<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>稲の交雑に関する研究 第ⅩⅩⅧ報 主として外国稲より導入された数種の形態的形質とそれに関与する遺伝子、並にその連鎖関係</td>
</tr>
<tr>
<td>著者</td>
<td>長尾 正人</td>
</tr>
<tr>
<td>発行</td>
<td>北海道大学農学部邦文紀要</td>
</tr>
<tr>
<td>発行日時</td>
<td>1964-12-14</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>5(2)_p89-96.pdf</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY
Genetical Studies on Rice Plant, XXVIII
Causal Genes and Their Linkage Relationships of Some Morphological Characters, Introduced from Foreign Rice Varieties

By
Seijin NAGAO, Man-emon TAKAHASHI and Katsuyoshi MORIMURA

繊言
著者らは標識遺伝子の蒐集を目的として、内外の稈種中に保有される形態的形質を北海道稈種内に交雑を通じて導入しつつある。その際の交雑と雛稈品種間であれは所謂雛稈不稔現象 (intervarietal hybrid sterility) が起きがちであるが、それが著しくない場合には形質導入過程における分離様式から、直ちにその形質に関与する遺伝子を推定し、併せて連鎖関係を論ずることができる。
本報は主として北米稈品種を対象に上記の歴史過程において得られた成果の一部である。
本論に入るに先立ち、木下俊郎氏らの協力、並びに JODON 氏からの材料提供に深謝する。

実験材料
ここに取扱わされた形質は、収穫し小花 (Clustered spikelets), 擾葉 (rolled leaf), マグノリア黒穗病 (magnolia blackleaf) 及び溜れ葉 (dripping-wet of leaves) の 4 種である。収穫し小花とは枝梗の上部の節間が短縮し、そのために小花が収穫したか否かを知る形質である (第 1 図)。最初は日本稈種において知られていたものであるが、本實験ではそれが北米稈種に導入されたものを使用した。濁葉も同じく北米稈種に保有されている形質である。第 2 図の如く、葉身が幅狭く且つ縦状に溢き込むため、一見萎縮した葉身を思わせる。本形質の稈は例外なく萎縮性状が小形化する傾向を示し、併せて稈の葉間が不良である。マグノリア黒穗病は日本稈種を除く北米稈種 Magnolia に生じた突然変異形質である (JODON 1957)。生育中期以降の稈に黒斑点が現われ、斑点の大さと分布範囲は生育期を通じて拡大する (第 3 図)。本形質の表現度は温度に左右されるらしく、北海道の水田では発見地 (北米ルイジアナ州) における程には黒斑の分布が密でない。これが温度の影響であろうとの推定は、温度と大別との比較栽培によっても裏付けられている。

溜れ葉は日本稈の形質である (第 4 図)。稈面が水滴を弾じなかったため、降雨が烈しかれば葉身は一面に濡れて垂下し、水面に付着しがちとなる。
以上の諸形質を保有する導入品種 (又は系統) とこれに交雑させられた著者らのテスターを示せ第 1 表の如くである。
表中の遺伝子組成とは、本報の記述に直接関係する標識遺伝子のことをであるが、その作用又は形質の大きさは次の如くである。

<table>
<thead>
<tr>
<th>C^n</th>
<th>Pw^n</th>
<th>A^n</th>
<th>Rd^n</th>
</tr>
</thead>
</table>

C^n: 稈胚の形成。Pw^n: 稈胚の葉脈形成。A^n: 稈胚の葉身形成。Rd^n: 稈胚の葉鞘形成。
第1表 供試品種（系統）一覧

Table 1. List of strains used

<table>
<thead>
<tr>
<th>Strain No.</th>
<th>Local name</th>
<th>Genic constitution</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-5</td>
<td>赤室 Akamuro</td>
<td>$C^r A Rc Rd I-Bf^+$</td>
<td></td>
</tr>
<tr>
<td>A-43</td>
<td>北海道1号 Hokkaimochi-1-goh</td>
<td>$C^+ A$ wx</td>
<td></td>
</tr>
<tr>
<td>A-58</td>
<td>黒色箱 Kokushokuto</td>
<td>$C^b A$ Pn wx</td>
<td></td>
</tr>
<tr>
<td>H-12</td>
<td>'45–300–1: 218–3–2</td>
<td>d_2 bl_1</td>
<td></td>
</tr>
<tr>
<td>H-25</td>
<td>'45–61–1: 29–1–2</td>
<td>g la</td>
<td></td>
</tr>
<tr>
<td>H-45</td>
<td>'49–226–1: 178–1–2</td>
<td>Pn la wx</td>
<td></td>
</tr>
<tr>
<td>H-69</td>
<td>'48–8–2: 212–29–1</td>
<td>C^b</td>
<td></td>
</tr>
<tr>
<td>H-79</td>
<td>'49–85–1: 418–4–41</td>
<td>d_2 la bc lg</td>
<td></td>
</tr>
<tr>
<td>H-80</td>
<td>'48–27–1: 187–18–2</td>
<td>d_1 la bl_1</td>
<td></td>
</tr>
<tr>
<td>H-115</td>
<td>'54–144–1: 319–12–2</td>
<td>C^{bp} A Pw</td>
<td></td>
</tr>
<tr>
<td>N-44</td>
<td></td>
<td>C^+ A wx</td>
<td></td>
</tr>
<tr>
<td>N-45</td>
<td></td>
<td>C^{bp} A Pl d_e</td>
<td></td>
</tr>
</tbody>
</table>

D-7 | 露れ葉 Nureba | P^+ | JODONより, JODON's marker |
L-7	Blackleaf magnolia		
L-8	Virescent		
L-16	Pl-Pp-Clustered		
L-28	Clustered		
L-29	Rolled leaf		

Table 2. Segregation mode on “Clustered spikelets”

<table>
<thead>
<tr>
<th>Cross combination</th>
<th>Phentype of F_1</th>
<th>Segregation mode in F_2 (3:1)</th>
<th>x^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-44×L-28</td>
<td>中間型 Interm.</td>
<td>93 27 120 1</td>
<td>0.40</td>
<td>0.7–0.5</td>
</tr>
<tr>
<td>A-43×L-16</td>
<td>"</td>
<td>150 36 186 $"$</td>
<td>3.16</td>
<td>0.1–0.05</td>
</tr>
<tr>
<td>A-43×L-16</td>
<td>"</td>
<td>194 51 245 $"$</td>
<td>2.29</td>
<td>0.2–0.1</td>
</tr>
<tr>
<td>N-44×L-16</td>
<td>"</td>
<td>432 165 597 $"$</td>
<td>2.22</td>
<td>0.2–0.1</td>
</tr>
<tr>
<td>N-44×L-16</td>
<td>"</td>
<td>91 35 126 $"$</td>
<td>0.52</td>
<td>0.5–0.3</td>
</tr>
<tr>
<td>N-44×L-16</td>
<td>"</td>
<td>224 86 310 $"$</td>
<td>1.24</td>
<td>0.3–0.2</td>
</tr>
<tr>
<td>H-45×L-16</td>
<td>"</td>
<td>124 28 152 $"$</td>
<td>3.51</td>
<td>0.1–0.05</td>
</tr>
<tr>
<td>H-45×L-16</td>
<td>"</td>
<td>27 8 35 $"$</td>
<td>0.03</td>
<td>0.9–0.8</td>
</tr>
<tr>
<td>H-45×L-16</td>
<td>"</td>
<td>86 18 104 $"$</td>
<td>3.28</td>
<td>0.1–0.05</td>
</tr>
</tbody>
</table>

$\sum x_i^2 = 16.65$
d.f. = 9
$p = 0.1–0.05$
実験結果

A. 種子小花
L-16 と L-28 は種子小花の程度において同一であり，両者間の交雑後代には分離が全くみられない。正常型と交雑して得た F₁ は何れも異生型であったが，その程度は異生の親よりも低い。F₂ は異生の親型から F₁ 型を経て正常型に至る各階級を含むが，これを正常型と正常型に 2 大別すれば両者の比は第 2 表に示す加く明らかに 3:1 となる。即ち異生型が正常型に対して単発引子（不完全優性）であるという JODON (1947) の報告と一致する。F₂ 種子型中の変異が主付遺伝子の同型・異型接合の関係のみに因るのか，或はまた他に原因を求むべきかは今後に残されているが，小規模ながら F₂ より異生性に関して親程度のもの (程度 1)，それと F₁ との中間のものの (程度 2)，F₁ と同じものの (程度 3) 及び正常型のものの (程度 4) を適宜に選び，その次代を養成観察した結果は第 3 表の如くであった。

即ち 1 個の主付遺伝子が関与していることは確実である。それもも他に変異遺伝子（又は微細遺伝子）の如きものが，介在している可能性を否定することはできない。

本形質の主付遺伝子は JODON (1947, 1957) の報告と

第 3 表 種子小花に関する F₂ 分離
Table 3. F₂ Segregation on “Clustered spikelets”

<table>
<thead>
<tr>
<th>F₂ の観察程度</th>
<th>F₂ 分離</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of clustering in F₂</td>
<td>Segregation in F₂ lines</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

第 4 表 Cl, wx 及び CB を含む分離から得られた相互間の組換え
Table 4. Recombination values computed from segregation data involving Cl, wx and CB

<table>
<thead>
<tr>
<th>遺伝子組合せ</th>
<th>交雑組合せ</th>
<th>総合分離比</th>
<th>個体数</th>
<th>自由度</th>
<th>χ^2</th>
<th>P</th>
<th>組換価 R.C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl-wx</td>
<td>N-44 × L-16</td>
<td>(3:1)(3:1)</td>
<td>126</td>
<td>3</td>
<td>4.77</td>
<td>0.1</td>
<td>41.0</td>
</tr>
<tr>
<td>Cl-CB</td>
<td>N-44 × L-16</td>
<td>"</td>
<td>209</td>
<td>"</td>
<td>5.27</td>
<td>0.1</td>
<td>39.0</td>
</tr>
<tr>
<td>wx-CB</td>
<td>N-44 × L-16</td>
<td>"</td>
<td>120</td>
<td>"</td>
<td>17.81</td>
<td><0.001</td>
<td>35.0</td>
</tr>
<tr>
<td>Cl-wx</td>
<td>N-44 × L-28</td>
<td>"</td>
<td>186</td>
<td>"</td>
<td>3.05</td>
<td>0.3</td>
<td>45.0</td>
</tr>
<tr>
<td>Cl-CB</td>
<td>N-44 × L-28</td>
<td>"</td>
<td>120</td>
<td>"</td>
<td>7.60</td>
<td>0.05</td>
<td>39.0</td>
</tr>
<tr>
<td>wx-CB</td>
<td>N-44 × L-28</td>
<td>"</td>
<td>100</td>
<td>"</td>
<td>11.79</td>
<td><0.001</td>
<td>24.5</td>
</tr>
<tr>
<td>Cl-CB</td>
<td>A-43 × L-16</td>
<td>(3:1)(9:7)</td>
<td>245</td>
<td>"</td>
<td>0.41</td>
<td>0.5</td>
<td>49.0</td>
</tr>
<tr>
<td>Cl-CB</td>
<td>A-43 × L-16</td>
<td>"</td>
<td>245</td>
<td>"</td>
<td>4.01</td>
<td>0.02</td>
<td>41.0</td>
</tr>
<tr>
<td>Cl-CB</td>
<td>N-44 × L-16</td>
<td>(3:1)(3:1)</td>
<td>597</td>
<td>"</td>
<td>18.47</td>
<td><0.001</td>
<td>39.0</td>
</tr>
<tr>
<td>Cl-CB</td>
<td>H-45 × L-16</td>
<td>"</td>
<td>152</td>
<td>"</td>
<td>12.85</td>
<td>0.001</td>
<td>33.0</td>
</tr>
</tbody>
</table>

長尾・高橋・森村： 種の交雑に関する研究 第 XXVIII 報
第5表 92

Table 5. Homogeneity test on F2 data of crosses, N-44×L-16 and N-44×L-28, involving genes, Cl, wx and CB.

<table>
<thead>
<tr>
<th></th>
<th>wx</th>
<th>CB</th>
<th>d.f.</th>
<th>C.S.</th>
<th>d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.163</td>
<td>0.122</td>
<td>1</td>
<td>51.164</td>
<td>3</td>
</tr>
<tr>
<td>H</td>
<td>3.490</td>
<td>1.735</td>
<td>2</td>
<td>9.930</td>
<td>6</td>
</tr>
<tr>
<td>T</td>
<td>3.653</td>
<td>1.857</td>
<td>3</td>
<td>61.094</td>
<td>9</td>
</tr>
</tbody>
</table>

Cl: 偏差 Deviation H: 均一性 Homogeneity
T: 計 Total C.S.: 同時分離 Combined segregation
一致するから，同氏による Cl なる遺伝子記号をこれに与えておく。

CI の連鎖関係については，既に JODON (1948) により wx 群即ち著者の第 I 連鎖群に属するものと推定されている。著者は Cl と第 I 群所属の wx 及び CB の工夫との間，並びに wx と BI の間で第 4 表の加き組換値を得た。即ち CI-wx で 41.0 乃至 49.5% (3 組合せ), CI-CB で 33.0 乃至 45.0% (6 組合せ), そして wx-CB で 24.5 乃至 35.5% (3 組合せ) である。交雑組合せ
N-44×L-16 及び N-44×L-28 における上記 3 遺伝子の同時分離に関する均一性の検定は別に第 5 表に示す如くであり，これら遺伝子間の連鎖は，可能性が高いといえ你的あるも，相互の位置関係は次の如く推定される。

!CI.png

なお JODON による報告では C-Cl が 43%, wx-Cl が 46%であるから，著者の試験はこれを支持する結果であるといえよってよい。

CI 及び他の連鎖群所属遺伝子との独立関係は調査又は集計中であるが，第 II 群の PI 及び lq とは独立である（第 6 表）。

第6表 既知連鎖群遺伝子と Cl との間に得られた組換値

Table 6. Recombination values between CI and known linkage markers

<table>
<thead>
<tr>
<th>遺伝子群</th>
<th>被検遺伝子</th>
<th>CI との</th>
<th>組合せ分離比</th>
<th>個体数</th>
<th>自由度</th>
<th>x²</th>
<th>p</th>
<th>R.C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>PI</td>
<td>N-44</td>
<td>(3:1)(3:1)</td>
<td>225</td>
<td>3</td>
<td>2.74</td>
<td>0.3</td>
<td>50.0</td>
</tr>
<tr>
<td>"</td>
<td>lq</td>
<td>"</td>
<td>"</td>
<td>104</td>
<td>"</td>
<td>4.17</td>
<td>0.2</td>
<td>44.5</td>
</tr>
<tr>
<td>"</td>
<td>H-45</td>
<td>"</td>
<td>152</td>
<td>"</td>
<td>4.12</td>
<td>0.2</td>
<td>45.5</td>
<td></td>
</tr>
</tbody>
</table>

第7表 接種に関する分離

Table 7. Segregation mode on "rolled leaf"

<table>
<thead>
<tr>
<th>交雑組合せ</th>
<th>F1 表現型</th>
<th>F2 の分離</th>
<th>自由度</th>
<th>x²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>正常</td>
<td>拘束</td>
<td>推移</td>
<td>計</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-58×L-29</td>
<td>正常 Normal</td>
<td>361</td>
<td>121</td>
<td>482</td>
<td>1</td>
</tr>
<tr>
<td>N-45×L-29</td>
<td>"</td>
<td>156</td>
<td>48</td>
<td>203</td>
<td>"</td>
</tr>
<tr>
<td>N-45×L-29</td>
<td>"</td>
<td>213</td>
<td>56</td>
<td>269</td>
<td>"</td>
</tr>
<tr>
<td>H-25×L-29</td>
<td>"</td>
<td>42</td>
<td>14</td>
<td>56</td>
<td>"</td>
</tr>
<tr>
<td>H-25×L-29</td>
<td>"</td>
<td>90</td>
<td>33</td>
<td>123</td>
<td>"</td>
</tr>
<tr>
<td>L-29×A-5</td>
<td>"</td>
<td>290</td>
<td>113</td>
<td>403</td>
<td>"</td>
</tr>
</tbody>
</table>

\[\sum x^2 = 4.86 \text{ d.f. = 6 } \ p = 0.7-0.5 \]

1）日本鎌の連鎖群については NAGAO & TAKAHASHI (1963) 参照
B. 推論

推論型の L-29 を 4 種の正常型 (A-5, A-58, H-25 及び N-45) に交雑したが、それらの F1 は何れも正常型であった。F2 は第 7 表の如く正常: 推葉群 3:1 の比率をもって分離し、従って推葉型性は明らかに単純劣性形質である。

関与遺伝子に r1 なる記号を与える。

r1 と既知連鎖群標識遺伝子との間の独立又は連鎖関係は第 8 表に示す加くである。

即ち、第 I, II, III, IV 及び第 VIII 連鎖群の遺伝子との間で組換換が求められたが、その割合が特に小さなものはなかった。しかし第 I, II 及び第 III 群に属する遺伝子に支配される形質も標準配色 (CBA: I-III 群)、葉身着色 (PLA: II-III 群)、実変色着色 (Pr: III 群) 及びnard (Rd: III 群) が干渉する組換換においては一応の連鎖傾向が認められる。r1 は wx 及び Cn との間では独立関係を示す値 (rl-wx は 50.5%, rl-Ch は 50.0%) であるから第 I 群には属さない。また染色体に関する P1 は第 II 群の所属である。故に CBA と r1 の間及び PLA と r1 の間得られた 40.0% 及び 41.5% なる組換換は r1 と A の間の連鎖を想起すると難なくべきであろう。A は第 III 群所属であるから、r1 はこの群の Pn 及び Rd とも連鎖する筬である。実際に得られた rl-Pn 及び rl-Rd の組換換割は夫々 47.0% 及び 45.5% であった。

r1 と第 IV, V 及び第 VIII 群の標識遺伝子との間は本実験の範囲では独立と認めべきである。

第 III 群中の A, Rd 及び Pn 相互間では既に A-Rd (0.3%), Rd-Pn (27%), A-Pn (30%) なる関係が知られている (Nagao & Takahashi 1963)。これに今回の r1 を加えるならば、これら 4 遺伝子に関し次の排列順序が可能となる (95 頁)。

第 8 表 既知連鎖群遺伝子と r1 との間に得られた組換

<table>
<thead>
<tr>
<th>連鎖群 Group</th>
<th>標識遺伝子 Marker</th>
<th>r1 との交雑比率 P1 comb. with r1</th>
<th>縦合分離比 Combined segregation ratio</th>
<th>個体数 N</th>
<th>自由度 d.f.</th>
<th>x²</th>
<th>p</th>
<th>組換換 R.C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>wx</td>
<td>A-58</td>
<td>(3:1) (3:1)</td>
<td>364</td>
<td>3</td>
<td>5.43</td>
<td>0.1</td>
<td>50.5</td>
</tr>
<tr>
<td>"</td>
<td>Cb</td>
<td>H-25</td>
<td>"</td>
<td>347</td>
<td>"</td>
<td>4.58</td>
<td>0.2</td>
<td>50.0</td>
</tr>
<tr>
<td>"</td>
<td>Cbp</td>
<td>N-45</td>
<td>"</td>
<td>197</td>
<td>"</td>
<td>2.25</td>
<td>0.3</td>
<td>52.5</td>
</tr>
<tr>
<td>I, III</td>
<td>Cb A</td>
<td>H-25</td>
<td>(9:7) (3:1)</td>
<td>123</td>
<td>"</td>
<td>4.47</td>
<td>0.2</td>
<td>40.0</td>
</tr>
<tr>
<td>II, III</td>
<td>Pl A</td>
<td>N-45</td>
<td>"</td>
<td>157</td>
<td>"</td>
<td>2.64</td>
<td>0.3</td>
<td>41.5</td>
</tr>
<tr>
<td>III</td>
<td>Pn A</td>
<td>A-58</td>
<td>"</td>
<td>482</td>
<td>"</td>
<td>5.95</td>
<td>0.1</td>
<td>47.0</td>
</tr>
<tr>
<td>"</td>
<td>Rd A</td>
<td>A-5</td>
<td>(3:1) (3:1)</td>
<td>335</td>
<td>"</td>
<td>8.96</td>
<td>0.1</td>
<td>45.5</td>
</tr>
<tr>
<td>IV</td>
<td>g</td>
<td>H-25</td>
<td>"</td>
<td>125</td>
<td>"</td>
<td>0.76</td>
<td>0.8</td>
<td>53.0</td>
</tr>
<tr>
<td>"</td>
<td>d4</td>
<td>N-45</td>
<td>"</td>
<td>269</td>
<td>"</td>
<td>3.03</td>
<td>0.3</td>
<td>52.0</td>
</tr>
<tr>
<td>V</td>
<td>IBf</td>
<td>A-5</td>
<td>"</td>
<td>403</td>
<td>"</td>
<td>4.63</td>
<td>0.1</td>
<td>49.0</td>
</tr>
<tr>
<td>VIII</td>
<td>la</td>
<td>H-25</td>
<td>"</td>
<td>56</td>
<td>"</td>
<td>8.44</td>
<td>0.02</td>
<td>56.5</td>
</tr>
</tbody>
</table>

第 9 表 マグノリア黒斑葉に関する分離

<table>
<thead>
<tr>
<th>交雑組合せ Cross combination</th>
<th>F1 表現型 Pheno type of F1</th>
<th>F1 の分離 Segregation of F1 (3:1)</th>
<th>組換換部位 Combined segregation in F2 (3:1)</th>
<th>自由度 d.f.</th>
<th>x²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-58 × L-7</td>
<td>正常 Normal</td>
<td>183</td>
<td>78</td>
<td>261</td>
<td>1</td>
<td>3.32</td>
</tr>
<tr>
<td>L-7 × H-12</td>
<td>"</td>
<td>236</td>
<td>91</td>
<td>327</td>
<td>"</td>
<td>1.35</td>
</tr>
<tr>
<td>L-7 × A-5</td>
<td>"</td>
<td>141</td>
<td>33</td>
<td>174</td>
<td>"</td>
<td>4.15</td>
</tr>
<tr>
<td>L-7 × A-5</td>
<td>"</td>
<td>191</td>
<td>43</td>
<td>234</td>
<td>"</td>
<td>3.38</td>
</tr>
</tbody>
</table>

Σx² = 12.25 d.f. = 4 p = 0.02-0.01
第10表 既知連鎖群遺伝子とblとの間に得られた組換え値

Table 10. Recombination values between blm and known linkage markers

<table>
<thead>
<tr>
<th>连锁群</th>
<th>标识位点 Marker gene</th>
<th>blmとの交配親 F1 comb. with blm</th>
<th>綜合分离比 Combined segregation ratio</th>
<th>個体数 N</th>
<th>自由度 d.f.</th>
<th>x^2</th>
<th>P</th>
<th>組換価 R.C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C^b</td>
<td>A-58</td>
<td>(3:1)(3:1)</td>
<td>234</td>
<td>3</td>
<td>14.07</td>
<td>0.001</td>
<td>37.5</td>
</tr>
<tr>
<td>II</td>
<td>wx</td>
<td>"</td>
<td>"</td>
<td>248</td>
<td>"</td>
<td>11.73</td>
<td>0.001</td>
<td>49.5</td>
</tr>
<tr>
<td>H</td>
<td>d_2</td>
<td>H-12</td>
<td>"</td>
<td>588</td>
<td>"</td>
<td>9.21</td>
<td>0.02</td>
<td>52.0</td>
</tr>
</tbody>
</table>

第11表 嫩れ葉に関する分離

Table 11. Segregation mode on “dripping-wet of leaves”

<table>
<thead>
<tr>
<th>交雛組合せ Cross combination</th>
<th>F1表現型 Phenotype of F1</th>
<th>F2の分離 [3:1] Segregation mode in F2 (3:1)</th>
<th>自由度 d.f.</th>
<th>x^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-7×A-58</td>
<td>正常 Normal</td>
<td>109</td>
<td>30</td>
<td>139</td>
<td>1</td>
</tr>
<tr>
<td>D-7×A-58</td>
<td>"</td>
<td>94</td>
<td>26</td>
<td>120</td>
<td>"</td>
</tr>
<tr>
<td>D-7×H-12</td>
<td>"</td>
<td>143</td>
<td>57</td>
<td>200</td>
<td>"</td>
</tr>
<tr>
<td>D-7×H-12</td>
<td>"</td>
<td>145</td>
<td>42</td>
<td>187</td>
<td>"</td>
</tr>
<tr>
<td>D-7×H-79</td>
<td>"</td>
<td>256</td>
<td>69</td>
<td>325</td>
<td>"</td>
</tr>
<tr>
<td>D-7×H-80</td>
<td>"</td>
<td>125</td>
<td>43</td>
<td>168</td>
<td>"</td>
</tr>
<tr>
<td>D-7×H-115</td>
<td>"</td>
<td>366</td>
<td>95</td>
<td>461</td>
<td>"</td>
</tr>
<tr>
<td>D-7×H-69</td>
<td>"</td>
<td>203</td>
<td>87</td>
<td>290</td>
<td>"</td>
</tr>
</tbody>
</table>

$\sum x^2 = 14.63 \quad d.f. = 8 \quad p = 0.10-0.05$

第12表 既知連鎖群遺伝子とdrpとの間に得られた組換え値

Table 12. Recombination values between drp and known linkage markers

<table>
<thead>
<tr>
<th>连锁群</th>
<th>标识位点 Marker gene</th>
<th>drpとの交配親 F1 comb. with drp</th>
<th>綜合分离比 Combined segregation ratio</th>
<th>個体数 N</th>
<th>自由度 d.f.</th>
<th>x^2</th>
<th>P</th>
<th>組換価 R.C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>wx</td>
<td>A-58</td>
<td>(3:1)(3:1)</td>
<td>247</td>
<td>3</td>
<td>1.39</td>
<td>0.7</td>
<td>50.0</td>
</tr>
<tr>
<td>II</td>
<td>PPr</td>
<td>"</td>
<td>"</td>
<td>60</td>
<td>"</td>
<td>3.41</td>
<td>0.3</td>
<td>50.0</td>
</tr>
<tr>
<td>III</td>
<td>P C^b</td>
<td>H-12</td>
<td>(9:7)(3:1)</td>
<td>136</td>
<td>"</td>
<td>8.01</td>
<td>0.02</td>
<td>39.0</td>
</tr>
<tr>
<td>IV</td>
<td>PA</td>
<td>A-58</td>
<td>"</td>
<td>127</td>
<td>"</td>
<td>5.52</td>
<td>0.1</td>
<td>34.0</td>
</tr>
<tr>
<td>V</td>
<td>PA</td>
<td>"</td>
<td>"</td>
<td>133</td>
<td>"</td>
<td>4.73</td>
<td>0.1</td>
<td>37.0</td>
</tr>
<tr>
<td>VI</td>
<td>d_2</td>
<td>H-79</td>
<td>(3:1)(3:1)</td>
<td>301</td>
<td>"</td>
<td>13.77</td>
<td>0.001</td>
<td>39.0</td>
</tr>
<tr>
<td>VII</td>
<td>p</td>
<td>"</td>
<td>"</td>
<td>325</td>
<td>"</td>
<td>6.40</td>
<td>0.5</td>
<td>55.5</td>
</tr>
<tr>
<td>VIII</td>
<td>la</td>
<td>"</td>
<td>"</td>
<td>162</td>
<td>"</td>
<td>1.85</td>
<td>0.5</td>
<td>50.0</td>
</tr>
<tr>
<td>X</td>
<td>hl_1</td>
<td>H-12</td>
<td>"</td>
<td>138</td>
<td>"</td>
<td>0.66</td>
<td>0.8</td>
<td>52.5</td>
</tr>
<tr>
<td>XI</td>
<td>bc</td>
<td>H-79</td>
<td>"</td>
<td>301</td>
<td>"</td>
<td>11.71</td>
<td>0.01</td>
<td>48.0</td>
</tr>
</tbody>
</table>
C. マグノリア黒斑葉

本形質を持たずL-7と正常型のA-5, A-58及びH-12を交雑させて得たF1はいずれも正常型。そのF2は第9表に示す如く正常型:黒斑型を3:1の比に分離した。発表者JODON (1957)が推論した如く本形質は単純劣性である。遺伝子記号を仮にblmとする。

blmの連鎖関係は充分には知られていないが第1群のCとの間に37.5%なる組換え値が計算された。同群のwxと同様に独立に近いから、若しblmが本群所属ならばその位置関係はCを介在としてwxと仮定すればblmの側に在りwx-C-blmの順位を保つと考えられる (第10表)。

D. 濁れ葉

濡れ葉型のD-7を正常型のA-58, H-12, H-79, H-80及びH-115に配した交雑のF1は全て正常型。F2では第11表の如く正常型と濡れ葉型が3:1の比に分離した。濡れ葉型は単離遺伝子劣性と解釈して、潤れ遺伝子をdrpと仮称する。

drpと既知連鎖群遺伝子との間の組換え値は第12表に示すとおり。即ち第IV.第VII.第IX及び第XIIを除く8群の遺伝子との間で連鎖独立関係が見出された。その結果、P C R (穂先性)、PA (穂先性)及びd sとの間で独立とのみみられない個体が得られた。C Rは第I群、P及びd sは第II群、Aは第III群の所属である。drpとwxの間も独立であるからCRとはC Rとも独立の可能性が高くなる。drpがd sと連鎖するとすれば、PC d r p及びPA d r pで得られた90%及び36% (34.0〜37.0%)なる個体はd sと同群のPがdrpと連鎖する結果であると考えることができる。但しd sとP及びd s同群の IG 又はPrがdrpとの間で示した組換え値はむしろ独立の場合に近かった。既に知られたところの第II群所属遺伝子の位置関係はd s-d s-P-l g-P rであることから、上記の成績はdrpがPを介

在としてd s側ではl gやPrとは反対の側に位置することを示唆するというべきであろう。尤もその決定にはなお今後の実験が必要である。

摘 要

1. 穂生小花(C)、捲捲(rf)、マグノリア黒斑葉(bl m)及び濡れ葉(d rp)の関与遺伝子を分析し、それらの連鎖関係を論じた。

2. CIは第I連鎖群に属する。桜樹性(wx)及び花青素chromogen(C)を含めてその間にwx-C-Clなる順位を推定した。

3. rlは第III連鎖群の花青色activatorや赤米遺伝子(Rd)と連鎖した。但し同群のPn(節色)とは独立に近い組換え値を示したが、これはrlがAやRdを介在としてPnとは反対側にあり、従ってrl-Rd-Pnなる順位を保つことに因るものであろう。

4. bl mは第I群に所属し、wx-C-bl mなる位置関係にあるらしい。

5. drpは第II群のP(穂先性)やd s(穂先性)と連鎖する。

引 用 文 献

Résumé

This is one of the serial reports on the genic analysis of characters in foreign rice varieties or strains based on a study of crosses with testers from Japanese varieties in which the genic constitution was previously explored. In this paper four morphological characters and their causal genes are presented and discussed. These are clustered spikelets, rolled leaf, magnolia blackleaf and dripping-wet of leaves.

Through the present experiment their causal genes and their loci on the linkage groups were estimated, and the following results were obtained.

CI……A gene for clustered spikelets. Clustered describes a clumped arrangement of the spikelets on the panicle branches, the rachis. This character
behaves as incomplete dominant over the normal arrangement. The Cl is assigned its position on the 1st linkage group of the writers, in the order of wx (glutinous)–C (anthocyanin chromogen)–Cl, which in accord with the conclusion of JODON, the previous reporter of the linkage relationships on this character.

wl... A gene for rolled leaf character. It has a distinct furling tendency as in the case of withered leaves. This character behaves as a single recessive to the normal. The wl links with genes in the IIIrd linkage group. The sequence of these genes in question is assumed to be wl–A (anthocyanin activator)–Rd (red rice)–Pn (purple node).

bl_m... A gene for magnolia blackleaf, in which discoloration of chlorophyll begins to develop on the leaves as black spots resembling fungus lesions. This is caused by a single recessive gene bl_m, of which the finder and the first reporter on segregation mode is JODON. The bl_m appears to be another member of the 1st linkage group, indicating the possible order of genes as wx–C–bl_m.

drp... This is a gene for dripping-wet of leaves, which means "doesn't repel water" in the presence of a rainfall. This character is monogenically recessive to the normal, the "repelling" type. The drp shows an indication of linkage between P (colored apiculus) and d_2 ("ebisu" dwarf), which both belong to the IIInd linkage group.
Fig. 1. Clustered spikelets.
Fig. 2. Rolled leaf.
Fig. 3. Magnolia blackleaf.
Fig. 4. Dripping-wet (left) and normal type of leaves. Notice, the normal leaf repels water.