<table>
<thead>
<tr>
<th>Title</th>
<th>Transformation of iridium(110) (1×1) into (1×2) and spatial distribution of reactive carbon dioxide desorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Matsushima, Tatsuo; Ohno, Yuichi; Nagai, Kiyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>The Journal of Chemical Physics, 94(1), 704-710</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1991-01-01</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/11326</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright (c) 1991 American Institute of Physics</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
<tr>
<td>File Information</td>
<td>JCP 1991 Iridium transformation.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Transformation of iridium(110) (1×1) into (1×2) and spatial distribution of reactive carbon dioxide desorption

Tatsuo Matsushima, Yuichi Ohno, and Kiyoshi Nagai
Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

(Received 6 September 1990; accepted 24 September 1990)

The spatial distribution of the desorption flux of CO₂ produced on Ir(110) (1×1) and (1×2) surfaces was studied by means of angle-resolved thermal desorption and low-energy electron diffraction. The distribution is collimated along the bulk surface normal on (1×1). It is sharp in the [001] direction and sharper in the [110] direction. This distribution is consistent with the model that the reactive desorption occurs on a short bridge site. On (1×2) surfaces, two-directional desorption was observed, which was collimated along the axis at the polar angle of 26 deg in both [001] and [001] directions. The distribution in the [110] direction is collimated along the bulk surface normal. The reactive desorption was suggested to take place on a threefold hollow site on the declining terrace. The spatial distribution changed from the (1×1) type to the (1×2) type during the transformation of the surface structure. This structure change was confirmed by low-energy electron diffraction.

I. INTRODUCTION

Dynamic properties of chemical processes on solids depend on surface structure, especially the structure of the reaction sites. To design new functional surfaces, this structure should be analyzed. So far the structure has been speculated from structural information of nonreacting surface species, which can be obtained by several methods, such as vibrational spectroscopies and diffraction methods. The structure must be more directly analyzed through the reaction itself. However, no structural information has been provided by classical chemical kinetics, which treats the elementary reaction rate as a function of reactant coverages.

We have previously shown the possibility of reaction dynamics sensitive to the structure of the reaction site. In some combinative desorptions the spatial distribution of the product desorption provides structural information on the reaction site. The product is likely to be repulsed by the surface during formation, and the shape of the repulsive potential is preserved in the spatial and velocity distributions.

In this paper we will report on the spatial distribution of reactive CO₂ desorption during the transformation of Ir(110) (1×1) into (1×2). This is the first observation on the variation of the spatial distribution during the structural changing of the reaction site.

We reported previously that the orientation of the reaction site was preserved in the spatial distribution of the desorption flux of CO₂ produced on Pt(110) (1×2) and Ir(110) (1×2) reconstructed surfaces. Both surfaces are explained by the missing row model, where every second row in the [110] direction is missing. The surface consists of three-atom-wide terraces of (1 1 1) structure declining at about 30 deg in either the [001] or [001] direction. Two-directional desorption of produced CO₂ was observed at the desorption angle of 21–26 deg, concluding that the CO oxidation took place on the declining terrace. On the other hand, the desorption of CO₂ produced on Pt(110) (1×1) was estimated to be collimated along the bulk surface normal.

The metastable structure of Pt(110)(1×1) is easily transformed into (1×2) by being heated above 300 K without adsorbed CO. It is difficult to keep this structure with small amounts of adsorbed CO at higher temperatures. This indicates the difficulty in the usage of the angle-resolved thermal desorption for measurements of the spatial distribution on this surface. On the other hand, the unreconstructed structure of Ir(110) (1×1) can be stabilized by oxygen, and the transformation into (1×2) is slow. Thus we have succeeded in observing the variation in the spatial distribution of reactive CO₂ desorption during this transformation.

II. EXPERIMENTAL

The experimental procedures were essentially the same as those reported previously. The apparatus consisted of a reaction chamber with low-energy electron diffraction (LEED)-Auger electron spectroscopy (AES), a collimator, and an analyzer chamber. The flux of CO₂ molecules desorbing from the surface and passing through the collimator slits contributed mostly to the signal of the mass spectrometer in the analyzer chamber (angle-resolved spectra). The CO₂ formation was also recorded with another mass spectrometer in the reaction chamber (angle-integrated spectra).

An iridium crystal with (110) faces was set on a sample holder, which allowed the rotation of the crystal azimuth φ and also of the desorption angle (the polar angle) θ. The (1×2) structure was prepared by heating (at 1450 K for about 10 min) a clean surface judged by AES and with no CO formation during heating after oxygen exposure. The diffraction spot at the half-order positions appeared somewhat streaked in the [001] direction. This surface is referred to as (1×2) in the present experiments.

The (1×1) surface was prepared in the manner reported by Chan et al. The crystal was heated in 5×10⁻⁸ Torr of O₂ for five min at 850 K and cooled to room temperature. At this stage, the surface showed a c(2×2)-O lattice. No LEED spots were visible at (±1, ±1/2). Excess chemi
orbed oxygen was removed by a few cycles of CO exposure at 200 K and heating to 570 K. The resultant surface showed a (1x1) structure without any superstructure spots. This surface was used as (1x1). This temperature of 570 K was necessary to remove most of CO(a), however, the transformation into (1x2) might somewhat proceed. This surface is still covered by oxygen probably in the oxide form or absorbed beneath the surface, since this oxygen is nonreactive toward CO or hydrogen.

The surface was exposed to 18O$_2$ at 270 K and then to C18O around 200 K. It was heated at a rate of 10 K/s, while the desorption of the product C18O18O was monitored in both angle-resolved and angle-integrated forms. In the following, oxygen 18 will sometimes be denoted simply as O, since the product consists merely of C16O18O.

III. RESULTS

A. Transformation of (1x1) into (1x2)

The (1x1) surface prepared above was transformed into the (1x2) form by heating above 570 K. The intensity of the half-order LEED spot at (1,1/2) was monitored at an accelerating voltage of $E_a = 48$ eV with a spot photometer during sequential heating from 300 to 1450 K. The sample was heated at a rate of 10 K/s and cooled immediately after a desired temperature T_p was reached. The photointensity in the dotted circle shown in the insert in Fig. 1 was measured at 200 K. The results are shown as curve (a) in the figure. The intensity remained invariant below $T_p = 500$ K and decreased sharply above it. This decrease was due to the removal of CO adsorbed during preparation of the (1x1) structure. The intensity showed a minimum around $T_p = 550$ K and increased sharply above it. No background intensity was subtracted in the present experiments. The intensity increased sharply in the range of 550 to 800 K, indicating that the transformation into (1x2) took place in this temperature range. However, it did not necessarily mean that the transformation into (1x2) was completed around 800 K. The spot was still streaked along the [001] direction and the spot photometer accepted the signal from a round area centered at (1,1/2). In fact, the transformation continued at higher temperatures as described in Sec. III F. On the other hand, the intensity of the integral order spot at (1,0) with $E_a = 46$ eV decreased by only about 15% in the range of 550–800 K.

B. Adsorption of CO and O

Oxygen and CO adsorb quickly below room temperature. The coverages were determined by thermal desorption. Oxygen desorbed above 700 K. The peak area reached a steady value above 6 L (1 Langmuir $= 1 \times 10^{-6}$ Torr s) on both (1x1) and (1x2) surfaces. The coverage was normalized to the value at saturation and represented as θ_0/θ_{MAX}. On the other hand, the desorption of CO was observed above 500 K after small exposures. It was extended to low temperatures with increasing exposure. The desorption area increased linearly below 1 L. It reached a steady value above 10 L.

The coadlayer was prepared by oxygen adsorption at 270 K followed by CO exposure at 200 K. The adsorption of CO was not retarded by preadsorbed oxygen at small CO coverages. However, the saturation level of CO was suppressed strongly by preadsorbed oxygen. For example, only about half of the oxygen was removed as CO$_2$ when a large CO exposure was applied at $\theta_0/\theta_{MAX} = 0.60$, although no excess CO was desorbed. The structure of the coadlayer was not analyzed this time, since fractional order spots in the LEED screen were obscured by the sample holder.

C. CO$_2$ formation spectra

Typical CO$_2$ formation spectra observed on (1x1) are summarized in Fig. 2(a). The surface precooered by oxygen 18 at various coverages was exposed to 0.6 L CO at 200 K. At small oxygen coverages, a single peak, P_1-CO$_2$, was observed around 550 K. With increasing oxygen coverage, another peak, P_2-CO$_2$, appeared around 380 K. This peak shifted somewhat to lower temperatures at high oxygen coverages, where the other peak was largely attenuated.

Tracer experiments indicated nonreactivity of oxygen stabilizing the (1x1) structure toward CO. We have examined the isotope composition of CO$_2$ produced when the (1x1) surface stabilized by oxygen 18 was exposed to 16O$_2$ and then C16O$_2$. Only C16O$_2$ was produced and no C16O18O was observed. Oxygen involving 18O preoosded was desorbed above 1000 K, although the desorption of 16O$_2$ started around 700 K. This means no participation of oxygen 18 involved in the CO oxidation.

The right panel summarizes CO$_2$ spectra observed simultaneously in the angle-resolved form at the surface normal. P_2-CO$_2$ was enhanced as compared with P_1-CO$_2$, indi-
Matsushima, Ohno, and Nagai: Transformation of iridium(I10)

The desorption of both \(P_1 \) - and \(P_2 \) -CO\(_2\) is sharply collimated along the surface normal. However, the determination of the angular distribution of \(P_1 \) -CO\(_2\) desorption was not successful because of relatively large noises in the angle-resolved signal. The \(P_2 \) -CO\(_2\) desorption showed anisotropy in the spatial distribution, depending on the crystal azimuth. The distribution along the surface trough (in the [110] direction \(\phi = 90^\circ \)) is shown in Fig. 3. It varied as \((\cos \theta)^{10 \pm 2}\). The distribution perpendicular to the surface trough (\(\phi = 0^\circ \)) is also collimated along the surface normal as shown in Fig. 4. It showed \((\cos \theta)^{4 \pm 1}\) dependence. This is broader than that in the [110] direction.

The angular distribution varies smoothly between [001] and [110] direction. The crystal azimuth dependence of the CO* signal at a fixed desorption angle is shown in Fig. 5. It shows a maximum in the [001] and a minimum in the [110] direction, as expected from the angular distributions.

D. Spatial distribution on (1x1)

CO\(_2\) spectra generated on (1x2) were quite similar to those on (1x1) except for the small \(P_1 \) -CO\(_2\) formation peak. This peak was noticeable at small oxygen coverages indicating that the desorption of the former was more sharply collimated along the surface normal.

FIG. 2. Typical CO\(_2\) formation spectra generated at various oxygen coverages in both (a) angle-integrated and (b) angle-resolved form. The (1x1) surface was exposed to \(^{18}\)O\(_2\) at 270 K and further to 0.6 L CO at 200 K, and finally heated at a rate of 10 K/s to 570 K to proceed the reaction. The dashed curves indicate the signal after smoothing procedures.

FIG. 3. Angular distribution of the desorption flux of \(P_2 \) - CO\(_2\) on (1x1) surfaces in the [110] direction. A top view of the surface is shown in the insert. The experimental conditions are given in Fig. 2.

E. Spatial distribution on (1x2)

The distribution of the \(P_2 \) -CO\(_2\) desorption from (1x2) surfaces is quite different from that on (1x1). The angular distribution is characteristic of two-directional desorption. It is collimated along the axis at \(\theta = 26^\circ \) in both [001] and [001] directions. Two series of experiments are summarized in Fig. 6. In series (a), the crystal was heated at 1450 K for 2
min before each thermal desorption procedure. In series (b), on the other hand, it was once treated at high temperatures in the same way as above and heated repeatedly up to only 570 K for the CO₂ formation and also for the removal of adspecies from background gases. The angular distribution was well reproduced in both series, indicating that the transformation of the surface structure was quenched as it was at the heat treatment at 1450 K. This is quite different from the results on Pt(110) (1×2).⁴

Each desorption component shows a very sharp distribution as $(\cos \theta \pm 26^\circ)^{18±2}$. This CO₂ desorption is collimated only in either the [001] or [010] direction. The crystal azimuth dependence of the CO₂ signal is shown in Fig. 5, where all signals were normalized to the value in the [001] direction. The dependence showed maxima in the [001] and [010] directions and a minimum in the [110] direction in a similar manner to that on (1×1). However, it should be noted here that the spatial distribution on (1×2) is quite different from that on (1×1). The signals at $\theta \sim 26^\circ$ on (1×1) were much less than those on (1×2).

The angular distribution in the [110] direction is shown in Fig. 7. It is collimated along the bulk surface normal. It is slightly broader than that in the same direction on (1×1). It varied as $(\cos \theta)^{7±1}$.

F. Structure transformation and spatial distribution

In the preceding sections, the spatial distribution of reactive CO₂ desorption was shown to be sensitive to surface structure. It is interesting to examine the variation of the spatial distribution during the transformation of the surface structure. The transformation from (1×1) into (1×2) was controlled by the temperature used for pretreatment.

We have examined the spatial distribution after heating (1×1) surfaces in vacuo up to a desired temperature T_p. The crystal was heated at a rate of 10 K/s and was cooled immediately after T_p was reached. The angular distribution was measured in the [001] direction without heating above 570 K after T_p treatment. The distribution changed from the (1×1) type to the (1×2) type with increasing T_p. Here, we represent the change in the spatial distribution by using a compositional ratio, $(\text{CO}_2)_{26'}^\theta/\text{CO}_2$, where $(\text{CO}_2)_{26'}^\theta$ is the peak height of the CO₂ signal at $\theta = 26^\circ$ in the [001] direction, and $(\text{CO}_2)_{\theta}$ at $\theta = 0^\circ$ (the surface normal). The surface is considered to consist of a
mixture of (1X1) and (1X2) patches during the transformation. The above parameter represents the contribution from both patches. The values determined are shown as curve (b) in Fig. 1. Results in four series are summarized. The parameter increased from 0.8 at \(T_p = 570 \text{ K} \) to 2.2 at \(T_p = 1450 \text{ K} \) with increasing \(T_p \).

IV. DISCUSSION

A. Reaction site

The \(\text{CO}_2 \) formation proceeds between \(\text{CO}(a) \) and \(\text{O}(a) \). This process is part of the reaction pathway of the CO oxidation during the catalyzed reaction at steady state.\(^{18} \)

The reaction site is likely to be on each oxygen adsorption site, since the binding energy of CO to the surface (about 35 kcal/mol\(^{17} \)) is much less than that of oxygen adatoms (about 90 kcal/mol\(^{20} \)), and \(\text{CO}(a) \) is much more mobile than \(\text{O}(a) \).\(^{19,20} \) The product molecule is repulsed by the surface immediately prior to the desorption discussed below, and the shape of the repulsive potential is preserved in the spatial distribution. In the present case, the symmetry and the orientation of the oxygen adsorption site are expected to be preserved in the distribution of the \(\text{CO}_2 \) desorption.

There are three possible adsorption sites for oxygen: a threefold hollow site on the (111) terrace (TH), a short bridge site on the uppermost atom row (SR), and a long bridge site in the trough (LB).\(^{21} \)

The first is the adsorption site on Ir(111) bulk surfaces.\(^{22} \) The second has been proposed as the site on Ir(110) (1X1) stabilized by a quarter monolayer of oxygen.\(^{23} \) The third has been frequently proposed on unreconstructed fcc (110) planes such as Cu(110),\(^{24,25} \) Ag(110),\(^{24,25} \) and Pd(110).\(^{26} \)

On (1X2) surfaces, two-directional desorption was observed. The components are directed toward the terrace surface normal. It may be concluded that the reactive desorption on (1X2) surfaces takes place on LB sites on the declining terrace, labeled B in the insert of Fig. 6. These results, however, do not necessarily mean that on (1X2) surfaces oxygen adsorbs only on the terrace. Oxygen on the terrace is likely to be more reactive toward CO than on the other sites. It has been proposed that CO is adsorbed on the top site in the atom row on (1X2) reconstructed surfaces\(^{27} \) and may therefore react more easily with oxygen on the terrace rather than in the trough.

On (1X1) surfaces, on the other hand, a single sharp peak, which was collimated along the bulk surface normal, was observed in the angular distribution curve of the \(\text{CO}_2 \) desorption in both [001] and [110] directions. The distribution in the [110] direction is sharper than that in [001]. This agrees well with the model that the reactive desorption occurs on LB sites.\(^{3} \) However, the contribution from (1X2) patches estimated in Fig. 4 was about two-thirds of the total formation, much more than 15%. This is unreasonable, although the fraction of \(\text{CO}_2 \) formation on both surfaces is not necessarily expected to be equal to the surface composition.

The reactive desorption on SB sites is more plausible. The unit cell of the surface lattice involving this reaction site is long in the [001] direction and short along the trough.\(^{3} \) Furthermore, there is a large free space around the site in both [001] and [010] directions. Therefore, it is expected that the angular distribution of \(\text{CO}_2 \) desorption is collimated along the bulk surface normal, and that the distribution perpendicular to the surface trough is broader than that along it. This is in good agreement with the experimental results.

The spatial distribution may be insufficient to assign the reaction site. The velocity distribution analysis of desorbing \(\text{CO}_2 \) should be more sensitive to the structure of the site. It will differentiate the above cases more clearly. The mean velocity of desorbing \(\text{CO}_2 \) produced shows the highest value in the direction where the desorption flux is maximized.\(^{5,27,28} \)

Therefore, in the former case, the velocity at 26° in the [001] direction is expected to be high because the \(\text{CO}_2 \) at this position would be mostly contributed from (1X2) patches. It will have the highest normal velocity component of the desorbing \(\text{CO}_2 \) from the declining terraces. Therefore, the mean velocity would show three maxima at \(\theta = 26° \) in both [001] and [010], and at \(\theta = 0° \). The component in the normal direction is the contribution from (1X1) patches. In the latter case, on the other hand, the velocity should decrease smoothly with the increasing desorption angle in any direction.

B. Spatial distribution

The desorption component on (1X2) has a very sharp angular distribution of \(\cos \theta \) dependence in the [001] direction and \(\cos \theta \) dependence in the [110] direction. This distribution is quite similar to that on Pt(110)(1X2).\(^{4} \) A sharp distribution of reactive \(\text{CO}_2 \) desorption was reported on
well-polished polycrystalline iridium surfaces. Such a sharp distribution indicates that CO₂ is desorbed immediately after the formation without being trapped on the surface. Sharp angular distributions in reactive CO₂ desorption have been reported on several surfaces of platinum metals. In general, molecules are produced closer to the surface than the equilibrium position of the molecular adsorption. The repulsive force from the surface is exerted on the product during the formation and, therefore, the desorption is likely to be accelerated along the reaction site normal. In fact, excess translational energy has been found in the normal velocity component of desorbing CO₂ produced on Pt(111) and Rh(111).

The terrace on the reconstructed plane would decline at ±35.3 deg if the surface metal atoms were located in the same position as in the bulk crystal. However, this is not the case, because the first several layers are distorted on the reconstructed surface. According to analysis with LEED, the declining angle is about 24 deg on the clean Ir(110) (1×2) surface. The collimation angle (the angle where the reactive CO₂ desorption flux is maximized) agrees well with this value within experimental error. This is surprising, since the fine structure around the desorption site has been thought to be obscured by the smoothing effect on the surfaces by conduction electrons. The spatial distribution was believed to be unaffected by the surface corrugation in the atomic scale. The present results show that this effect has only a minor influence on reducing the collimation angle in the CO oxidation.

C. Surface quality

The surfaces of (1×1) and (1×2) used in the present experiments did not necessarily consist of pure structures. The (1×2) surface showed half-order spots that were somewhat streaked in the [001] direction. Heating at 1450 K for 10 min seems insufficient for complete transformation into the (1×2) form. This suggests that the total CO₂ signal at θ = 0° on (1×2) is partly contributed from the formation on remnant (1×1) patches. The compositional ratio of 2.2 at Tₚ = 1450 K must be underestimated as the value on pure (1×2). It would be 3.2 if only the two directional desorption components of (cos θ ± 26°) contribute to the signal at the bulk surface normal.

The imperfection of the surface structure was also discussed on (1×1) in the preceding section. The observed compositional ratio of about 0.8 around Tₚ = 570 K must be overestimated as the value on pure (1×1) surfaces. The surface should be examined by other methods capable for the estimation of the local surface structure, e.g., scanning tunneling microscopy (STM).

V. SUMMARY

The spatial distribution of product desorption was studied for the oxidation of carbon monoxide on Ir(110) surfaces by using angle-resolved thermal desorption and low energy electron diffraction. The results are summarized as follows:

1. The CO₂ formation shows two peaks at 380 and 550 K on both (1×1) and (1×2) surfaces.

2. The spatial distribution of the CO₂ desorption at 380 K was analyzed in detail. On (1×1) surfaces, it is collimated along the surface normal, and the distribution perpendicular to the surface trough is broad, and sharper when parallel to it. The reactive desorption on a short bridge site was strongly suggested.

3. The distribution on (1×2) shows two-directional desorption collimated along the axis at θ = 26° in both [001] and [00̅1] directions. The reaction proceeds on declining terraces. The orientation of the reaction site is well preserved in the spatial distribution.

4. The spatial distribution changed from the (1×1) type to the (1×2) type during the transformation of the surface structure from (1×1) into (1×2).

ACKNOWLEDGMENT

One of the authors (K. N.) is indebted to Toyota Physical and Chemical Research Institute for a scholarship.
