Mitochondrial DNA variation in the Japanese marten *Martes melampus* and Japanese sable, *Martes zibellina*

Takahiro Murakami*¹*, Makoto Asano*²* and Noriyuki Ohtaishi*³*

(Accepted for publication: November 20, 2003)

Abstract

Genetic relationship among Japanese sables, *Martes zibellina* and the introduced Japanese martens, *Martes melampus* in northern Japan was revealed by analyzing a 521-524bp DNA sequence from the cytochrome b (112bp) /transfer RNA-threonine (67bp)/tRNA-proline (65bp) and control region (277-280bp) of the mitochondrial genome. Intraspecific differences in sequences of *M. zibellina* and *M. melampus* (3.8-15.0% and 1.9-16.4%, respectively) were similar to interspecific differences between these two species (5.8-16.6%). Comparison of sequence data exhibited five haplotypes of *M. melampus* and four haplotypes of *M. zibellina*, which clustered into two groups (clusters-A and-B). Cluster-A included two haplotypes of *M. melampus* and two haplotypes of *M. zibellina*, whereas cluster-B included three haplotypes of *M. melampus* and two haplotypes of *M. zibellina*. Results of this study lead three possible explanations. Firstly, past hybridization between *M. zibellina* and *M. melampus* might have occurred. Secondary, these two species might have similar heteroplasmy of mt DNA. Thirdly, these haplotypes might have come from nuclear genome. Although further intensive studies are needed to make a conclusion, detection of hybridization with the Japanese marten are occurred or not is quite important to conserve the Japanese sable.

Keywords: *Martes zibellina*, *Martes melampus*, genetic variation, mitochondrial DNA, hybridization, heteroplasmy
136

Introduction

On Hokkaido, in northernmost Japan, there are two species of the genus *Martes*, *M. melampus* and *M. zibellina*. *Martes melampus* is thought to have been introduced in Hokkaido island in the 1940s and the current distribution includes southwestern and central Hokkaido. *M. zibellina* currently is distributed on central, eastern, and northern Hokkaido, although originally they were widespread over Hokkaido. Currently, these two species coexists around contact zone shown on Fig. 1.

Anderson reported that *M. melampus* and *M. zibellina* were closely related based on their morphological similarities. Although several studies using genetic data, supported Anderson's conclusion, they are considered to be distinct species. In a comprehensive analysis of several species of mustelids based on 375bp of the cytochrome b gene, Masuda and Yoshida reported that the sequence divergence between *M. melampus* and *M. zibellina* was smaller than interspecific differences within the genus *Mustela*, but was larger than intraspecific differences within each species. Kurose et al. sequenced the entire cyt b gene (1140bp) of the two species and reported that *M. melampus* and *M. zibellina* were clearly separable into two different groups. Hosoda et al. conducted an RFLP (Restriction fragment length polymorphism) analysis of the ribosomal DNA of *M. melampus* and *M. zibellina* and reported that among 24 restriction sites of the nuclear r DNA spacer, there were no differences within each species, however one site differed between the two species.

As mitochondrial DNA diverges earlier than nucleic DNA, it is useful for analysis of genetic relationship of closely related species. Furthermore, *M. melampus* was thought to have speciated from *M. zibellina* recently (approximately 1-2 million years ago), variable regions than used in previous analyses are needed to examine genetic relationships. Therefore, in this study a portion of the cytochrome b/transfer RNA/control region was examined to test the genetic relationships of the two *Martes* species.

Materials and Methods

Species identification We distinguished *M. zibellina* and *M. melampus* by their fur colors which had mentioned by Kadosaki. Fig. 2 shows that the method to identify each species.

Samples and DNA extraction Liver tissues were obtained from 17 specimens of *M. zibellina* and seven specimens of *M. melampus* collected at various localities on Hokkaido (Fig. 1). Liver tissue of a Japanese weasel, *Mustela itatsi*, and an American mink, *Mustela vison* were used as outgroups. Tissue samples were preserved in 80% ethanol. Total DNA was extracted from approximately 8mm³
of tissue using DNAeasy tissue kits by QIAGEN (Hilden, Germany).

Nucleotide sequence analysis A part of the mitochondrial cyt b / transfer RNA-threonine / tRNA-proline / control region was PCR-amplified using 20-bp primers (5′-TGAATTGGAGGACAACCAGT-3′ and 5′-CCTGAAGTAGGAACCAGATG-3′:1.15′, Fig. 3). PCR was performed with 35 cycles (94°C for 30 sec, 55°C for 60 sec, 72°C for 90 sec, and 72°C for 10 min), using rTaq DNA polymerase (TAKARA BIO Inc., Otsu, Japan) with 10-100ng DNA extracts in a total volume of 50 µl. PCR products (40µl volume) was purified by Qia quick purification kit (QIAGEN). Purified PCR products (30-90 ng) were used as templates for direct sequencing by fluorescence-labeled dideoxynucleotides, Big Dye Terminator (Perkin Elmer, Massachusetts, USA) and GeneAmp PCR systems 9700 (Perkin Elmer). Sequencing was conducted using an ABI Prism™ 377 (Perkin Elmer) and a power mac computer (Apple Computer Inc., California, USA).

Data analysis Sequences were aligned by a multiple alignment program, Clustal W ver. 1.716. Kimura-2parameter genetic distances were calculated using the “Phylip” developed by Dr. Felsenstein in 1995. Phylogenetic trees were reconstructed by the neighbor-joining method by using the “Neighbor” program in the Phylip. One thousand bootstrapping pseudo replications were conducted by using the program “Seqboot” in the Phylip. A parsimonious network was hand-drawn from the parsimonious tree calculated by the program “Dnapar” in the Phylip.

Analysis of sequences DNA sequences were compared with the sequences reported by Kurose et al.10), who had studied intraspecific variation of cyt b sequences in M. zibellina and M. melampus. The samples of M. melampus used in their study were obtained from Honshu island, where M. zibellina is not known to occur10). A 112 bp sequence region of the 3′ end of the cyt b, common to our sequences and those presented in Kurose et al.,10) were used for constructing phylogenetic trees using the neighbor joining method by “Neighbor” in the Phylip.

Sequences of the haplotypes in the present study can be accessed in the DDBJ nucleotide databases under accession numbers AB 052718-AB 052726.
Results

A 521-533 base pair (Martes species, 521-524bp; outgroup, 527-533 bp) region, consisting of the 3' end of the cyt b (112bp), tRNA-thr (67bp), tRNA-pro (65bp) and first 5' sequences of the control region (277-289bp) was obtained. Four haplotypes (MZ-1 to MZ-4) of M. zibellina, five haplotypes (MM-1 to MM-5) of M. melampus, and two haplotypes (MI-1; Mustela itatsi and MV-1; Mustela vison) of outgroups were detected.

The neighbor-joining tree indicated that haplotypes MM-1, MM-2, MZ-2 and MZ-3 composed cluster-A, whereas MM-3, MM-4, MM-5, MZ-1, and MZ-4 composed cluster-B (Fig. 4). Haplotypes of cluster-A had 523-524 base pairs, whereas those of cluster-B had only 521 bp. The node dividing the two clusters was confirmed by a high bootstrap value (100%, Fig. 4). The parsimonious networks (Fig. 5) showed that nucleotide substitution numbers among cluster-A haplotypes was much larger than that of cluster-B displayed a 2-3bp deletion (521 bp). Interspecific differences in sequences of M. zibellina and M. melampus were 3.8-15.0% and 1.9-16.4%, respectively. These values were similar to interspecific differences between these two species (5.8-16.6%). Sequence divergences within cluster-B were 0.58% to 1.36% while those of cluster-A were 4.32% to 4.37%.

Comparison in the common sequence (112bp of 3' end of cytochrome b) between Kurose et al.'s study and the current study, Kurose et al. did not report cluster-B haplotypes.
Fig. 6. Neighbour-joining tree of the 3’ end of cytb sequences (112bp) of the two Martes species includes haplotypes detected by Kurose et al.11’ s study and those detected by the current study. Haplotypes of Kurose et al.11’ s study are indicated by MM-6-11 and MZ-5-6, while those of the current study are indicated by MM-1-5, MZ-1-4, MV-1 and MI-1 (MZ: sable, MM: Japanese marten, MI: Japanese weasel, MV: mink). Letters within the parenthesis after each haplotype name represents sampling localities. Numbers along internal branches are bootstrap values from 1,000 replications. Numbers of nucleotide substitution per site indicated by the scale are Kimura2’ 2-parameter distances.

(Fig. 6). Geographic distributions of cluster-A haplotypes and of cluster-B haplotypes were overlapped (Fig. 7).

Discussion

Results indicate that the two Martes species on Hokkaido were closely related, in contrast to previous studies10, 12. The 375 bp sequence of cytochrome b gene12, the complete sequence of cytochrome b18, the 402 bp sequence of cytochrome b and the nuclear ribosomal DNA-RFLP4 indicated that the sequence divergence between M. zibellina and M. melampus was greater than intraspecific sequence divergence. However, the neighbor-joining tree of the two Martes in our study indicated two distinct clusters, each containing both haplotypes of M. zibellina and M. melampus.

First possible explanation of this discrepancy is past hybridization between the two species. Anderson12 suggested that M. martes, M. zibellina, M. melampus and M. americana showed many similarities in morphology and ecology, and he stated that the four species could be considered a “superspecies”. In fact, as natural hybridization between M. zibellina and M. martes had been reported13, hybridization between M. zibellina and M. melampus also is likely. However, M. zibellina and M. melampus can be easily distinguished by fur colors14 and skull morphology15 and no intermediate status was found among samples ex-
140

mtDNA variation among sympatric *Martes*

examined in this study. Thus, these results indicate that hybridization is not occurred currently, but it might have occurred in the past. After that, each species might have evolved distinctively and might have maintained both haplotypes of mt DNA.

Previous studies did not detect cluster-B haplotypes among *M. zibellina* and *M. melampus* in Japan, while we could detect it in this study, although we could compare only 112 bp of cytochrome *b* gene. If the genus *Martes* had come from Russia to Japan and diverged into *M. melampus* ¹⁰, they should share the two haplotypes. Small sample size of the two species on Hokkaido in previous reports might be one reason for the lack of cluster-B haplotypes. Why the *M. melampus* outside Hokkaido did not have cluster-B haplotypes is still unclear. If cluster-B haplotypes exist only in Hokkaido, the origin of this haplotype might be after the formation of the Tsugaru straits dividing Hokkaido and Honshu. At that time, *M. melampus* and *M. zibellina* in Japan had only cluster-A. After that, *M. zibellina* population, which had cluster-B haplotypes, might come into Hokkaido. In fact, sequence divergences within cluster-B were lower than those of cluster-A and it supports our estimation. However, if this is true, hybridization occurred after introduction of *M. melampus* into Hokkaido, and it has spread over entire Hokkaido. As mentioned above, we believe that the two species are currently distinct in Hokkaido. However, comparison in variable nuclear DNA markers, such as microsatellite loci, among the two *Martes* on Hokkaido, Honshu (only *M. melampus* is distributed) and Russia (only *M. zibellina* is distributed) is necessary to evaluate whether hybridization is currently occurred or not.

Second possible explanation of our result is similar mitochondrial heteroplasm of the two *Martes* species in Hokkaido. As *M. melampus* was thought to have speciated from *M. zibellina* ¹⁰, they could have similar mitochondrial heteroplasm. Although we do not have enough data to evaluate whether this estimation is true or not, it should be investigated to form the conclusion.

Only four haplotypes were found among 17 individuals of *M. zibellina*. Kurose et al. ¹¹, sequencing control region of 20 least weasels, *Mustela nivalis*, on Hokkaido, reported that there were 11 haplotypes. Thus the diversity of haplotypes in *Martes zibellina* was lower than that of *Mustela nivalis*. Kurose et al. ¹⁰ and Hosoda et al. ⁶ also reported low genetic variation of *M. zibellina* on Hokkaido. This result indicates that the population of *M. zibellina* may have gone through a bottleneck. It might be caused by heavy hunting pressure for fur in the early 20th.”

Third possible explanation of our result is that the cluster-B might have originated from partial copy of mitochondrial DNA that had introduced into nuclear DNA. As mammal chromosomes contain sequences originated from mitochondrial DNA, we might have read them in the nuclear DNA. In order to eliminate this possibility, further analysis using DNA sample prepared by gradient centrifugation method may be needed.

M. zibellina has been considered as an endemic subspecies, Japanese sable (*M. zibellina brachyura*) and categorized as Data Deficient (DD) in the IUCN Red List. ²³ Further intensive studies on detecting threatens of hybridization with Japanese marten for this subspecies are pressing needs.

Acknowledgments

Regional Bureau of Japan Highway public corporation, Kushiro and Abashiri Development and Construction Departments of Hokkaido Development Bureau, and Hiyama and Oshima Sub-prefectural Office of the Hokkaido government who provided samples of Martes.

This study was partly supported by grant from the "Hokscitec", Hokkaido Foundation for the Promotion of Scientific and Industrial Technology.

References

mtDNA variation among sympatric Martes

DNA. *Evolution* 45:218-221.