

ff

fe

fe

ee

ff

fe

fe

A 













































             (33-1) 

Notice that using (33) we get the following two separate and fully equivalent matrix equations for (28): 

                                                                     

,0
4

3

01

10


















 m

m

fe

fe
                                              (33-2) 

                                                                          0
2

1

01

10


















 m

m

ee

ff
                                               (33-3)                        

As the matrix equations (33-2) and (33-3) are equivalent, we can choose the equation (33-2) as the system 

of linear equations corresponding to quadratic equation (28) – where for simplicity we may also replace 

the parameters 1m and 2m by parameters 3m and 4m , as follows 
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The following system of linear equations corresponds to quadratic equation (29): 
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where 232132221121210110 ,,,,, bfbebfbebfbe  ,  and we have 
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                                                                                                                                      (35-1) 

 

From (35) (similar to the (33)) the following two equivalent matrix equations are obtained,
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So, we can choose equation (35-2), as the system of linear equations corresponding to the quadratic 

equation (29) (where for simplicity here we also replace the parameters 1m , 2m , 3m and 4m by parameters 

5m , 6m , 7m and 8m ): 
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Similar to the matrix equations (34) and (36) that correspond to the quadratic equations (28) and (29), the 

unique and equivalent matrix equations corresponding to the quadratic equations (30) and (31) are also 

obtained as follows, respectively, 
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where ;,,,,,,, 243143232132221121210110 bfbebfbebfbebfbe      

 

and for (31) we obtain 
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                                                                                                                                                                                       (38)

                                                                       

        where  254154243143232132221121210110 ,,,,,,,,, bfbebfbebfbebfbebfbe  .                                                                                                                                                                   
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In a similar manner, the systems of linear equations with larger sizes could be obtained for special cases 

of general quadratic equation (25-3), where
 

.,...3,2,1s  The size of the square matrices of these matrix 

equations  is 
ss 22  . But, this size is reducible to 

11 22   ss
 for the quadratic forms (as we had these 

sizes for matrix equations (34), (36), (37) and (38) which correspond to the quadratic equations (29) – 

(31)). In general, the size of the square matrices A  that correspond to the homogeneous 
thr order form 

),...,,,( 321 sbbbbF  defined in (23), is 
ss rr  , which for particular cases this size could be reduced. 

Moreover, based on Axiom 1-2 (formula (23)), by obtaining (and solving) a system of linear equations 

which corresponds to a 
thr order equation, we may systematically show (or decide) whether this equation 

has the integral solution. 

We present below the systems of linear equations (defined by (23)) corresponding to some particular 
higher (3

rd
, 4

th
 and 5

th
) order homogeneous equations. For a third order equation of the type  
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the following matrix equation is obtained 

                                                                                                            (40)                          

where A  is a 27×27 square matrix and we have 
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Based on (23), the system of linear equations corresponding to the 3
rd

 order equation 

                                                        ,0)(2),,( 333  BbcacbaF                                                (42) 

is given by                                                                                            (43)             

where A  is a 27×27 square matrix and we have: 
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                                                                         (44)         

For the 4
th
 order homogeneous equation, 

                                         
0),,,,,( 43212

3
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3

21432121  ffffeeeeffffeeF                           (45) 

the equivalent system of linear equations, that follow from Axiom 1-2, is 

                                                                                                     (46) 

where A  is a 16×16 square matrix and matrices 4321 ,,, AAAA  are 

 

                                                (47)  
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In addition, the obtained system of linear equations which corresponds to the 5
th
 order homogeneous 

equation,  
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is: 

                                                                                              (49) 

where A  is a 25×25 square matrix and matrices 54321 ,,,, AAAAA  are given by 

  

  

                                                                                     (50) 
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2-5. Because of particular applications of the obtained systems of linear equations corresponding to 

the general quadratic equation (25-3)in Section 3 (concerning the derivation of the relativistic 

single-particle field equations of physics and Lorentz transformations and so on), in this section we 

analyze and solve the matrix equations (34), (36), (37), (38). However, it should be noted again that 

these matrix equations (that are structurally unique) have been obtained not only on the basis of the 

algebraic Axiom 2-1 (formula (23)), but also have been modified to be hermitian. 

 
First, let we consider the following more general homogeneous quadratic equation  

                                                                

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n
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jijiij ddccB
0,

0)(                                       (51) 

where  ijBB   is a symmetric matrix ,jiij BB 
 
and   0det ijB .  

For obtaining the systems of linear equations corresponding to (51) (for ,...;3,2,1,0n ), we define the 

following isomorphic linear transformations   
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where 0det B , and matrix B be invertible. Thus, by the above transformations, the systems of linear 

equations corresponding to (51) are (34) (for 1n ), (36) (for 2n ), (37) (for 3n ) and (38) (for 

4n ). Hence, using (52-1) and (52-2), these matrix equations are represented as follows  
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It is noteworthy here that there are not the similar isomorphic linear transformations such as (51-1) -    

(51-2) (that were definable for quadratic equation (51)) for the third and the higher order equations of the 

form: 
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Moreover, by the following choices 
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we can rewrite the transformations (52-1) and (52-2) as follows 

 

                                                           

,),( DCFDCBE                                             (60) 

From (60) we also get 

                                                  

)(),( 1
2

11
2

1 FEBDFEBC  
                                    (61) 

In (61) 
1B  is the inverse of matrix B . In Section 2-6, using the relations (60) and (61) and also the 

solutions of matrix equations (34), (36), (37) and (38), we directly will determine the general solutions of 

systems of linear equations (54) – (57), which will be the general solutions of quadratic equation (51) as 

well, for ,...3,2,1,0n
 
. 
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2-6. Now utilizing the standard and specific methods of solving the systems of homogeneous linear 

equations over the ring of integers [7], below we obtain the general parametric solutions for the systems 

of homogeneous linear equations (34), (36), (37) and (38) for unknowns ie and if . 

     

First, let we write a definite parametric solution of general homogeneous linear equation of the type 

                                                                         

0
1




n

i

ii xa                                                              (62) 

for unknowns ix , over the ring of integer elements [7, 8]: 

                                                






1

1

),1,...,3,2,1(,
n

j

jjnjnj kaxnjkax                         (63) 

where ik  are arbitrary integer parameters, and  0na . Furthermore, if ix and ix  ),...,3,2,1( ni 
 
be two 

solutions of equation (62), then  ii xx 
 
and  ixt 

 
(where t  is a non-zero integer) also are the solutions of 

(62), such that  

                0(
1




n

i

ii xa , )0
1




n

i

ii xa  00)(,0)(
111

 


n

i

ii

n

i

iii

n

i

ii xaxtaxxa       (63-1)                                                            

On this basis, for equations (34) we directly get the following general symmetric solutions  

                                             
121211110220 ,,, mkfmkemkfmke                                (64) 

where 2121 ,;, mmkk  ( 02 m ) are arbitrary integer parameters.  

 

For system of linear equations (36) we get 

                                 
322324121331142121120430 ,,,,, mkmkfmkemkmkfmkemkmkfmke      (65) 

where 4321321 ,,,;,, mmmmkkk
 

)0( 4 m
 

are arbitrary integer parameters. Particularly for matrix 

equation (36), using (25-1), (25-2), and (65) we may also obtain the following type of the general 

solution (which includes the solution (65) as well): 

                                   

.,,

,,,

322321441213311

244212112034430

mkmkfmkmkemkmkf

mkmkemkmkfmkmke





                      (66) 

where 43214321 ,,,;,,, mmmmkkkk
 )00( 44  korm are arbitrary integer parameters. 
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For the system of equations (37), similarly, the following general parametric solutions are obtained 

(where we suppose 08 m ):  

                   

.,,,
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     (67) 

where here 4321 ,,, kkkk  are arbitrary integer parameters. Meanwhile, from the matrix equation (37) a 

necessary additional condition also appears for parameters im (that appears in the course of obtaining 

solution (67) from the equation (37)) as follows 

                                                          
073625184  mmmmmmmm                                         (68) 

Condition (68) is also a homogeneous quadratic equation that corresponds to matrix equation (37), and 

should be separately solved. On this basis, using the matrix equation (37) for (68), and since the 

parameter 4m does not appear in the solutions (67), the following unique relations and two types of 

general solutions (which are algebraically equivalent) for condition (68) are obtained: 
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and another  type of  solution (which includes the first type as well) is as follows 

                                   

).0(:,0

,0,,,

,,,

884

4322371331621125

144132442234431







mparameterIntegerarbitraryanmm

mvuvumvuvumvuvum

vuvumvuvumvuvum

      (73) 



28 
 

where 4321 ,,, uuuu  and 4321 ,,, vvvv  are arbitrary integer parameters. By replacing the values of im , 

(from the relations (72) or (73)) in formulas (67), the general parametric solution for matrix equation (37) 

is obtained. We should note here that since the relation (71) correspond to the matrix equation (36), two 

sets of (algebraically equivalent) solutions (72) and (73) follow from two basic parametric solutions (65) 

and (66). It is noteworthy that, in particular, the relations (73) in terms of parameters 

765321 ,,,,, mmmmmm  have a certain appropriate symmetric structure which is compatible with a 

symmetric requirement in the course of the application of these results in physics, presented in Section 3. 

 

 

For the system of equations (38), the following general parametric solutions are obtained as well (where 

we suppose )016 m ,  
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(74) 

54321 ,,,, kkkkk  are arbitrary integer parameters. Moreover, the parameters im  should satisfy the following 

conditions (which in the course of obtaining the solution (74) from matrix equation (38)): 
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                                 (75) 

Conditions (75) are a set of homogeneous quadratic equations that generally correspond to the matrix 

equation (37), and should be solved as a separate set of quadratic equations. On this basis, using the 

matrix equation (37) for conditions (75), and since the parameters 98764 ,,,, mmmmm
 
don‘t appear in the 

solutions (74), the following unique relations and two types of general solutions (which are algebraically 

equivalent) for conditions (75) are obtained: 

                                                            

,098764  mmmmm                                      (76) 
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;0141113121510  mmmmmm                                       (82) 
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where one type of solution reads 
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and another type of solution (which includes the first type as well) is derived as follows: 
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where 5432154321 ,,,,;,,,, vvvvvuuuuu are arbitrary integer parameters. By replacing the parametric 

values of im (83) or (84) in relations (74), we get the general parametric symmetric solution for matrix 

equation (38).  

 

We should note here that since the relations of the types (78) – (82) correspond generally to the matrix 

equation (36), two sets of (algebraically equivalent) solutions (83) and (84) follow from two basic 

parametric solutions (65) and (66). Similar to relations (73), it is noteworthy again that, in particular, the 

relations (84) in terms of parameters 1514131211105321 ,,,,,,,,, mmmmmmmmmm  has a certain 

appropriate symmetric structure which is compatible with a symmetric requirement in the course of the 

application of these results in physics, presented in Section 3. 

Applying the axiomatic linearization (and simultaneous parameterization, as necessary algebraic 

conditions) approach based on the new Axiom 2-1 (formula (23)), the quadratic homogeneous equations 

with more unknowns are solved in the same manner. We use the above obtained results for the 

homogeneous quadratic relations, in Section 3, where we assume that the components of the relativistic 

energy-momentum relation (as a definite quadratic relation) are discrete quantities. 
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3. A Direct Logical Derivation of the Laws Governing the Fundamental   

    Forces of Nature 

―Including a Unique Set of the General Relativistic (Single-Particle) Wave Equations – 
Formulated Solely in D ≤ 4 Dimensional Space-Time‖ 
 

In this Section on the basis of the mathematical axiomatic approach presented in Section 2 (particularly, 

the A, by linearization (and simultaneous parameterization, as necessary algebraic conditions), followed 

by first quantization (as a postulate) of linearized (and simultaneously parameterized, as necessary 

algebraic conditions) unique forms of the special relativistic energy-momentum relation (which are 

defined algebraically for a single particle with invariant mass m0), we derive a unique and original set of 

the general relativistic (single-particle) wave equations directly. These equations are shown to correspond 

uniquely to certain massive forms of the laws governing the fundamental forces of nature, including the 

Gravitational, Electromagnetic and Nuclear field equations (which based on our approach are solely 

formulable in (1+3) dimensional space-time), in addition to the (half-integer spin) single-particle wave 

equations (formulated solely in (1+2) dimensional space-time). Notably, these results are primarily 

mathematical, assuming the relativistic energy-momentum is a discrete quantity– that is a basic 

quantum mechanical assumption.         

Each derived relativistic wave equation is in a complex tensor form, that in the matrix representation (i.e. 

in the geometric algebra formulation, see equations (120) – (121)) it could be written in the form of two 

coupled symmetric equations – which assumedly have chiral symmetry if the particle wave equation be 

source-free. In fact, the complex relativistic (single-particle) wave equations so uniquely obtained, 

correspond to certain massive form of classical fields including the Einstein, Maxwell and Yang-Mills 

field equations, in addition to the (half-integer spin) single-particle wave equations such as the Dirac 

equation (where the Dirac spinor field is isomorphically re-presented solely by a tensor field in three 

dimensional space-time [29, 31]). 

In particular, a unique massive form of the general theory of relativity – with a definite complex torsion – 

is shown to be obtained solely by first quantization of a special relativistic algebraic matrix relation. 

Moreover,  it is shown that the massive Lagrangian density of the obtained Maxwell and Yang-Mills 

fields could be also locally gauge invariant – where these fields are formally re-presented on a 

background space-time with certain (coupled) complex torsion which is generated by the invariant mass 

of the gauge field carrier particle. Subsequently, in agreement with certain experimental data, the 

invariant mass of a particle (that actually would be identified as massive photon) has been specified          

( )(

0

Em  ≈ 1.4070696 × 10
-41

 kg), which is coupled with background space-time geometry (see Section 3-4-

1). Assuming our approach is the unique and principal way for deriving (all) the laws governing the 

fundamental forces of nature, then based on the unique structure of general relativistic single-particle 

fields derived and also the assumption of chiral symmetry as a basic discrete symmetry of the source-free 

cases of these fields, it has been shown that the universe cannot have more than four space-time 

dimensions. Furthermore, a basic argument for the asymmetry of left and right handed (interacting) 

particles is presented. In addition, on the basis of definite structure of the field equations derived, we also 

conclude that magnetic monopoles – in contrast with electric monopoles – could not exist in nature.  
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As it was mentioned in Section 1-1, the main arguments and consequences presented in this 

article (particularly in this section) follow from these three basic and primary assumptions:  

(1)- “Generalization of the algebraic axiom of nonzero divisors for integer elements (based on 
the ring theory and the matrix representation of generalized Clifford algebra, and 
subsequently, constructing a definite algebraic linearization theory);”                                              

   This is one of the new and principal concepts presented in Section 2 (see formula (23). 

 
(2)- “Discreteness of the relativistic energy-momentum (D-momentum);”                              

   This is a basic quantum mechanical assumption. As the quantum theory, particularly, tells us that 
energy and momentum are only transferred in discrete quantities, i.e., as integer multiples of the 
quantum of action (Planck constant) h.  

 
(3)- “The general relativistic massive forms of the laws governing the fundamental forces of nature, 

including the gravitational, electromagnetic and nuclear field equations, in addition to the 

relativistic (half-integer spin) single-particle wave equations, are derived solely by first quantization 

(as a postulate) of linearized (and simultaneously parameterized, as necessary algebraic conditions) 

unique forms of the relativistic energy-momentum relation –  which are defined algebraically for a 

single particle with invariant mass m0).”        

    We also assume that the source-free cases of these fields have ―chiral symmetry‖.               

Note that the geometrized units, metric signature (+ − ... −) and the sign conventions (97) will be used. So 
particularly, we assume the speed of light 1c . However, for clarity and emphasis, in some relativistic 
relations ""c  as a constant be restored and indicated formally. 

3-1.  Assuming the components of the energy-momentum vector are discrete quantities (as a basic and 

original quantum mechanical assumption)
1
, then definitely the invariant and relation of the energy-

momentum for a massive particle in the special relativistic conditions, i.e. 
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                            (86) 

are the special cases of the general algebraic quadratic relation (51). Where 
g are constant symmetric 

coefficients, m0  is the rest mass of a single particle, and  pp ,  are the components of the relativistic 

energy-momentum vector in two reference frames. Note that based on our chosen sign conventions, the 

minus sign in relation (86) is for the particle, and the plus sign is connected to its anti-particle. The next 

formulas and results are formulated and obtained only for particles (for anti-particles the mass sign should 

be changed).As a direct consequence of the axiomatic approach presented in Section 2, the relations (85) 

and (86), necessarily, should be linearized (and simultaneously parameterized, as necessary algebraic 

conditions). 
------------------------------------------------------------------------------------------------------- 

1. This is a primary quantum mechanical assumption. However, for general and expanded cases of the discreteness, and concerning discrete 

physics, it is noteworthy that in many modern and standard quantum theories (Lorentz invariance), it is assumed that certain physical quantities 

are discrete. These theories include the lattice field gauge theories such as lattice QCD, quantum gravity theories, etc. [15 – 22]. However, the 

discrete axiomatic approach presented in this article directly yields to parametric linear transformations corresponding directly to the Lorentz 
transformations. 
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Hence, using the matrix relations (53) – (57) (which are also hermitian), we get the following unique set 

of systems of linear equations that correspond equivalently to the relations (85) and (86): 

   First for relation (85), the equivalent set of matrix relations for various space-time dimensions are given 

as follows, respectively (where is are parameters similar to parameters im in the matrix relations (53) – 

(57)), 
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where 1,0 ; 
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where 2,1,0 ; 
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where 3,2,1,0  and 
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(notice that the condition (90-1) is equivalent to the algebraic condition (68)); 
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where we have 
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and 4,3,2,1,0 . Notice that the algebraic conditions (91-1) – (91-5) are equivalent to the conditions 

(75). 
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The systems of linear equations that correspond to the relation (86) are also obtained as follows, 

respectively, for various space-time dimensions: 

(where 0:0,
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where 1,0 ; 

 

 

       

0

)(0)()(

0)(

)()(0

)(0)(

4

3

2

1

00

0
0

00

0202

00

0101

00

0
012

2
00

0101

00

0000

1
00

0202

00

0000



























































s

s

s

s

g

cm
p

g

cm
gpg

g

cm
gpg

g

cm
ppp

p
g

cm
gpg

g

cm
gpg

p
g

cm
gpg

g

cm
gpg



















    

                                                                                                                                                          (94) 

where 2,1,0 ; 
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where 3,2,1,0  and
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Notice that here also the condition (95-1) is equivalent to the algebraic condition (68). 

 

For (1+4) dimensional case we obtain: 
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where we have 
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and 4,3,2,1,0 . Notice that the conditions (96-1) – (96-5) are equivalent to the conditions (75). 

3-2. A Direct Derivation of the Lorentz Transformations for “Discrete” Momentums 

 From the matrix equations (87) – (91) obtained by our axiomatic discrete approach (based on the Axiom 

1-2, i.e. formula (23)), by linearization and simultaneous parameterization (as necessary algebraic 

conditions) of quadratic relation (85)) and the assumption of  discreteness of the relativistic quantities p  

and p , and also the relations (90-2), (91-6), (95-2) and (96-6), and the parametric solutions 

corresponding to the matrix equations (87) – (91, i.e. solutions (64), (66), (67) and (74), the parametric 

linear transformations between two reference frames, that correspond to the Lorentz invariance, are 

derived directly. In fact, the general parametric form of linear transformations (corresponding to the 

Lorentz transformations) between two reference frames are determined directly from the matrix 

equations (87) – (91) and their parametric solutions. Notably via this approach, the discreteness of 

the relativistic energy-momentum (D-momentum) merely implies the linearity of these obtained 

parametric transformations.    

For instance, we show that how these transformations for (1+2) dimensional space-time are derived here.
1
 

Hence from the matrix equation (89) and the integer-parametric solution (65) (for 14 m , or equivalently 

for 14 s  in (89)) and assuming the Minkowski metric, we get the following isomorphic linear 

transformations: 

-------------------------------------------------------------------------------- 

1. Lorentz transformations for higher space-time dimensions are derived by the same method for discrete momentums, and 

definitely the derived transformations could be extended and applied for other physical quantities which supposedly would take 

discrete values, such as space-time coordinates. 
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                                 ,     (89-1) 

 

where is are arbitrary integer parameters, and the inverse of (89-1) is given by 

 

                                        (89-2) 

 

and for transformations (89-1) we also have: 

                       det =1                              (89-3) 

 

The linear transformations (89-1) are equivalent to the Lorentz transformations, for certain values of 

parameters is obtaining from the initial conditions and given values (such as the relative velocity between 

the frames). As an example, from (89-1) and the following values specified for parameters is , the Lorentz 

transformations for momentums in standard configuration [59] are directly obtained in the x-direction:  

:                                                               

                                                                                                 (89-4) 
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3-3. In this Section the geometrized units [9], the Einstein notation, and the following sign conventions 

will be used (So, we would assume that the speed of light 1c ; however, for clarity and emphasis, in 
some essential relativistic relations ""c  as a constant be restored and indicated formally): 

- The Metric sign convention ),...(   

- The Riemann curvature and Ricci tensors:

,, 





















 RRR   

- The Einstein tensor (sign):  ...8   G  .                                                                    (97) 

    

By ―first‖ quantization of the linearized (and simultaneous parameterized, as necessary algebraic 

conditions) unique forms of the relativistic energy-momentum relation (86) (i.e. matrix relations (92) – 

(96) formulated for various space-time dimensions), we may directly derive and formulate a unique and 

original set of the general relativistic (single-particle) wave equations directly. As we show below, these 

equations correspond uniquely to certain massive forms of the laws governing the fundamental forces of 

nature, including the Gravitational, Electromagnetic and Nuclear field equations (which based on our 

axiomatic approach are solely formulable in (1+3) dimensional space-time), and also the (half-integer 

spin) single-particle wave equations (that could be formulated solely in (1+2) dimensional space-time).  

In addition, when first quantization procedure (as a postulate) is applied to the linearized (and  

simultaneously parameterized) unique forms of the energy-momentum relation, i.e. formulas (92) – (96),  

as the principal substitution rule, we assume the following general covariant quantities and (quantum-

mechanical) operator to be substituted by their corresponding quantities in algebraic matrix relations 

(92) – (96):  

- General covariant kinetic energy-momentum operator: 

                                                                            


ip̂                                                      (98)    

                                                                    

- The metric tensor:                                           
 gg ˆ                                                      (99) 

 

- There is a one-to-one correspondence between ―the  parameters is ―  and  ―the components of field 

strength tensor ..,X  and the components of covariant quantities 
)(

..,

X

  (which by formula (101-3) 

defines a covariant current as the source of field ..,X )‖.  We may show this correspondence by the 

following formula: 

                                                                   

)(

..,.., ,ˆ X

i Xs                                                (100) 

where iŝ are formally the quantities converted by first quantization of arbitrary parameters is . Thus 

the quantities (98) – (100) will be substituted by their corresponding quantities in relations (92) – 

(96), that respectively, are p (general relativistic kinetic energy-momentum vector), 
g  (as 

constant values in these algebraic relations) and is  (arbitrary algebraic parametric quantities). Hence, 

diffeomorphism invariance and substitutions (98) – (100) corresponding to the quantities in the 
relativistic energy-momentum (matrix) relations (92) – (96), directly yield a unique general 
relativistic (single-particle) wave equation, which will be written in Section 3-4 explicitly. In 

addition, in Appendix A we show that the field strength tensor ..,X  (as a general tensor form) could 

solely two (separate) values  RF , . In the same manner, 
)()( , RF


 

(corresponding to these two 

particular fields) are also covariant quantities which will appear in the derived equations and their 

derivatives be equal to the sources of fields  RF , (see below). 



41 
 

Furthermore, based on the assumption (3) in Section 1-1, and taking into account a notification presented 
in Appendix A, we show that there are only two kinds of definable and acceptable field strength tensors 

whose components could be substituted by the parametric quantities is , and they convert (by first 

quantization procedure, i.e. by applying the basic formal substitutions  (98) – (100)) the matrix energy-
momentum relations (92) – (96) into a unique set of the general relativistic wave equations. These are a 
2

nd
 and a 4

th
 rank anti-symmetric field strength tensors; where the 4

th
 rank tensor is (supposedly) equal to 

the Riemann curvature tensor R , and another tensor be represented by F . Assuming the local 

gauge symmetry, we show that this 2
nd

 rank anti-symmetric tensor corresponds to certain massive 
Electromagnetic and Yang-Mills (single-particle) field strength tensors.

1 

 

3-4. On this basis, the tensor representation of the general relativistic single-particle wave equations 
that are uniquely obtained and formulated by the (direct) logical derivation procedure described in 
Section 3-3, is as follows (see Section 3-6, formulas (120) – (121)) for the original matrix 
representation, i.e. the geometric algebra formulation of these equations):  
 

           
,..,..,..,..,..,.., 








 XMXMXMXXX 


    (101-1) 

                                             

.)(

..,..,

)(

0
..,

X
X

JXk
im

X 





 



                                      (101-2) 

 

 where                                            ,)( )(

..,

)(

0)(

..,

X
X

X k
im

J  



                                                   (101-3) 
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and where (according to our derivation approach) these field equations will be formulated solely in one in 

D ≤ 4 dimensional space-time. Furthermore, in the above field equations    ..,X  is the field strength 

tensor,   
)(

0

Xm  is the invariant mass of the (free and interacting) field carrier single-particle, 


i  is the 

covariant kinetic energy-momentum operator (generally defined on a background space-time with the 

complex torsion T  generated by the invariant mass and given by formula (110), and 

)0,...,0,( 00gck 
 is the general relativistic velocity of a static observer (that is a time-like 

contravariant vector). 
)(

..,

XJ   is the source of the field strength tensor ..,X . Moreover, as it was notes 

in Section 3-3, field strength tensor ..,X  could take solely two separate tensor values,

 RFX ,.., 
 
, where R be the Riemann curvature tensor, and F  be a rank two anti-

symmetric field strength tensor corresponding to the known single-particle fields (including the Maxwell 
and Yang-Mills fields for (1+3) dimensional space-time, and Dirac fields for (1+2) dimensional space-
time). Moreover, in Appendix A we show that in (1+3) and higher space-time dimensions, the field 

strength tensor ..,X  should be presentable by a formula of the type:  ..,..,..,
ˆˆˆˆ BABAX   , 

for some quantities  ..,
ˆ,ˆ BA  , where this formula should be also ―derivable‖ from the general 

relativistic single-particle field equations (101-1) – (101-4).  
 
--------------------------------------------------------------------------------------------------------------                                                                                       
1. We will show in Section 3-7, that the field equations  (101-1) – (101-4) in five dimensional space-time, which correspond  to the matrix 

relations (96), and also for the higher space-time dimensions, are incompatible with some certain supposed essential symmetry –  where we‘ll 
conclude that the universe cannot have more than four space-time dimensions. 
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Hence in various space-time dimensions, the field equations (101-1) – (101-2) (for two separate field 

strength tensors  RF ,
 
, and taking into account a necessary condition mentioned above that 

be presented in Appendix A) be formulated as follows, respectively: 

Relation (92) 
onquantizatifirst

                      0)( )(

0  





 FkimF E





                                           (102) 

where 0,100  g , and 011
ˆ Fss


  .

1
                                                                  

Relation (93) 
onquantizatifirst



                  

                              

,







 FZFZFZFFF 


               (103-1) 

                                                    

)(
)(

0 E
E

JFk
im

F 




 




                                           (103-2) 

where  λ, ρ, σ, μ, ν, τ = 0, 1 , and 

).(
2

,)(,ˆ,ˆ
)(

0)(
)(

0)()(

221011   kgkg
im

Zk
im

JssFss
E

E
E

EE 



   

Relation (93) 
onquantizatifirst



                                

                          

,







 RTRTRTRRR 


           (103-3) 

                                                   

)(
)(

0 G
G

JRk
im

R 




 




                                        (103-4) 

where  λ, ρ, σ, μ, ν, τ = 0, 1 , and 

).(
2

,)(,ˆ,ˆ
)(

0)(
)(

0)()(

221011   kgkg
im

Tk
im

JssRss
G

G
G

GG 



     

 

Relation (94) 
onquantizatifirst



                 

                              

,







 FZFZFZFFF 


               (104-1) 

                                                    

)(
)(

0 E
E

JFk
im

F 




 




                                           (104-2)                            

where  λ, ρ, σ, μ, ν, τ = 0, 1, 2  , and
 

,)(,ˆ,ˆ,ˆ,ˆ )(
)(

0)()(

44213302221011

E
E

EE k
im

JssFssFssFss  



   

).)(2( )(

0  kgkgimZ E        

--------------------------------------------------------------------------------------------- 
1. Exceptionally, the tensor equation corresponding to relation (92) (for one dimensional space-time, i.e. where only the time dimension exists) is 

a special and trivial case, where the Riemann tensor vanishes; so for this case, formally, we just assume a tensor such as F


 
that is substituted 

by the only parameter 1s  in (92)). 



43 
 

Relation (94) 
onquantizatifirst



                      

                           

,







 RTRTRTRRR 


        (104-3) 

                                                  

)(
)(

0 G
G

JRk
im

R 




 




                                      (104-4) 

where  λ, ρ, σ, μ, ν, τ = 0, 1, 2 , and  

,)(,ˆ,ˆ,ˆ,ˆ )(
)(

0)()(

44213302221011

G
G

GG k
im

JssRssRssRss  



 

).(
2

)(

0
 kgkg

im
T

G


  

 

Relation (95) 
onquantizatifirst



                   

                             

,







 FZFZFZFFF 


             (105-1) 

                                                    

)(
)(

0 E
E

JFk
im

F 




 




                                        (105-2)                  

where  λ, ρ, σ, μ, ν, τ = 0, 1, 2, 3 , and 

    

.,,,

,,,,

;:

,,,

,0,,,

;)(
2

,)(

,ˆ,ˆˆˆˆˆ,ˆˆˆˆˆ

,ˆˆˆˆˆ,0ˆ,ˆˆˆˆˆ

,ˆˆˆˆˆ,ˆˆˆˆˆ

13132222

31314040

8

211271331632235

4033030220201101

)(

0)(
)(

0)(

)(

882112127713313166

322323554403303033

0220202201101011

uBvAuBvA

uBvAuBvA

where

parameterarbitraryans

BABAsBABAsBABAs

sBABAsBABAsBABAs

kgkg
im

Zk
im

J

ssBABAFssBABAFss

BABAFssssBABAFss

BABAFssBABAFss

E
E

E
E

E

















 













                                                     



44 
 

Relation (95) 
onquantizatifirst



                    

                           

,







 RTRTRTRRR 


    (105-3) 

                                                    

)(
)(

0 G
G

JRk
im

R 




 




                                (105-4) 

 

 

where  λ, ρ, σ, μ, ν, τ = 0, 1, 2, 3 , and 

 

.,,,

,,,,

;:

,,,

,0,,,

;)(
2

,)(

,ˆ,ˆˆˆˆˆ,ˆˆˆˆˆ

,ˆˆˆˆˆ,0ˆ,ˆˆˆˆˆ

,ˆˆˆˆˆ,ˆˆˆˆˆ

13132222

31314040

8

211271331632235

4033030220201101

)(

0)(
)(

0)(

)(

882112127713313166

322323554403303033

0220202201101011

uBvAuBvA

uBvAuBvA

where

parameterarbitraryans

BABAsBABAsBABAs

sBABAsBABAsBABAs

kgkg
im

Tk
im

J

ssBABARssBABARss

BABARssssBABARss

BABARssBABARss

G
G

G
G

N















































               

 

 

 

 

 

 

 

 

 

 



45 
 

Relation (96) 
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Relation (96) 
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--------------------------------------------------------------------------------------------------------------                                                                                       
1. We will show in Section 3-7, that the field equations  (106-1) – (106-4), which correspond  to the matrix relations (96) (i.e. for five 

dimensional space-time), as well as for higher space-time dimensions, are incompatible with some certain symmetry, where we‘ll also conclude 
that the universe cannot have more than four space-time dimensions. 
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Where in field equations (103-1) – (106-4) we have (see also Appendix A): 
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D is the number of space-time dimensions;
1
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Moreover, according to our derivation approach (see Section 3-7), the above field equations are solely 
definable in D ≤ 4 dimensional space-time. So, only the equations (104-1) – (105-4) would be acceptable. 

In addition, in the above field equations, 
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(generally defined on a background space-time with the complex torsion T  generated by the invariant 

mass and given by formula (3)), )0,...,0,( 00gck 
 is the general relativistic velocity of a static 

observer (that is a time-like contravariant vector), and the covariant currents 
)(GJ  and )(EJ  are the 

sources of the above fields. In particular, for massless cases (i.e. 0)(

0 Gm , 0)(

0 Em ), the field equations 

(105-1) – (105-4) turn into the Maxwell, Yang-Mills (if assuming the local gauge invariance, see below) 
and the gravitational single-particle fields [68, 69] (in fact, in the context of relativistic quantum 
mechanics, these relativistic fields could precisely describe single-particles, where the solutions are taken 
to be complex).  

----------------------------------------------------------------------------------------------------------------------------------------- 

1.
 In the general relativistic wave equations (102) – (106-4), quantities  BB ˆ,ˆ , and Â  (as a differential operator) are defined as 

(See Appendix A): 

nnn
nnn

YYYAYYYA 
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

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
 .................. 32
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ˆ,ˆ   ,

  BAB ˆ,ˆ . The conservation laws would be ,0)
2

( )(
)(

0  


E
E

Jk
im




.0)( )(

)(

0  


G

G

Jk
im




 

Moreover, the commutator of covariant derivative with torsion is [25, 27]:
  

.)( 





 VTRVV 
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In Section 3-5 we show that the Einstein field equations (that necessarily include a cosmological 
constant) are derived directly from field equations (103-3) – (103-4), (104-3) – (104-4) and (105-3) – 
(105-4) and so on, for various space-time dimensions. 
 
As an additional principal requirement, we show below (in Section 3-4-1) that we may also assume 
that the ―massive‖ Lagrangian density for the obtained general relativistic single-particle wave 
equations (2-1) – (2-3), be locally gauge invariant as well – where these fields be still massive, and 




 be equivalent to the general relativistic (with torsion (107-3), which is compatible with the local 

gauge invariance condition [9, 58, 60 - 63]) form of the (local) gauge-covariant derivative [67]. On 
this basis, in (1+3) dimensional space-time, equations (105-1) – (105-2) not only would describe a 
certain massive form of Maxwell‘s (single-photon) field based on the Abelian gauge group )1(U ,  

but also would present a certain massive form of Yang–Mills (single-particle) fields based on the 
(non-Abelian) gauge groups )(NSU . For the latter case, the field strength tensor, vector gauge 

potential and the current in equations (105-1) – (105-2), are also written in component notation as: 
aF  , 

aA  , 
)(EaJ  , where the Latin index  a = 1, 2, 3, …, N2 -1, and  N2 -1 is the number of linearly 

independent generators of the group )(NSU  (as a real manifold) [58]. Hence, by requiring the local 

gauge invariance for general relativistic massive particle field equations (105-1) – (105-2), in Section 
3-4-1, we show that the massive Lagrangian density specified for these fields could be locally gauge 
invariant – if these fields be formally re-presented on a background space-time with certain complex 
torsion which is generated by the invariant mass of the gauge field carrier particle. Subsequently, in 
agreement with certain experimental data, the invariant mass of a particle (that would actually be 

identified as massive photon) has been specified ( )(

0

Em  ≈ 1.4070696 × 10
-41

 kg), which is coupled 

with background space-time geometry. Note that the gauge theoretic approach for the field equations 
(104-1) - (104-2) could be applied, too.  
    It is noteworthy to recall that gauge symmetries can be viewed as analogues of the principle of 
general covariance of general relativity in which the coordinate system can be chosen freely under 
arbitrary diffeomorphism of space-time. Both gauge invariance and diffeomorphism invariance 
reflect a redundancy in the description of the system. In point of fact, a global symmetry is just a 
local symmetry whose group's parameters are fixed in space-time. The requirement of local 
symmetry, the cornerstone of gauge theories, is a stricter constraint [58]. However, our approach 
could be also considered in the framework of the theories that lie beyond the Standard Model [71], as 
it also includes new consequences such as a certain formulation for the gravitational particle field. 

In addition, we should note that the field equations (104-1) – (104-4) and (105-1) – (105-4) would 
correspond to two different single-particle fields: (104-1) – (104-2) correspond to the tensor 
representation of the spin-1/2 single-particle fields formulated solely in (1+2) dimensional space-time   

[29, 31] – where we necessary have 00220  FF [29, 31];  and (105-1) – (105-2)  describe the spin-1 

single-particle fields formulated solely in (1+3) dimensional space-time [68, 69]. In the precisely same 
manner, the field equations (104-3) – (104-4) describe the spin-3/2 single-particle field (gravitational) 

formulated solely in (1+2) dimensional space-time – where R
 
is the Riemann curvature tensor, and 

we necessary have 00220   RR . The field equations (105-3) – (105-4) also describe the spin-2 

single-particle (gravitational) field formulated solely in (1+3) dimensional space-time. However, it should 
be emphasized here (as we noted above) that, in general, for single-particle field equations (102) – (105-
4), the (quantum mechanical) solutions are taken to be complex [29, 30, 31, 68, 69]. However, in the 
context of relativistic quantum mechanics, the field equations (104-1) – (105-4) are subject to a process of 
2

nd
 quantization anyhow; then these equations would describe solely the bosonic fields in (1+3) 

dimensional space-time, and the fermionic fields in (1+2) dimensional space-time.
1
 

----------------------------------------------------------------------------                                                                                       
1.

 We will show in Section 3-7, that the field equations  (106-1) – (106-4), corresponding to the matrix relations (96) (i.e. for five space-time 

dimensions), as well as for higher space-time dimensions, are incompatible with some certain symmetry and are not definable, where we‘ll also 

conclude that the universe cannot have more than four space-time dimensions. 
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3-4-1. The Local Gauge-Invariance of “Massive” Lagrangian Density of the   

           (unique) Obtained Massive Forms of Maxwell and Yang-Mills Fields 

In this section we present (for the first time) a complex torsion approach to the massive gauge field 
theory. Hence, corresponding to the general relativistic massive single-particle wave equations            
(103-1) – (103-2), (104-1) – (104-2), (105-1) – (105-2), and so on  –  as special cases of the generally 
derived field equations (101-1) – (101-4) in various space-time dimensions, which particularly represent 
the Maxwell and Yang-mills fields in 1+3 dimensions  – we may write formally the following their 
equivalent field equations (formulable solely for a ―rank two anti-symmetric‖ field strength tensor): 

                                                     
,0  FFF


                                       (108-1) 

                                                                

)(EJF 

 


                                                        (108-2) 

where we suppose the general covariant derivative 


 is defined with the following complex torsion 

tensor (similar to the torsion tensor (107-3)) generated by both invariant masses 
)(

0

Em  and  
)(

0

Gm : 

                                     ,)()( 










 FKFKFF


                    (109) 

                                                         ;
2

)( )(

0

)(

0
 kg

mmi
K

EG



 
                                              (109-1) 

 where 

  is the Christoffel symbol (or the torsion-free connection),  K


 is contorsion tensor, and the 

torsion tensor read 

                           )(
2

)(
2

)(

0

)(

0
 kgkg

im
kgkg

im
ZTT

EG





             (110) 

 

Using formula (110) in the field equations (108-1) – (108-2), we may get a general relativistic wave 

equation formally similar to massive field (103-1) – (103-2), … , (105-1) – (105-2), as follows 

 

                              

,







 FZFZFZFFF 


              (108-3) 

                                                    

)(
)(

0 E
E

JFk
im

F 




 




                                           (108-4) 

 

however, here the background space-time is defined with torsion T


, and the covariant derivative 


 is 

defined by (109). 
 

The Lagrangian density for source-free ( 0)( EJ  ) case of the fields of the type (108-1) – (108-2), is 

given by [58], 

 

                                                          


FFgL E 
4

1)(                                                 (111) 

where g is the metric's determinant. 
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Assuming the local gauge invariance for field (108-1) – (108-2), in component notation formula (111) is 

also written as  

                                                         





FFgL

E

gf 
4

1)(

                                               (112) 

Now as for the trace part of torsion tensor T


 (110) we have 

                                                    










)1(

2

)(
)1(

)(

0

)(

0

D

k
mmi

DTT
EG





                                    (113) 

where D is the number of space-time dimensions, and  

 

                                                


k: ,   
2

)( )(

0

)(

0

EG mmi 
                                 (114) 

 

we may simply conclude that the conditions (113) – (114) are sufficient for the general relativistic field 

equations (108-1) – (108-2) and the Lagrangian density (112) to be locally gauge-invariant [9, 58, 60-63]. 

 

Now, using the torsion tensor geometrical properties, in the above gauge fields if we assume that the 

background space-time be re-defined with torsion ))(2( )(

0  kgkgimT G   , as a geometrical 

abject, and ))(2( )(

0  kgkgimZ E    as an independent tensor field generated by )(

0

Em (as the 

invariant mass of the gauge field carrier particle), which its trace part, i.e. 

                               2,)1()2)(1( )(

0

)(

0

EE imDkimDZZ   



           (115-1) 

couples to the gauge fields  (108-1) – (108-2), then these fields  be formally equivalent to certain massive 

Maxwell and Yang-Mills single-particle fields. Hence the field strength tensor 

F  and the locally gauge 

invariant massive Lagrangian density (112) could be equivalently re-written as follows, respectively:
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im
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                                                                                                                                                         (115-3)
 

where 
aA   is the gauge field vector (potential)  and  


 denotes the general relativistic form of the local 

gauge-covariant derivative [67]. In addition, it is noteworthy that since 
kim E )2( )(

0   is a contravarint 

―time-like‖ vector, the obtained unique massive Lagrangian density (115-3) for Maxwell and Yang-Mills 

(single-particle) fields could be also considered in the framework of both three and four dimensional 

cases of the Chern-Simons gauge theory [64, 65]. 
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It is noteworthy that for the case of electromagnetic field, according to [60 – 63], based on certain 

experimental data we can establish a lower bound for   (as a constant) in (115-1): 20 . Thus, in 

agreement with these experimental results, the invariant mass of a particle (that actually would be 
identified as massive photon), which is coupled with background space-time geometry, can be 
approximately specified as follows: 

                                                 )(

0

Em  ≈ 1.4070696×10 -41 
 kg                                  (115-4) 

 

   The above torsion (generally defined by formulas (110) and (115-1)) approach could be also applied for 

massive neutrino which is coupled with background space-time geometry. Such massive particle fields 

which are coupled to background space-time geometry (with complex torsion defined above) could be 

fully responsible for the dark energy and dark matter as well [75]. 

  We should note that the above particular approach for formulating the (local) gauge-invariance 

formulation of massive Maxwell and Yang-Mills field equations (as well as the half-integer relativistic 

single-particle wave equations such as the Dirac equation), by using a certain (coupled) complex torsion 

tensor field (generated by the invariant mass of the gauge field carrier particle), may be also considered 

via the teleparallel geometry – where for example the gravitation whether requires a curved or a 

torsionned space-time, is a matter of convention [72 - 74]. In fact on this basis, the torsion tensor can 

always be treated as an independent tensor field, or equivalently, as part of the space-time 

geometry. That‘s it. 
   Furthermore, the mass gap in quantum Yang-Mills theory may be connected with the background 
space-time geometry with the above complex torsion. As professors A. Jaffe and E. Witten in the 
conclusion of their famous article [70] concerning the mass gap problem in Yang-Mills theory, in 
particular, have mentioned: ―… One view of the mass gap in Yang–Mills theory suggests that it 
may be tied to curvature in the space of connections‖. 
                                                            

3-4-2. A Direct Proving of the Absence of Magnetic Monopoles in Nature 

 
As a direct consequence of the assumption (3) in Section 1-1, and also the unique structure of derived 
general relativistic single-particle field equations (101-1) – (101-4), as well as one of their particular 
case for four dimensional space-time, i.e. equations (105-1) – (105-2) corresponding to the 
Electromagnetic field (and also Yang-Mills field equations, see Section 3-4) we may conclude that 
magnetic monopoles –  in contrast with electric charges – cannot exist in nature. This conclusion is 
based solely on certain algebraic properties of linearized (and simultaneously parameterized, as 
necessary algebraic conditions) unique forms of the relativistic energy-momentum relation (95). 
 

3-5. Deriving the Einstein Field Equations with a Cosmological Constant 

The massless cases of general relativistic wave equations (103-3) – (103-4), (104-3) – (104-4) and (105-
3) – (105-4), are given by ( 0)(

0 Gm ): 

                                                      

,0  RRR


                        (116-1) 

                                                                  

)(GJR 

 


                                           (116-2) 

Hence, by contraction the 2
nd

  Bianchi identity (116-1) and assuming the sign conventions (97), we get  

                                                                




 RRR 
                                    

(117) 
 
Then from (116-2) and (117) and the following definition 
 

                                       
,)(8)(8)(

  TgTgBTTJ G              (118) 
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where T is the stress-energy tensor ( 
TT  ), g  is the metric and ‗B’ is a constant (which be 

specified for each space-time dimension), we easily obtain the Einstein field equations as follows:  
 

                                                           gBTgTR  )(8                                   (119) 

where   is a cosmological constant (emerged naturally in the course of obtaining (119)). Hence for 
(1+1) dimensional case from (119) we get 

                                                           
  gTgR  2

14                                      (119-1) 

where 0B . For (1+2) dimensional case we have (however, for this case as we show in Section 3-7, we 

have 002 R ): 

                                                            gTRgR  282
1                                 (119-2) 

where 1B . For (1+3) dimensional space-time, we obtain 
 

                                                            gTRgR  82
1                                   (119-3) 

where 21B .  

 

3-6. Geometric Algebra Representation of the Derived General Relativistic 

       (Single-Particle) Wave Equations (103-1) – (106-4) 
 
It should be mentioned that the general relativistic single-particle wave equations (103-1) – (106-4) 
derived by first quantization (as a postulate) of the energy-momentum matrix relations (92) – (96) 
(including matrices that are hermitian and generate a Clifford algebra ), in matrix representation, i.e. in 
the geometric algebra formulation, are written as follows:  

                                                          
,0)~( 0  Fkmi 




 


                                        (120) 

                                                          
0)~( 0  Rkmi 




 


                                         (121) 

where
                                             

   ~,                                     (122) 

In matrix equations (120) – (121)  –  which each equation could be written in the form of two coupled 
equations that assumedly have chiral symmetry if the single-particle field equation be source-free (see 

Section 3-7) –  E and R  are column  matrices  (representing the single-particle wave functions) and 

matrices 
 and 

   are the contravariant square matrices (corresponding to a Clifford algebra, see 

Appendix B for special relativistic cases), are as follow
1
 (for various space-time dimensions). Hence for 

(1+1) dimensional case (corresponding to equations (103-1) – (103-4)) we have 
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------------------------------------------------------------------------------------------------------------------ 

1. The covariant matrices    
 has been written instead of 

  .  
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Using (123), the special relativistic cases of equations (120) – (121) in (1+1) dimensions (corresponding 

to equations (103-1) – (103-4)) are given by, respectively: 

                                                  0
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where (for this special case we may suppose:  000  Tm )  
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    For (1+2) dimensional case (corresponding to equations (104-1) – (104-4)) we get 
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Using (124) and (124-1), the special relativistic cases of equations (120) – (121) in (1+2) dimensions, are 

given by, respectively: 
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where (for this special case we may suppose:  000  Tm ) 
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    For (1+3) dimensional casees (corresponding to the field equations (105-1) – (105-4)) of equations    

(120) – (121), we have
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where we have 
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Using (125) and (125-1), the special relativistic cases of equations (120) – (121) in (1+3) dimensions, are 

given by, respectively: 
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where (for this special case we may suppose:  000  Tm ) 
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  And for (1+4) dimensional case of (120) – (121), corresponding to the field equations (106-1) – (106-4), 

we obtain:
1
  

 

 

 

 

 

 

 

 

 

 

------------------------------------------------------------------------------------------------------------ 

1.  For this case (just for clarity) the square matrices 
 and   have been written in detail, however, these square matrices, 

definitely, could be written by formulations similar to relations (123) and (12-1) (including the special relativistic cases          

(120-1) – (120-3) and (121-1) –(121-3)).  
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The size of matrices   and 
~  in field equations (120) – (121) for (1+5) dimensional space-time is 

32×32, and the column matrices F and R  are defined as follows: 
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3-7. In this Section, as another direct consequence of the assumption (3) in Section 1-1, and also the 

unique structure of the derived general relativistic wave equations (101-1) – (101-4) (including equations  

(102) – (105-4) and so on as particular cases of these equations for various space-time dimensions), we 

conclude that the universe cannon have more than four space-time dimensions. 

    

As it was mentioned in Section 3-4, in the context of relativistic quantum mechanics, the relativistic 

(single-particle) wave equations (120) – (121) (equivalent to equations (101-1) – (101-4), including 

equations  (102) – (106-4) and so on for various dimensions) give an equivalent tensor representation of 

the half-integer spin single-particle fields (defined solely in (1+2) dimensional space-time by the matrices 

(124-1), or matrices (B-2) for the special relativistic case in Appendix B), as well as a tensor 

representation of the integer spin single-particle fields (defined solely in (1+3) dimensional space-time by 

the matrices (125-1), or matrices (B-3) for the special relativistic case in Appendix B). 

 

Meanwhile, it is noteworthy that the half-integer spin particle fields derived solely by this approach,  

is compatible with various experimental data related to two (spatial) dimensional property for electrons. 

These experiments include two-dimensional electron gas (2DEG), that is a gas of electrons free to move 

in two dimensions, but tightly confined in the third [38, 39]. For the latter case, it has been shown in 

several works that the Dirac spinor field in (1+2) dimensional space-time, could be also isomorphically 

represented by (anti-symmetric two-index) tensor representation of the Lorentz group – which is 

equivalent to three dimensional case of the single-particle tensor field (120) defined by matrices (124-1) 

(or matrices (B-2) for the special relativistic case in Appendix B) [29, 31]. In fact, it has been shown that 

in three dimensional space-time all the basic effects attributed to spinors can be also explained using the 

tensor formulation of the relativistic wave equation for particles of spin-½ (as well as any particle of 

half-integer spin exhibit Fermi–Dirac statistics).  Moreover, for a particle of spin-1 (as well as any particle 

of integer spin exhibit Bose–Einstein statistics) it has also been shown that its spinor representation could 

be equivalent to an anti-symmetric two-index tensor representation of the Lorentz group [30, 31]. 

 

The relativistic wave equations could be also represented by the left and right handed components of 

the wave-functions   ,  (defined by formulas (123) – (127)). We can basically show that by 

the assumption that the source-free particle fields preserve chiral symmetry [32 - 37], some or all the 

components of the wave functions   ,
 
in relativistic single-particle wave equations (120) – 

(121) should vanish in certain space-time dimensions (for dimensions D >5 all the wave-functions’ 

components will vanish).  

 

Hence, if the components of tensor fields  FR ,  equivalently be represented by the wave-functional 

components   , ,
 
using the formula (123) for two dimensional case of equations (120) – (121) 

(corresponding to the field equations (103-1) – (103-4), where μ, ν, ρ ,σ = 0,1; and  = –  ,       

 = –  ), we have: 
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and 
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So, in (1+1) dimensional cases of the relativistic wave equations (120) – (121), chiral symmetry implies 

that the wave-function vanishes. 

 

For three dimensional space-time case of equations (120) – (121), i.e. equations (120-2) – (121-2) 

(corresponding to the field equations (104-1) – (104-4), where μ, ν, ρ ,σ = 0,1,2;  = –  ,  = – 

 ), we get 
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Thus, the components 02 ,  02  in (129) vanish, due to assumption of the chiral symmetry, and the 

particle fields be represented by two components wave-functions F  and R . This result (for example) 

for F
 
is fully compatible with the tensor representation of the Dirac spinor field in (1+2) dimensional 

space-time [29, 48]. 
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Subsequently, for four dimensional cases of equations (120) – (121), i.e. equations (120-3) – (121-3) 

(corresponding to the field equations (105-1) – (105-4), where μ, ν, ρ ,σ = 0,1,2,3,  and   = –  , 

 = –   ,  = –  ) we obtain, respectively: 
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This result for F and R  is also fully compatible with the integer spin particle fields describing solely 

by six components wave-functions [35, 49]. 
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For relativistic wave equations (120) – (121) in five dimensional space-time (corresponding to the single-

particle field equations (106-1) – (106-4), where μ, ν, ρ ,σ = 0,1,2,3,4;  = –  ,  = –  ), we 

obtain 
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Thus, assuming that the source-free cases of the relativistic (single-particle) wave equations (120) – (121) 

in five dimensional space-time (specified by (131)) must preserve chiral symmetry,  implies the wave 

function‘s components 21314110 ,,,  ,   21314110 ,,,  and   21314110 ,,,  vanish, 

where, consequently, one of the spatial components (that is 1p̂ ) of the covariant derivative vanishes as 

well. Thus the equations (120) – (121) are not formulable in five dimensional space-time, and reduced to 

(be equivalent to) their four dimensional cases, i.e. (130). Therefore, based on the assumption (3) in 

Section 1-1, and also the unique structure of general relativistic single-particle wave equations 

derived, the universe is not definable in (1+4) dimensional space-time.  

In addition, the size of matrices   and 
~  in equations (120) – (121) in six dimensional space-time is 

32×32, and the wave functions F  and R  representing by their left and right handed components, are 

given by (where μ, ν, ρ ,σ = 0,1,2,3,4,5;  = –  ,  = –  ): 
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Thus due to the chiral symmetry, in six dimensional space-time all the components of wave-functions  

F  and R
 
should vanish. Consequently, the equations (120) – (121) are not formulable in (1+5) 

dimensional space-time. Hence based on the assumption (3) in Section 1-1 and also the unique structure 

of the general relativistic particle wave equations derived, the universe is not definable in (1+5) 

dimensional space-time as well. There is precisely the same result for the higher dimensional cases of 

relativistic wave equations (120) – (121). Consequently, based on our axiomatic approach (including the 

basic assumptions   (1) – (3) in Section 1-1, the universe cannot have more than four space-time 

dimensions.    
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3-8. On the Asymmetry of Left and Right Handed (interacting) Particles 

In Section 3-7, we concluded that the general relativistic (single-particle) wave equations (120) – (121) 

are definable solely in  D ≤ 4 dimensional space-time. In particular, three and four dimensional cases of 

equations (120) – (121), i.e. equations (120-2) – (121-2) and (120-3) – (121-3),    each equation 

particularly includes a set of equations that merely contain the divergences of wave-functions   and 

 . These sets of massive equations for the non source-free cases (i.e. for ,0)( EJ  0)( GJ ) of 

equations (120) – (121), respectively are as follows: 

 

     For three dimensional case we obtain, 
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       where we have (using (129)): 
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And for four dimensional cases, the mentioned sets of equations read, 
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where we have (using (130)): 
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Equations (133-1) – (133-2) and (134-1) – (134-2) describe the relationship between the static fields 

(corresponding solely to the left handed components of fields   , ) and the charged (or 

massive in case of gravitational field) particles as the sources of these fields. On this basis, massive 

and non source-free cases of the relativistic particle field equations (120) – (121) (including 

equations (133-1) – (133-2) and (134-1) – (134-2)) definitely, violate chiral symmetry of these 

relativistic (single-particle) wave equations. Moreover, this also expressly means that the sources of 

all the interacting massive fields should be made solely by the left-handed particles.  
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4.  Conclusion 
 

This article is based on my previous publications (Refs. [1], [2], [3], 1997-1998), and also my thesis 

work [4] (but in a new generalized and axiomatized framework). As it was mentioned in Sections 1 

and 2, the main arguments and consequences presented in this article (particularly in connection with 

the mathematical structure of the laws governing the fundamental forces of nature) followed from 

these three basic assumptions:  

 

(1)- “Generalization of the algebraic axiom of nonzero divisors for integer elements (based on the 

ring theory and the matrix representation of generalized Clifford algebra, and subsequently, 

constructing a definite algebraic linearization theory);” 

   This is one of the new and axiomatic concepts presented in this article (see Section 2-1, formula (23)). 

(2)- “Discreteness of the relativistic energy-momentum (D-momentum);”                              

   This is a basic quantum mechanical assumption. Quantum theory, particularly, tells us that energy and 

momentum are only transferred in discrete quantities, i.e., as  integer multiples of the quantum of action 

(Planck constant) h.  

 

(3)- “The general relativistic massive forms of the laws governing the fundamental forces of nature, 

including the gravitational, electromagnetic and nuclear field equations, in addition to the 

relativistic (half-integer spin) single-particle wave equations, are derived solely by first quantization 

(as a postulate) of linearized (and simultaneously parameterized, as necessary algebraic conditions) 

unique forms of the relativistic energy-momentum relation –  which are defined algebraically for a 

single particle with invariant mass m0).”  We also assume that the source-free cases of these fields 

have ―chiral symmetry‖. 

In Section 2, we presented a new axiomatic matrix approach based on the algebraic structure of ring 

theory (including the integral domains [5]) and the generalized Clifford algebra [40 - 47], and 

subsequently, we constructed a linearization theory. In Section 3, on the basis of this (primary) 

mathematical approach and also the assumption of discreteness of the relativistic energy-momentum (D-

momentum), by linearization (and simultaneous parameterization, as necessary algebraic conditions), 

followed by first quantization of the special relativistic energy-momentum relation (defined algebraically 

for a single particle with invariant mass m0), we derived a unique and original set of the general 

relativistic (single-particle) wave equations directly. These equations were shown to correspond uniquely 

to certain massive forms of the laws governing the fundamental forces of nature, including the 

Gravitational, Electromagnetic and Nuclear field equations (which based on our approach were solely 

formulable in (1+3) dimensional space-time), in addition to the (half-integer spin) single-particle wave 

equations (that were formulated solely in (1+2) dimensional space-time). Each derived relativistic wave 

equation is in a complex tensor form, that in the matrix representation (i.e. in the geometric algebra 

formulation, including equations (120) and (121)) it could was written in the form of two coupled 

symmetric equations – which assumedly have chiral symmetry if the particle wave equation be 

source-free. In fact, the complex relativistic (single-particle) wave equations so uniquely obtained, 
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corresponded to certain massive forms of classical fields including the Einstein, Maxwell and Yang-

Mills field equations, in addition to the (half-integer spin) single-particle wave equations such as the 

Dirac equation (where the Dirac spinor field is isomorphically re-presented solely by a tensor field in 

three dimensional space-time [29, 31]). We should note that the unique set of general relativistic 

wave equations derived by our approach doesn‘t include the Klein-Gordon equation - and so on - 

which describes the spinless elementary particles;  thus based on our assumption (3) of Section 1-1, 

we may conclude that any spinless particle should be a composite particle (this includes the Higgs 

particle as well, however the Higgs mechanism could be formulated by a composite Higgs particle as 

well). In particular, in Section 3-5, a unique massive form of the general theory of relativity – with a 

definite complex torsion – was shown to be obtained solely by first quantization of a special 

relativistic algebraic matrix relation. Moreover, in Section 3-4-1, it was shown that the ―massive‖ 

Lagrangian density of the obtained Maxwell and Yang-Mills fields could be also locally gauge 

invariant – where these fields were formally re-presented on a background space-time with certain 

(coupled) complex torsion which is generated by the invariant mass of the gauge field carrier 

particle. Subsequently, in agreement with certain experimental data, the invariant mass of a particle 

(that actually would be identified as massive photon) was specified (formula (115-4)), which is 

coupled with background space-time geometry. In Section 3-7, based on the unique mathematical 

structure of the general relativistic single-particle fields derived (i.e. equations (120) - (121)) and also 

the assumption of chiral symmetry as a basic discrete symmetry of the source-free cases of these 

fields, we showed that the universe cannot have more than four space-time dimensions. Furthermore, 

in Section 3-8, a basic argument for asymmetry of the left and right handed (interacting) particles 

was presented. In addition, in Section 3-4-2, on the basis of definite mathematical structure of the 

field equations derived, we also concluded that magnetic monopoles – in contrast with electric 

monopoles – could not exist in nature.

 

 

The results obtained in this article, demonstrate the efficiency of linearization theory as a new 

mathematical axiomatic approach formulated for certain algebraic structures (presented in Section 2) 

and a wide range of its possible applications in mathematics and fundamental physics. 
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Appendix A. 

As it was mentioned in Sections 3-3 and 3-4, the field strength tensor ..,X  in the derived general 

relativistic single-particle field equations (101-1) – (101-4), for (1+3) and higher space-time dimensions 

should be presentable by a formula of the type:  ..,..,..,
ˆˆˆˆ BABAX   , for some quantities 

 ..,
ˆ,ˆ BA  , where this formula should be also ―derivable‖ from the equations (101-1) – (101-4). As we 

show below, this condition follows from the conditions that appeared for integer parameters is in 

relativistic matrix energy-momentum relations (95) – (96) (formulated for four and five space-time 
dimensions), i.e. conditions (95-1) and (96-1) – (96-5), and also taking into account the substitution rule 
(100) as part of the first quantization (as a postulate) procedure and shows that there is one-to-one 

correspondence between ―the  parameters is ―  and  ―the components of field strength tensor ..,X  and 

the components of covariant quantities 
)(

..,

X

  (which by formula (101-3) defines a covariant current as the 

source of field ..,X )‖. We should note that in the same manner, for the higher dimensional cases of 

matrix energy-momentum relations (obtained in Section 3-1), there are the similar conditions. 

First, using the solutions (73) and (84) obtained in Section 2-6 for quadratic equations (68) and (75), the 
general solutions of conditions (95-1) and (96-1) – (96-5) can be written as follows, respectively: 
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The substitution rule (100) as part of the first quantization procedure of matrix relations (95) and (96) 

(along with the obtained field equations (101-1) – (101-4) by first quantization of relations (92) – (96) and 

so on), and also the general solutions (A-1) and (A-2) imply, respectively: 
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Thus, we should try to derive and specify the quantities Â  and ..,B̂  from the field equations (101-1) –   

(101-4), for various rank (such as  RHF ,, ,…) of the general field strength tensor ..,X . As it 

was mentioned in Section 3-4, the case of rank four of tensor ..,X  is compatible with Riemann 

curvature tensor, and we principally assume that these are equivalent. So, let we start with the Riemann 

curvature tensor (as a mathematical tensor with a definite structure), we have 
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From (A-5) and (A-6) we get 
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and D


 is a differential operator D


 given by 
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As the next step,  let we consider a rank two field strength tensor F  (as a particular case of general field 

strength tensor ..,X , with a minimum rank). Hence from the field equations (101-1) – (101-4) we can 

obtain 

                                                                
, AAF 



                                              
 (A-15)

  
 

Where we can also re-write formula (A-15) as follows, 

                                                                 
 BABAF ˆˆˆˆ 

                                                
(A-16) 

 

where                                           

                                                               .ˆ,ˆ
 ABA 


                                                 (A-17) 

For a rank three field strength tensor H  (as a special case of general field strength tensor ..,X ) and 

higher rank field strength tensors, from the field equations (101-1) – (101-4) the formulas similar to (A-7) 

and (A-15) (which are determinable for rank two and rank four field strength tensors  RF , ) could 

not be obtained. Therefore, we may conclude that  RF ,  are the only field strength tensors which are 

compatible with formula (100) and the general field equations (101-1) – (101-4).  
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Appendix B. 

 

In this Appendix we write (explicitly) the special relativistic cases of contravariant real matrices   and 


~

  –  that are hermitian and generate Clifford algebras Cℓ1,1, Cℓ1,2, Cℓ1,3, Cℓ1,4   and so on –  indicated 

in the general covariant single-particle wave equations (120) – (121). Note that for special relativistic 

cases of these equations, matrices 
~

 are simply given by relation Imkm 00
~ 
 ,  where I is the 

identity matrix. So, below only the matrices   are written (where the signature is (+ – –...–), see the 

sign conventions (97)): 

 

   Hence for (1+1) dimensional space-time we have  
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   For (1+2) dimensional space-time we get  

 

.

0010

0001

1000

0100

0

0

,

0001

0010

0100

1000

0

0
,

1000

0100

0010

0001

)(0

0

01

01

2

32

32

1

10

10

0




























































































































                                                                                                                                                       (B-2) 

 

   Subsequently, for (1+3) dimensional cases of equations (120) – (121) (corresponding to particle field 
equations (105-1) – (105-4)) we have, respectively:  
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   In addition, matrices 
  for five dimensional cases of equations (120) – (121) (corresponding to 

equations (106-1) – (106-4)) are given by, respectively 
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