Characterization of the Chicken PKR: Polymorphism of the gene and Antiviral Activity against Vesicular Stomatitis Virus

Jae-Hong Ko, Atsushi Asano, Yasuhiro Kon, Tomomasa Watanabe, and Takashi Agui

(Accepted for publication: October 17, 2003)

Abstract

The double-stranded RNA-dependent protein kinase (PKR) is induced in mouse and human cells on treatment with interferon. In this study, we have cloned and determined the nucleotide sequences of chicken PKR cDNA in various chicken breeds. Chicken PKR was a 550-amino-acid protein as deduced from the cDNA open reading frame (ORF), and there were specific domains (two double-stranded RNA binding domains (DRBDs) and numerous kinase subdomains) characterized in RNA binding proteins and kinase families. Furthermore, it was suggested that chicken PKR was polymorphic. Transfected cell clones expressing chicken PKR mRNA were demonstrated to confer antiviral responses to vesicular stomatitis virus, except for Koshamo type-3 (KS-3). KS-3 PKR, which has an amino acid substitution at position 507 (Arg to Gln), showed amphibious antiviral responses. This specific amino acid substitution was considered to determine the antiviral function of chicken PKR in addition to essential domains as DRBDs and kinase subdomains.

Key Words: Chicken; PKR; Polymorphism; Vesicular stomatitis virus

Introduction

Interferons (IFNs) are a family of regulatory cytokines that possess a wide range of biological activities. Type I IFNs are produced in virtually all cell types after viral infection, and then induce translation of a set of genes that mediate an antiviral state. A double-stranded RNA (dsRNA)-dependent protein kinase, designated PKR, is one of

1Laboratory of Experimental Animal Science, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
2Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
3Animal Breeding and Reproduction, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
*Corresponding author: Takashi Agui, Laboratory of Experimental Animal Science, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
Tel/Fax: +81-11-706-5106, E-MAIL: agui@vetmed.hokudai.ac.jp
those proteins. PKR plays a central role in the regulation of protein synthesis in virus-infected and IFN-treated cells and has been implicated in the regulation of other activities including cell proliferation and tumor suppression.

Human PKR is a 551-amino-acid protein with a molecular mass of about 62 kDa as deduced from the cDNA open reading frame (ORF). By contrast, the mouse and rat PKR proteins are somewhat smaller, 515 and 514 amino acids, respectively. The N-terminal region of the PKR protein possesses a repeated motif of double-stranded RNA binding domain (DRBD), which contains about 20 amino acid residues. In addition, there are eleven catalytic subdomains of protein serine/threonine kinase are in the C-terminal half of PKR.

Activation of PKR enzymic activity coincides with autophosphorylation at serine and threonine residues. Activated PKR catalyzes the phosphorylation of protein synthesis eukaryotic initiation factor 2 (eIF-2) at serine 51 of the α subunit. This modification of eIF-2 leads to the formation of a stable complex between eIF-2 and the guanine nucleotide exchange factor eIF-2B, resulting in the inhibition of translation. On the other hand, a number of viruses including influenza virus, adenovirus, Epstein-Barr virus, vaccinia virus, herpes simplex virus type I and hepatitis C virus have specific mechanisms to defeat PKR. Nevertheless, it is obvious that PKR plays a key role in the protection at the early stage of the infection of these viruses.

Despite its important role in inhibition of viral replication, only few studies were carried out about PKR of domestic animals. Here, we have isolated and sequenced a full-length cDNA encoding PKR from chicken. Furthermore, we analyzed the antiviral activity of chicken PKR to vesicular stomatitis virus (VSV) with transfected BALB3T3 cells. Our present study revealed that chicken PKR has an inhibitory function to replication of VSV.

Materials and Methods

Chicken Breeds

Seven Japanese native chicken breeds, Kojidori (KJ), Koshamo (KS), Nagoya (NG), Rhode Island Red (RI), Hokkaido Shamo (SHK), Satsumadori (SM), and White Leghorn (WLK) were used in this study.

Cell Culture

Embryonic fibroblasts were established from 11-day-old chicken embryos. The fibroblasts were incubated in Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Trace Biosciences, NSW, Australia). Secondly passaged cells in culture were used for experiments. A murine fibroblast cell line, BALB 3T3, was maintained in the same culture medium.

Cloning and Sequencing of Chicken PKR

RNA prepared from embryonic fibroblasts treated with the IFN inducer, poly(I)/C for 7h, was used for synthesis of double-stranded cDNA as a PCR template. The 5' and 3' rapid amplification of cDNA ends (RACE) of chicken PKR cDNA was performed using the PCR primers NE5-F and NE2-R, respectively. The sequence showing homology between the known other mammalian PKRs, and the adaptor primers API (5' -CCA TCC TAA TAC GAC TCA CTA TAG GGC-3') and AP2 (5' -ACT CAC TAT AGG GCT CGA GCG GC-3'), using a Marathon cDNA amplification kit (Clontech, Palo Alto, CA, USA). NE2-F and NE3-R were generated based on the sequences of progressively amplified 5' - and 3' - RACE to obtain the ORF of chicken PKR.
Table 1. PCR Primers for Characterization of Chicken PKR

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE 1 - F</td>
<td>234-253</td>
<td>5'-ACTTTGAGATAACCTAGGAG-3'</td>
</tr>
<tr>
<td>NE 2 - F</td>
<td>393-412</td>
<td>5'-CATCATAATTGGCTGAGATAP-3'</td>
</tr>
<tr>
<td>NE 3 - F</td>
<td>510-529</td>
<td>5'-CCTGAGTTGAAAGTGGG-3'</td>
</tr>
<tr>
<td>NE 4 - F</td>
<td>691-710</td>
<td>5'-TGCTCCTCTCAGTTGACTAC-3'</td>
</tr>
<tr>
<td>NE 1 - R</td>
<td>1009-990</td>
<td>5'-ATACCCCATGACTCAGACTG-3'</td>
</tr>
<tr>
<td>NE 5 - F</td>
<td>1413-1432</td>
<td>5'-TATTATTGCACTGGAAAGG-3'</td>
</tr>
<tr>
<td>NE 2 - R</td>
<td>1501-1482</td>
<td>5'-TGGATGAAAGGCAAGAAAC-3'</td>
</tr>
<tr>
<td>NE 6 - F</td>
<td>1820-1839</td>
<td>5'-GCTGGGATTGATTTGGTTTG-3'</td>
</tr>
<tr>
<td>NE 3 - R</td>
<td>2111-2092</td>
<td>5'-ATCACATGCCAACAAGACG-3'</td>
</tr>
<tr>
<td>NE 4 - R</td>
<td>2754-2735</td>
<td>5'-CAGATGCCACAGGAATGAGC-3'</td>
</tr>
<tr>
<td>NE 5 - R</td>
<td>2943-2924</td>
<td>5'-CGTTAAAATCCAGATGGCAT-3'</td>
</tr>
</tbody>
</table>

cDNA. Amplified ORF fragments were cloned into pGEM-T Easy vector (Promega, Madison, WI, USA) and DNA sequences were determined using an ABI PRISM Big Dye terminator cycle sequencing ready reaction kit (Applied Biosystems, Foster City, CA, USA) with an ABI PRISM 377 genetic analyzer (Applied Biosystems).

Construction of Chicken PKR Expression Vector and Transfection into 3T3 Cells

The complete coding region of chicken PKR cDNA was cloned into the Not I site of the expression vector pCI-neo (Promega), which contains the human cytomegalovirus immediate-early enhancer/promoter and the neomycin phosphotransferase gene. After chicken PKR cDNA constructed with the expression vector was transfected into BALB 3T3 cells using the FuGENE 6 transfection reagent (Roche Diagnostics, Indianapolis, IN, USA), essentially as recommended by the manufacturer, transfected clones were selected in medium containing 500 μg/ml of G418 (Sigma, Saint Louis, MO, USA).

RT-PCR

Total RNA (2 μg) from 3T3 cells was reverse-transcribed using oligo dT primer and 50 U of reverse transcriptase (ReverTra Ace, Toyobo, Tokyo, Japan) in a total volume of 10 μl. NE3-F and NE1-R were used as primers for the PCR of the expressed chicken PKR gene in transfected 3T3 cells. As an internal control for the estimation of approximate degree of the chicken PKR gene expression, mouse β-actin mRNA was used. PCR was performed with 1 μl of first-strand cDNA as described above, using 2.5 U of Taq polymerase (Sigma) in 1.5 mM MgCl₂, 0.2 μM of each primer, and 20 μM of each dNTP in a total volume of 25 μl, as recommended by the supplier. The cycling profile comprised an initial denaturation step for 5 min at 94 °C followed by 35 cycles at 94 °C for 1 min, 58 °C for 1 min, 72 °C for 1 min, and a final extension at 72 °C for 5 min. An aliquot of each PCR product was electrophoresed on a 1.5% agarose gel and visualized with ethidium bromide.

VSV Infection Experiment

Recombinant VSV (VSVΔG'-G) carrying the green fluorescent protein (GFP) gene instead of the G protein gene was kindly provided by Dr. M.A. Whitt (University of Tennessee, Memphis, Tenn.) through Dr. A. Takada (Institute of Medical Science, University of Tokyo). Infectivity of VSVΔG'-G in 3T3 cell clones was determined by counting the number of GFP-expressing cells in 10-20 microscopic fields as shown in previous paper⁴⁻⁻³⁻⁻. At least three independent experiments were carried out for each clone.

Statistical Analysis

Data were expressed as means ± standard errors of the means. Statistical significance was evaluated by one-factor analysis of variance with Fisher's protected least significant difference test. P < 0.05 were considered statistically significant.

Results

Cloning of cDNA Encoding Chicken PKR
Oligonucleotide primers NE5-F and NE2-R have been synthesized based on regions of homology between the known other mammalian PKRs (Table 1). We treated fibroblasts from chicken embryos with poly (I)/ (C) to induce expression of PKR mRNA. Substantially, strong PKR mRNA expression was found in the culture with poly (I)/ (C) (data not shown). Additional primers, shown in Table 1, were designed based on the sequences of amplified 5′- and 3′-RACE products and used to amplify cDNA fragments for cloning and sequencing of chicken PKR. Sequence analysis showed that chicken PKR was a 550-amino-acid protein as deduced from the cDNA ORF, and there were specific domains characterized in kinase families such as two DRBDs and numerous kinase subdomains (Fig. 1). Homologies of the chicken PKR in the amino acid sequence with other species PKR were 34.9, 32.7, and 33.6% for human, mouse, and rat, respectively.

Primary Structure of the Chicken PKR Protein

Comparisons of regulatory domains of the PKR between chicken and other species were shown in Table 2. The consensus motifs of DRDB were highly conserved in chicken PKR. On the other hand, the conserved features of protein kinases have been reported by the alignment of the catalytic domain amino acid sequences from 65 different members of the protein kinase family. In the human PKR nine subdomains with conserved kinase motifs show striking homology. Therefore, we compared nine kinase motifs of chicken PKR with those of other animals, except for subdomains V and X, since kinase motif is not conserved in these two subdomains (Table 3). The kinase motifs of chicken PKR showed high homology with those of other animals, 74% for human, 82% for mouse, and 77% for rat. These comparisons of kinase motifs revealed that chicken PKR possess well-conserved kinase domains, and homologies in the C-terminal half containing protein kinase domain between chicken and human, mouse, and rat were 47.48, and 47%, respectively. Furthermore, we analyzed the nucleotide sequences of chicken PKR cDNA from one or two embryos each of many breeds, and compared them with each other. Five independent combinations on the basis of the amino acid substitutions at three residues were observed in the chicken PKR cDNA examined (Table 4).

Chicken PKR of Some Breeds Confers Antiviral Activity to VSV

To confirm the biological function of chicken PKR, we established cell lines constitutively expressing chicken PKR mRNA. SHK-1, RI, KS-2 and KS-3, WLK-1, and KJ-2 were used as representatives of the group as classified in Table 4. Their PKR cDNA constructs with plasmid pCI-neo were transfected into a murine fibroblast cell line, BALB 3T3, which is derived from the BALB/c mouse that has been reported as a sensitive strain to VSV infection. After transfection, we selected the clones constitutively expressing respective PKR mRNA using G418. Then we analyzed the antiviral property of each clones against VSV. As shown in Figure 2, the cell lines expressing chicken PKR from RI, KS-2, WLK-1, and KJ-2 showed antiviral responses to VSV infection, with a lower number of infected cells than those of control 3T3 cells, except for one clone (f 3) of KJ-2 that showed no amplification PKR fragment in RT-PCR. However, the cell lines expressing chicken PKR from KS-3 conferred amphibious response. Thus, two clones (d1 and d2) showed antiviral responses, while one clone (d3) did not. Therefore, further independent infection experiments using other clones from KS-3 were performed. Three of six cell clones
Fig. 1. Nucleotide and deduced amino acid sequences of chicken PKR cDNA. Numbers to the left of the sequence show the positions of nucleotides and amino acids. The double-stranded RNA binding motifs are underlined. The conserved subdomains of the protein kinases are shown in the boxes.
Characterization of Chicken PKR

1371 GTGAAAGACCTCGCGGAACTTGGAACATGAAAACATAGTCGGATATTTGGACAGCTGGAA
1381 VKELEANLHEFNIYRILYCSWEN
1431 GAACTGACATATGATATTACCAAACCTCAGTAAAGAATTCATCGACTGTTTCTTGCC
1441 GTDHMNYPDSSKNSIVAVS
1491 CTCTCATTCCAAATGGGAATTATGTGAAAACAGGCGACATTTGAAAAATTGAATGAAATATATATAAT
1541 FIELCEQGQPLEKHITENN
1591 GAGAGAAACCACCAACTACATCAATTAGTGGCCAAAGAACAATTTTTATAAAATACACGAAAGGA
1601 GGNPNYHMMAQDKQI
1651 GTGGAGTATATTCATTCTAAAGATTTAATTCACAGAGACCTCAAGCCTCAGAATATATC
1661 EVYISHSKDLIRHLQKPINF
1711 CTATCATATGAAAGTAAAAATAAAAAATTTGGTACCTTTGCTGACTCTCTGTGACATAC
1721 LSYEGKIKIGDFGCLVSVTY
1771 AACCCTCTGAATAGAAGCCAGGGAAACAGCATATATATGACCCAGACAGTGGGGGAC
1781 NPLTKRNGTQSYNAPEFQFGD
1831 AGATATGGAAAGGAGTACATTTATATGGCCTGGGATTATGGTTTGGAAATATTTCTCTCT
1841 RYGKEVTDYTALGLINFELS
1891 GCATTTGTCAGTCTCATATGAAAGAAAACAGGTAATGGCAGAGTTCATGAGCTTT
1901 ALVSHHEKKNKVQUBVRGDL
1951 CCACCTGAACCCCAAGCGATTTAAATCCAGCTACCAATATCAAAAAAGACGCTCTTCA
1961 PLNFTKRFKFIQVIPIKKMLS
1971 GAAGACACCCCTAAAAGATGCCTGCTGCATCTCAAAATTCATTTGATATTTTAAATCCTGGTGAAT
2021 EDPSKRCASASIIDLKSRO
2031 AAAAGAACACTGCATAAAAAGCTCACAGCTCAATATGACCTTACTTGAAGGGCTTGACATG
2041 KDNSHAYSH*

2091 TGCCTTTCCTGTGGACATCTGACACCTTTCCTCAGATATGTCTACGTCATATTTATTATT
2131 TACAAAGATTTTCTCCCTTTTAAAGACCCAGGACAGGATCTAGYGTTGTACGTGGAAGGACGCTACTT
2171 TTTGTGACTGTTACCTTTGAGACCCCTCGAGTTTGGTTTTCTCTCCCTTATAGGA
2211 ACAGGTAGGTCTCCTCTTTAATACAAAGATCTCCTCCTCCTAATACGACGTTTAATACGC
2251 AAAACCTTTTCTCAAGAGAGACACTCAGCAGCATTTCTCCCTTATACGACGTTTAATACGC
2291 CTATTATGGAATTCCTATGAGCAGAATATGATTTAGTACCTAAGAACCCTCTGTGCGC
2331 CTATCGTCGCTACCAACATAGAGATYAGACTAGCAGATTACTCTTCTGTGATATATCT
2371 TAAAGATTTTCTGTCGACTTTAATGAAACAAACACTTGCGAGGAGAAAAACAGGCGCAAA
2411 TTATTCCTTTCTGCGCTCTCTTTTTTGAAATATTGTTAGGAAAAAGGTCAGCTACCATCTCTTGAGC
2451 TTTGCTTTATTTCCATTTAAAGAGATGGCCCTTACAGTTACTCTGTGTATATG
2491 ATTAAGGATTACGCTATATGTTCTTTTCTAAGGTTAATAACAGGAAAGATATGATATAGC
2531 AAAAATATGAAATGATTTGCTATCTTTATTATATACGTTATGAGGCCAA
2571 ICDGCTTATTTTTTGATGCTTACACACCTCTGTCCTGAGC
2611 TATTTTCCGAAAAAA

...
Table 2. Comparison of Regulatory Domain (RD) in Various Animal PKRs

<table>
<thead>
<tr>
<th>DRBD 1</th>
<th>DRBD 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken PKR</td>
<td>GVGKSKKEAKAAAAAKTWDMIE</td>
</tr>
<tr>
<td>Human PKR</td>
<td>GEGRSKKEAKAAAAKLADEVIL</td>
</tr>
<tr>
<td>Mouse PKR</td>
<td>AKGKSKQEBARNAA-AKLAVDIL</td>
</tr>
<tr>
<td>Rat PKR</td>
<td>GEGRSKQEEKANAAKLADEVIL</td>
</tr>
<tr>
<td>Consensus</td>
<td>GKGKNSLAVAKQAAAKEAY-EVL</td>
</tr>
</tbody>
</table>

DRBD; dsRNA binding domain.

Table 3. Comparison of Kinase Domains (KD) in PKRs of Various Species

<table>
<thead>
<tr>
<th>KD</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken PKR</td>
<td>IGKGGFGQV</td>
<td>AIEKV</td>
<td>E</td>
<td>NIV</td>
<td>GVE/HSKDLHDLKPG</td>
<td>IDGFLG</td>
<td>GTQSYMPE</td>
<td>D YA LGL</td>
<td>KKLSEDFPSKR</td>
<td></td>
</tr>
<tr>
<td>Human PKR</td>
<td>IG/KGGFGQV</td>
<td>VIEKV</td>
<td>E</td>
<td>NIV</td>
<td>GVDY/SHS/HLHDLKPS</td>
<td>IDGFLG</td>
<td>GTLQYMPS</td>
<td>D YaLGL</td>
<td>LKLLSSK PEDR</td>
<td></td>
</tr>
<tr>
<td>Mouse PKR</td>
<td>IGSGGFGQV</td>
<td>AIKRI</td>
<td>E</td>
<td>NIV</td>
<td>GVD/HSKHDLHDLKPG</td>
<td>IDGFLG</td>
<td>GTQSYMPS</td>
<td>D YALGL</td>
<td>LKLLSSK PEDR</td>
<td></td>
</tr>
<tr>
<td>Rat PKR</td>
<td>IGXXGFGQV</td>
<td>AIEKV</td>
<td>E</td>
<td>NIV</td>
<td>GXXH/SHS/HLHDLKPG</td>
<td>IDGFLG</td>
<td>GTQYMPS</td>
<td>D YALGL</td>
<td>LKLLSSK PEDR</td>
<td></td>
</tr>
<tr>
<td>Consensus</td>
<td>N</td>
<td>V</td>
<td>I</td>
<td>A</td>
<td>L</td>
<td>I</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Amino Acid Substitutions in PKR from Various Chicken Breeds

<table>
<thead>
<tr>
<th>Nucleotide (amino acid)</th>
<th>967 (186)</th>
<th>1110 (234)</th>
<th>1930 (507)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breeds</td>
<td>G(Ser)</td>
<td>A(Ile)</td>
<td>G(Arg)</td>
</tr>
<tr>
<td>KJ-1, KS-1, SHK-1, and SM-1</td>
<td>T(Ile)</td>
<td>A(Ile)</td>
<td>G(Arg)</td>
</tr>
<tr>
<td>KS-2, NG, RI, SHK-2, and SM-2</td>
<td>T(Ile)</td>
<td>A(Ile)</td>
<td>G(Arg)</td>
</tr>
<tr>
<td>KS-3</td>
<td>G(Ser)</td>
<td>G(Val)</td>
<td>G(Arg)</td>
</tr>
<tr>
<td>WLK-1</td>
<td>T(Ile)</td>
<td>G(Val)</td>
<td>G(Arg)</td>
</tr>
<tr>
<td>KJ-2 and WLK-2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KJ, Kojodori; KS, Koshamo; NG, Nagoya; RI, Rhode Island Red; SM, Satsumadori; SHK, Hokkaido Shamo; WLK, Hokkaido White Leghorn.

expressing KS-3 showed antiviral responses and the other three did not. In addition, no nucleotide changes were detected in sequence analysis of RT-PCR fragments from 3T3 cell lines transfected with KS-3 (data not shown).

Discussion

PKR is a serine/threonine protein kinase, whose activity is regulated by double-stranded RNA. It is normally present in low amounts in mammalian cells. However, its expression is induced by INFs in response to viral infection. Analysis of chicken PKR, in this study, showed that chicken PKR was a 550-amino-acid protein as deduced from the cDNA ORF. Multiple copies of the DRBD are found in many of the RNA binding proteins including PKR of human and mouse, and only one copy is found in other related proteins including NS34-Rot, E3L-Vv, PAC1-Yac, and RNaseIII-Ec. It was confirmed that DRBD was conserved in chicken PKR as that of human, mouse, and rat (Table 2). In addition, the conserved features of protein kinases have been reported by the alignment of the catalytic domain amino acid sequences from 65 different members of the protein kinase family. Analysis of the human PKR reveals
striking homologies in the nine subdomains with conserved kinase motifs. In Table 3, chicken PKR showed a high similarity in kinase motifs to PKRs from other animals. Our results of sequence analysis in this study revealed that PKR is conserved very well among various chicken breeds.

The replication of encephalomyocarditis virus, HIV-1, vaccinia virus, and VSV is reduced in cell culture by overexpression of the cDNA encoding wild-type PKR but not by expression of the mutant PKR with amino acid substitution in the catalytic subdomain II (K296R), which lacks kinase activity. In the result of sequence analysis, PKRs from various chicken breeds showed no amino acid change in this region, suggesting that chicken PKR has normal kinase activity. In mutant PKR mice with the disruption in the catalytic domain, the antiviral responses to influenza virus and vaccinia virus are normal. However, these mutant mice are predisposed to lethal intranasal infection by VSV, and embryonic fibroblasts derived from these mice treated with recombinant IFN-α display a reduced antiviral state against VSV compared to those from wild-type parental mice. In our result of infection experiment with VSV, 3T3 cell lines transfected with chicken PKR cDNA were resistant to VSV except for KS-3, which showed amphibious response (Fig. 2). By the sequence analysis of the RT-PCR products from the KS-3 clones, any mutation was not detected. A possible explanation for the

Fig. 2. Infectivity of 3T3 cells transfected chicken PKRs from various breeds against VSVΔG*. (A) The expression of PKR mRNA. Total RNA from transfected 3T3 cells was used for RT-PCR. Top panel, PKR; Bottom panel, β-actin. 3T3, parental 3T3 cells; pCI, 3T3 cells transfected pCI-neo vector only. (B) The infectivity of VSVΔG*-G in PKR cDNA-transfected cell lines. The infectivity on parental 3T3 cells is expressed as 100%. The values are expressed as means ± standard errors of the means (n = 10). * P < 0.05, ** P < 0.01 compared with 3T3 cells are indicated.
amphibious result is that PKR from KS-3 possesses less antiviral activity than other breed PKRs and exerts an antiviral response only when a large amount of the PKR protein exists in the transfected cells. It is likely that efficiency of translation varies in each clone, even though the transcription occurs at the same level. In the present status, however, it is impossible to clarify this speculation, since anti-chicken PKR is not available. KS-3 had Gln, instead of Arg in other chicken PKR, at position 507 (Table 4). Comparison of PKR sequence with other animals revealed that amino acid 507 (Arg or Gln) of chicken PKR was not in either kinase subdomain nor DRBD. These results suggest that specific region of C-terminus containing amino acid 507 is also responsible for antiviral function in chicken PKR. In order to confirm this hypothesis it may be necessary to determine how this substitution influences the antiviral activity of chicken PKR using artificial mutant PKR.

References

26) Patel, R.C., Stanton, P., and Sen, G.

