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We study the Kuramoto transition of oscillators in random network and Barabáshi-Albert
network model. In both cases, the results of numerical simulation show good coincidence
with the mean-field analysis.

Synchronization is a widely spreading behaviour in nature. It is seen in the firing
of neurons in our brain, flushing of fireflies, and some chemical reactions. One of the
great progress of the study of synchronization was made by Kuramoto.1) He showed
that the dynamics of many kinds of oscillators can be reduced to the dynamics
of phase oscillator, and analyzed the synchronization of it. One of the important
results of his works is the discovery of the Kuramoto transition, the synchronization
of globally coupled oscillators.

However, global coupling is seldom found in nature. For example, a neuron in
the brain is not connected to all other neurons. It is connected to a finite number of
neurons, and the global coupling is far from real network of neurons. Recently, the
study of complex network has been developed.2) In the complex network, each node
links to a finite number of other nodes. In this decade, many real networks such as
the internet, metabolic networks, neurons in the brain, food web, and co-authorship
of papers have been investigated. We have realized that many real networks have
common structure, such as scale-free degree distribution P (k) ∝ k−γ , where P (k) is
the distribution function of degree of nodes.

Therefore, the study of synchronization in complex network is important prob-
lem to study the synchronization in real systems. The study in this regard had
been mainly carried out by numerical simulations. After the simulation by Watts,3)

Hong et al. carried out detailed investigation of the Kuramoto transition in Watts-
Strogatz model and obtained the phase diagram.4) Moreno and Pacheco studied
the synchronization in the Barabáshi-Albert(BA) network and concluded that the
critical coupling constant Kc is not zero in the BA network.5)

Recently, we developed the analytical theory of the Kuramoto transition in ran-
dom networks.6),7) Using the mean-field approximation, we concluded that as the
size of network approaches infinity, Kc approaches 0 in the scale-free random network
if γ ≤ 3.

This result seems to contradict to that of Moreno and Pacheco. It is usually
believed that the property of the BA network is similar to the γ = 3 random scale-
free network. If Kc is not 0 in the BA network, it suggests that the BA network gives
different dynamics of oscillators from that given by the random scale-free network.
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However, this discrepancy may be due to the difference of the order parameter.
Moreno and Pacheco used 〈eiθ〉, where 〈· · · 〉 means the average over all nodes, as
the order parameter. On the other hand, our paper used 〈keiθ〉/〈k〉 as the order
parameter, where k is the degree of each node. The difference of the order parameter
will lead to the inconsistence of the critical coupling. Moreover, we note the coupling
dependence of the order parameter may be different from that in globally coupled
oscillators. As we showed,7) the critical coupling is not proportional to

√
K − Kc

in the scale-free network at N → ∞, since the higher-order term in the amplitude
equation is not negligible. The coefficients of the higher-order term in the amplitude
equation diverges at N → ∞, which makes the determination of the critical coupling
difficult.

Of course, there is a possibility that Kc for random network is different from
that for the BA model. Though many numerical results suggest that the BA network
seems similar to the random scale-free network, we should be careful to state that
the synchronization in the BA network is essentially same as that in the random
network. In this study, we carry out the simulation for scale-free random network
model and the BA model, and investigate the difference of the synchronization in
each model.

The model we study is coupled phase oscillators, whose dynamics are described
by

dθi

dt
= ωi + K

∑
j

ai,j sin(θj − θi), (1)

where θi and ωi are the phase and velocity of oscillator at node i, respectively. ai,j

is the adjacent matrix that describes the network. If node i and j are connected,
ai,j = 1 and otherwise ai,j = 0. In this paper, we examine the synchronization on
two network models. First one is the scale-free network produced by the BA model.
In our simulation, we use the network whose mean degree is 〈k〉 = 10.0. Such a
network can be produced by repeatedly adding new nodes which have 5 edges. The
other network is the random networks that have the same degree distribution as the
BA model. From our previous studies on random networks, the synchronization of
this network will be well described by the mean-field approximation. We assume
that the distribution of ωi is given by g(ω) = 1√

π
exp(−ω2).

Before presenting the results of simulations, we summarize the results of the
mean-field approximation.6),7) The mean-field analysis of random network models
shows that the order parameter is given by r = 〈kie

−iθi〉/〈ki〉, where ki is the degree
of node i. We note that this order parameter coincides with that for globally coupled
oscillator, 〈e−iθi〉, if we take P (ki) = δ(ki − N + 1) at N → ∞. Using this order
parameter, the phase distribution ρ is given by

ρ(θ, ω, k) =

{
δ(θ − arcsin( ω

Kkr )) if |ω|
Kkr ≤ 1,

C(k,ω)
|ω−Kkr sin θ| otherwise,

(2)

where C(k, ω) is the normalization factor that makes
∫

ρ(θ, ω, k)dθ = 1. We note that
ρ depends on not only ω but also k, the degree of the node. This dependence does
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Fig. 1. The size and coupling dependence of the order parameter in the random scale-free network

model and the Barabáshi-Albert model.

not appear in globally coupled oscillators. In addition, the center-manifold reduction
of the Kuramoto transition suggests that the singularity of the order parameter at
K = Kc is strongly suppressed in random scale-free networks.

First we show the coupling dependence of the order parameter. In Fig. 1, we plot
the mean value of order parameter 〈kie

iθ〉/〈ki〉 for the both model over 50 samples.
In the case of N = 1000, the order parameter strongly fluctuates. This suggests

that at small N the fluctuation is so strong that we cannot obtain reliable order
parameter from 50 samples. However, at N = 8000 the order parameter smoothly
depends on the coupling. There is no significant difference of the order parameter
between two network models at N = 8000. This result suggests that the Kuramoto
transition in the BA network is similar to that in the random scale-free network
model. We also note that the coupling dependence of the order parameter seems
different from the globally coupled model, r ∝ √

K − Kc. As K decreases, the order
parameter smoothly goes to 0. This result coincides with the analysis of our previous
paper.7) In the previous paper, we investigated the amplitude equation of the order
parameter r, dr

dt = p0r +
∑

pnr2n+1, and found that pn diverges in random scale-free
network at N → ∞. Since the square-root dependence of r on K − Kc is observed
only when higher-order term of the amplitude equation can be neglected, it is not
observed in scale-free networks.

One of the important results obtained from mean-field theory is the correlation
between distribution of phase and degree, given by Eq. (2). In Fig. 2, we plot the
distribution of phase for the random and BA network at k = 5 and 12, K = 0.10,
N = 4000. The distribution of phase ρ shows good coincidence between these two
models. In both models, the distribution of θ is well described by Eq. (2). This result
strongly suggests that the Kuramoto transition in the BA model can be approximated
by that in the random scale-free network model. Therefore we conclude that the
Kuramoto transition in the BA model is the same as that in random scale-free
network model, both qualitatively and quantitatively.

In conclusion, we study the Kuramoto transition in the scale-free random net-
work model and the BA model. The result of the scale-free random network model
coincides with the mean-field analysis, and the result of the BA model shows no in-
consistency with that of the random network model. These results suggest that the
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Fig. 2. (ω, θ) distribution of oscillators with degree 5 (left) and 12 (right) in the BA (upper) and

random scale-free (lower) networks.

Kuramoto transition in the BA model is qualitatively and quantitatively the same as
that in the random network model. We also note that the relaxation time estimation
by Moreno and Pacheco also suggests the validity of the mean-field analysis in the
BA model. They estimated the relaxation time 〈τ〉, the time for synchronization
of the node whose degree is k from numerical simulation. They concluded 〈τ〉 is
proportional to k−ν , where ν = 0.96. On the other hand, the mean-field analysis
predicts ν = −1, because each oscillator couples to the mean-field with strength
proportional to Kk. The value obtained by the mean-field approximation is very
close to the one obtained by their simulation, and this result strongly suggests that
the mean-field theory works well for the synchronization in the BA network.

We acknowledge Y. Nishiura, T. Yanagita, M. Iima and Y. Nakao for fruitful
discussion.
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2) R. Albert and A-L. Barabáshi, Rev. Mod. Phys. 74 (2002), 47.
3) D. Watts, Small Worlds (Princeton University Press, Princeton, NJ, 1999).
4) H. Hong, M. Y. Choi and B. J. Kim, Phys. Rev. E 65 (2002), 026139.
5) Y. Moreno and A. F. Pacheco, Europhys. Lett. 68 (2004), 603.
6) T. Ichinomiya, Phys. Rev. E 70 (2004), 026116.
7) T. Ichinomiya, Prog. Theor. Phys. 113 (2005), 1.


