<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>题目</td>
<td>稲種子の低温強芽性に関する研究（第1報）低温強芽性の品種間差異および親植物の栽培環境の影響</td>
</tr>
<tr>
<td>作者</td>
<td>李弘　田口　啓作</td>
</tr>
<tr>
<td>出所</td>
<td>北海道大学農学部邦文紀要</td>
</tr>
<tr>
<td>期間</td>
<td>1969-06-30</td>
</tr>
<tr>
<td>ファイル</td>
<td>7(1)_p63-71.pdf</td>
</tr>
</tbody>
</table>

この資料は北海道大学の研究機関として提出されたものです。
稲種子の低温発芽性に関する研究

第1報 低温発芽性の品種間差異および親植物の栽培環境の影響

李 弘祐・田口啓作
（北海道大学農学部食用作物学教室）

Studies on the germinability of rice seeds at low temperature

1. The varietal differences and the effects of growing conditions of parent plants in the germinability of rice seeds at low temperature

Hong Suk LEE and Keisaku TAGUCHI
(Department of Agronomy, Faculty of Agriculture, Hokkaido University, Sapporo, Japan)
Received January 14, 1969

1. 緒 論

保護育苗の発育に際し、かえって無視されて来た稲種子の低温発芽性は、省力栽培化に伴う直接栽培の必要性や、作付体系の多様化と増産増収のための早期栽培、あるいは用水不足対策としての乾田直接栽培などの面から品種の具備すべき特性として再び重要視されるにいたった。

低温発芽性に関する研究は、かならずしも少なくないが、かくの結果を総合すれば1)低温発芽性に品種間差異がある1,2,3,9,11,13,18)。2)発芽最適温度は品種によって異なるが、一般的に約10℃である3,5,11,18,24)。3)高温度の品種ほど又は早生品種ほど一般的に低温発芽性が大である7,18)。4)低温発芽性は、低温初期伸長量に正の相関関係にある14)などに要約されるが、これらはほとんど小数品種の品種間差異と品種分化面からの生態的考察であり、低温といえどもかなりの高い温度においての発芽速度の追求であり、真の意味での低温発芽性的特性を明らかにした研究は見当らないといってよい。

著者らは育苗の立場から低温発芽性を生理遺伝学的に調べ、品種改良および栽培改善の基礎となる一報の研究を行いつつあるが、その第一の段階として具体的に品種間差異の有無を明らかにし、低温発芽性と適温下の発芽速度との関係、ならびに親植物の栽培環境と低温発芽性との関係を調査したので、ここにその成績を報告する。栽培環境の具体的条件については次の章以下に記述した。

2. 試験材料および方法

i) 此の試験に供試した品種は第1表の如くである。これらの品種は1966年産の種子として各地方に引地試験に供したが、1967年5-6月に取り寄せてもので、それらを比重1.06の塩水銀を行ない充分に乾燥させた後、室内にDesiccatorに貯蔵した。発芽試験は1967年7月9月にかけて実施し、播種前に水銀液（昇圧1000倍）で消毒した。したがって各品種の発芽はほとんど同一の状態にある。発芽調査にあたりLieenberg発芽試験器に2重の湿紙を敷いて栽培し、各品種50粒の3-4反覆のもとに毎日発芽粒数を調査した。ただし30°Cの場合は栽培後2-12時間毎に発芽粒数を調査した。発芽温度は8°C、10°C、13°C、30°Cとし、調査の継続日数は各々50日、45日、30日、7日とした。

ii) 窓室栽培と圃場栽培品種の発芽比較試験には、前記品種間差の調査結果からえられた低温発芽性を異にする7品種を供試した。すなわち、低温発芽性のもっとも高い品種として胆振早生（6）、北斗（29）、愛豊（34）をその最も低い品種として、越ひびき（56）、Chinmemen-bongmi（83）を、また中間品種として新栄（12）、ササネミ（14）、ユーカラ（17）をえらんだ。ただし圃場栽培品種として用いた越びきは、国立北陸農業試験場の同業品種を供試したものである。圃場栽培は、冷床育苗した苗を1株1本植とし、北海道大学農学部附属農場に同様の標準栽培要領に準じて行ない、温室栽培
第1表 供試品種一覧

<table>
<thead>
<tr>
<th>品種名</th>
<th>採種地</th>
<th>品種の来歴</th>
<th>品種名</th>
<th>採種地</th>
<th>品種の来歴</th>
<th>品種名</th>
<th>採種地</th>
<th>品種の来歴</th>
</tr>
</thead>
<tbody>
<tr>
<td>赤毛</td>
<td>国立北海道農業試験場在来品</td>
<td>1</td>
<td>イワコガネ</td>
<td>国立北海道農業試験場産</td>
<td>成種</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水口銀</td>
<td></td>
<td>2</td>
<td>ホウリュウ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>北見赤毛1号</td>
<td></td>
<td>3</td>
<td>新雪</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>坊主</td>
<td></td>
<td>4</td>
<td>韓国水原在来作物試験場品</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>津軽早生</td>
<td></td>
<td>5</td>
<td>中川</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>旭摂早生</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>走坊主1号</td>
<td></td>
<td>7</td>
<td>水木真稀</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>赤室</td>
<td></td>
<td>8</td>
<td>李太郎</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>チンコ坊主</td>
<td></td>
<td>9</td>
<td>陰城在来</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポルトガル</td>
<td></td>
<td>10</td>
<td>水原82号</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>石狩白毛</td>
<td></td>
<td>11</td>
<td>水成</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>新栄</td>
<td></td>
<td>12</td>
<td>八速</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ふくゆき</td>
<td></td>
<td>13</td>
<td>再建</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サナホナミ</td>
<td></td>
<td>14</td>
<td>振興</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>早生錦</td>
<td></td>
<td>15</td>
<td>豊光</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>農林20号</td>
<td></td>
<td>16</td>
<td>関玉</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ユーカラ</td>
<td></td>
<td>17</td>
<td>湖光</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シオカリ</td>
<td></td>
<td>18</td>
<td>オオトリ農業試験場</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>豊光</td>
<td></td>
<td>19</td>
<td>ウゴンウチ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>農林9号</td>
<td></td>
<td>20</td>
<td>ミヨシ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ミマサリ</td>
<td></td>
<td>21</td>
<td>ヨネシ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シラユキ</td>
<td></td>
<td>22</td>
<td>フジサリ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カンマサリ</td>
<td></td>
<td>23</td>
<td>サササンゲレ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>農林34号</td>
<td></td>
<td>24</td>
<td>ホウネンソメ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>北斗</td>
<td></td>
<td>25</td>
<td>越路早生</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>農林28号</td>
<td></td>
<td>26</td>
<td>越ひびき</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヤチミノリ</td>
<td></td>
<td>27</td>
<td>千秋楽</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホクセンソ</td>
<td></td>
<td>28</td>
<td>マンリウ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヒメホナミ</td>
<td></td>
<td>29</td>
<td>トネワセ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>栄光</td>
<td></td>
<td>30</td>
<td>農林29号</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

は窒素、酸化酸、加里を各々0.7 gr 施与した5000分の1のWagner potにpot当り2-3本植とした。両栽培共に収穫は9～10月、品種は充分乾燥した後、室内のDesiccatorに貯蔵し、1968年5月に前記と同様な方法で発芽試験に供した。ただし調査温度は10℃で、締切日数は40日である。

iii) 冬季栽培と夏季栽培品種の比較調査に供試した品種は、新栄（12）と、ユーカラ（17）の代わりにポルトガル（10）と水原82号（40）をもちいたほか、前記と同様の8品種である。夏季栽培の種子とは前記のpot栽培から得た種子を室内的Desiccatorに貯蔵したものであり、冬季栽培による種子とは窒素、酸化酸、加里を各々0.5，1.0，0.5 gr 施用した5000分の1Wagner potに1967年11月旬に直接、pot当り2-3本植として1968年3～4月に収穫した種子を温室内で充分乾燥させ、室内的Desiccatorに貯蔵したものである。

第1次調査は夏季栽培種子といえども1968年7月に、第2次調査は同年11月に実施した。なお，発芽試験
3. 試験結果および考察

1) 低温発芽性の検定温度および表示方法

従来低温発芽性の検定に用いられた温度は13℃(11,33,12)と10℃(11,13)などがあるものの、15℃が多く(2,15,19,14)、また発芽性の表示方法としては、発芽調査第2日における発芽率と平均発芽日数で表わした場合が一般的で(11,14,33,12,31)、そのほかに供試品種の50%が発芽した日を発芽期とし、発芽期までの日数を発芽速度として表わした場合や(11,16)、発芽率を平均発芽日数で除した値を発芽係数として表わした場合(11,21)、あるいは供試品種の25%、50%、75%が発芽した日数で表わした場合などがある。

著者らは品種の特性としての低温発芽性が最も端的に表現される検定温度を見出すことを目的とする立場から一般的に認められている発芽最低温度を中心に8℃、10℃、13℃を選び、これと対比するための適温条件として30℃をこれに付加した。また調査の観察日数は大部分の品種においてほとんど発芽が見られない時期をとった。それはそれぞれ50日、45日、30日および7日となった。いま8℃、10℃、13℃の各区における発芽率と平均発芽日数との相関をみるとき、それぞれ $r = -0.375**$、$r = -0.690**$、$r = -0.240*$でいずれも有意な相関が認められ、低温下で発芽率の低い品種は発芽速度も遅いと言える。

しかし相関係数からもうかがわれるように8℃の場合は平均発芽日数よりも発芽率において品種の特性が強く現われ、13℃の場合は発芽率を除いてはいずれも90%以上の発芽率を示し、発芽率よりも平均発芽日数においてその特性がよく現われているのに対し10℃の場合は、発芽率と平均発芽日数の両面から品種の特性が良く現われているといってよい。なおその中で、供試品種中全然発芽しない品種が現われる限界温度も10℃前後であったので、この研究を進めていくには10℃が低温発芽性の検討に於て合理的かつ簡便な温度であるものと判断された。前述の如く8℃では発芽率が、また13℃では平均発芽日数がそれぞれ有効に表現されているものの、10℃の場合には両者を総合的に見やすい尺度としての発芽係数を採用し得るからこれが最も合理的な表示といえるであろう。発芽係数で現われた場合、各温度段階での発芽性の相関からみると、8℃と10℃で $r = 0.920**$、8℃と13℃で $r = 0.850**$、8℃と30℃で $r = 0.397**$、また10℃と13℃で $r = 0.912**$、10℃と30℃で $r = 0.441**$、さらに13℃と30℃で $r = 0.533**$であり、いずれも有意な相関がある。しかし調査温度が高くなるにしたがってその相関係数は低下することがうかがわ
<table>
<thead>
<tr>
<th>植 物</th>
<th>2m 8℃</th>
<th>発芽率 (%)</th>
<th>発芽係数</th>
<th>10℃</th>
<th>発芽率 (%)</th>
<th>発芽係数</th>
<th>13℃</th>
<th>発芽率 (%)</th>
<th>発芽係数</th>
<th>30℃</th>
<th>発芽率 (%)</th>
<th>発芽係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>赤</td>
<td>7.5</td>
<td>2.70</td>
<td>92.7</td>
<td>5.95</td>
<td>97.3</td>
<td>11.70</td>
<td>97.5</td>
<td>15.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水</td>
<td>6.4</td>
<td>2.28</td>
<td>94.7</td>
<td>4.00</td>
<td>98.0</td>
<td>8.92</td>
<td>99.5</td>
<td>61.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>北</td>
<td>26.5</td>
<td>1.02</td>
<td>64.0</td>
<td>2.44</td>
<td>94.7</td>
<td>7.37</td>
<td>98.0</td>
<td>64.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>坊</td>
<td>55.5</td>
<td>1.99</td>
<td>76.0</td>
<td>3.21</td>
<td>90.0</td>
<td>8.11</td>
<td>98.5</td>
<td>57.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>桃</td>
<td>34.5</td>
<td>0.62</td>
<td>73.3</td>
<td>2.58</td>
<td>98.7</td>
<td>7.28</td>
<td>99.5</td>
<td>56.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>頭</td>
<td>85.0</td>
<td>4.57</td>
<td>86.0</td>
<td>7.00</td>
<td>94.0</td>
<td>12.60</td>
<td>98.5</td>
<td>69.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>走</td>
<td>54.0</td>
<td>1.86</td>
<td>82.0</td>
<td>3.14</td>
<td>91.3</td>
<td>7.34</td>
<td>94.5</td>
<td>50.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>赤</td>
<td>63.5</td>
<td>1.88</td>
<td>82.7</td>
<td>3.64</td>
<td>98.7</td>
<td>7.56</td>
<td>98.0</td>
<td>60.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>万</td>
<td>56.7</td>
<td>1.73</td>
<td>85.3</td>
<td>3.45</td>
<td>97.3</td>
<td>9.51</td>
<td>98.5</td>
<td>54.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>赤</td>
<td>62.5</td>
<td>1.97</td>
<td>83.3</td>
<td>3.69</td>
<td>97.3</td>
<td>6.56</td>
<td>98.0</td>
<td>60.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>石</td>
<td>27.5</td>
<td>0.90</td>
<td>72.7</td>
<td>2.68</td>
<td>94.0</td>
<td>6.71</td>
<td>98.0</td>
<td>43.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>赤</td>
<td>46.0</td>
<td>1.70</td>
<td>78.7</td>
<td>3.79</td>
<td>94.0</td>
<td>6.70</td>
<td>99.5</td>
<td>54.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>万</td>
<td>26.5</td>
<td>0.85</td>
<td>70.0</td>
<td>2.48</td>
<td>93.3</td>
<td>6.58</td>
<td>99.5</td>
<td>55.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>万</td>
<td>22.3</td>
<td>0.67</td>
<td>49.3</td>
<td>1.66</td>
<td>77.3</td>
<td>4.84</td>
<td>95.5</td>
<td>49.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>赤</td>
<td>58.5</td>
<td>2.32</td>
<td>76.0</td>
<td>3.21</td>
<td>97.3</td>
<td>8.36</td>
<td>96.0</td>
<td>47.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>林</td>
<td>44.5</td>
<td>1.82</td>
<td>74.0</td>
<td>3.09</td>
<td>84.7</td>
<td>6.60</td>
<td>94.0</td>
<td>38.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>赤</td>
<td>47.5</td>
<td>1.27</td>
<td>66.7</td>
<td>2.30</td>
<td>88.0</td>
<td>8.32</td>
<td>94.0</td>
<td>57.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>68.0</td>
<td>2.58</td>
<td>88.7</td>
<td>3.59</td>
<td>95.3</td>
<td>8.18</td>
<td>98.0</td>
<td>43.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>豊</td>
<td>36.3</td>
<td>1.23</td>
<td>56.0</td>
<td>1.52</td>
<td>96.0</td>
<td>5.79</td>
<td>97.0</td>
<td>40.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>林</td>
<td>37.3</td>
<td>1.23</td>
<td>84.0</td>
<td>3.14</td>
<td>92.0</td>
<td>8.58</td>
<td>96.5</td>
<td>58.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>林</td>
<td>35.0</td>
<td>1.77</td>
<td>66.0</td>
<td>2.77</td>
<td>87.3</td>
<td>9.95</td>
<td>95.5</td>
<td>56.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>20.0</td>
<td>0.78</td>
<td>60.7</td>
<td>2.20</td>
<td>90.7</td>
<td>7.22</td>
<td>97.5</td>
<td>43.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>77.3</td>
<td>2.02</td>
<td>93.7</td>
<td>4.16</td>
<td>99.3</td>
<td>9.40</td>
<td>99.5</td>
<td>60.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>矢</td>
<td>75.3</td>
<td>2.58</td>
<td>75.3</td>
<td>3.23</td>
<td>95.3</td>
<td>8.41</td>
<td>97.0</td>
<td>56.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>北</td>
<td>81.5</td>
<td>5.00</td>
<td>88.7</td>
<td>7.85</td>
<td>90.0</td>
<td>16.08</td>
<td>89.0</td>
<td>48.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>林</td>
<td>38.5</td>
<td>1.28</td>
<td>60.7</td>
<td>2.36</td>
<td>95.3</td>
<td>6.84</td>
<td>95.5</td>
<td>52.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>20.5</td>
<td>0.56</td>
<td>77.3</td>
<td>2.81</td>
<td>93.3</td>
<td>6.46</td>
<td>95.5</td>
<td>43.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>47.0</td>
<td>1.83</td>
<td>85.3</td>
<td>3.83</td>
<td>97.3</td>
<td>9.68</td>
<td>99.0</td>
<td>44.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>28.5</td>
<td>0.97</td>
<td>63.3</td>
<td>2.46</td>
<td>90.7</td>
<td>8.98</td>
<td>95.5</td>
<td>52.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>金</td>
<td>30.0</td>
<td>1.03</td>
<td>69.3</td>
<td>2.95</td>
<td>86.0</td>
<td>8.29</td>
<td>93.5</td>
<td>40.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>29.5</td>
<td>0.84</td>
<td>80.0</td>
<td>2.95</td>
<td>99.7</td>
<td>6.78</td>
<td>98.5</td>
<td>45.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>28.0</td>
<td>0.81</td>
<td>79.3</td>
<td>2.82</td>
<td>94.7</td>
<td>7.54</td>
<td>99.0</td>
<td>47.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>40.0</td>
<td>1.19</td>
<td>72.0</td>
<td>2.17</td>
<td>92.7</td>
<td>5.76</td>
<td>99.5</td>
<td>62.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>82.0</td>
<td>4.49</td>
<td>92.0</td>
<td>9.11</td>
<td>93.0</td>
<td>14.82</td>
<td>99.0</td>
<td>61.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>32.0</td>
<td>0.88</td>
<td>43.0</td>
<td>1.35</td>
<td>91.3</td>
<td>9.03</td>
<td>88.5</td>
<td>34.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>8.0</td>
<td>0.30</td>
<td>12.7</td>
<td>0.44</td>
<td>58.0</td>
<td>3.63</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>53.0</td>
<td>2.31</td>
<td>84.7</td>
<td>3.31</td>
<td>96.0</td>
<td>7.98</td>
<td>84.5</td>
<td>28.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>74.0</td>
<td>5.04</td>
<td>77.3</td>
<td>5.56</td>
<td>92.7</td>
<td>13.71</td>
<td>99.0</td>
<td>59.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>29.5</td>
<td>1.03</td>
<td>34.0</td>
<td>1.36</td>
<td>82.0</td>
<td>5.58</td>
<td>83.5</td>
<td>30.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>9.0</td>
<td>0.49</td>
<td>74.7</td>
<td>2.58</td>
<td>90.7</td>
<td>4.91</td>
<td>94.5</td>
<td>37.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>35.0</td>
<td>1.24</td>
<td>55.3</td>
<td>1.58</td>
<td>94.7</td>
<td>6.84</td>
<td>[83.0]</td>
<td>33.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>49.5</td>
<td>2.00</td>
<td>80.7</td>
<td>2.64</td>
<td>98.7</td>
<td>7.79</td>
<td>99.0</td>
<td>52.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>萩</td>
<td>27.5</td>
<td>0.93</td>
<td>72.0</td>
<td>2.04</td>
<td>97.3</td>
<td>6.97</td>
<td>99.0</td>
<td>50.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>品種番号</td>
<td>品種</td>
<td>発芽温度調査項目</td>
<td>8℃</td>
<td>10℃</td>
<td>13℃</td>
<td>30℃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>発芽率 (%)</td>
<td>発芽係数</td>
<td>発芽率 (%)</td>
<td>発芽係数</td>
<td>発芽率 (%)</td>
<td>発芽係数</td>
<td>発芽率 (%)</td>
<td>発芽係数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>振興</td>
<td>29.0</td>
<td>0.94</td>
<td>52.7</td>
<td>2.34</td>
<td>90.0</td>
<td>6.13</td>
<td>70.0</td>
<td>27.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>高光</td>
<td>36.3</td>
<td>1.23</td>
<td>56.0</td>
<td>1.52</td>
<td>96.0</td>
<td>5.79</td>
<td>97.0</td>
<td>48.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>関玉</td>
<td>25.0</td>
<td>0.93</td>
<td>55.3</td>
<td>1.49</td>
<td>92.7</td>
<td>6.05</td>
<td>95.5</td>
<td>44.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>湖光</td>
<td>59.5</td>
<td>1.76</td>
<td>86.7</td>
<td>2.85</td>
<td>99.3</td>
<td>9.14</td>
<td>99.5</td>
<td>54.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>オオトリ</td>
<td>11.5</td>
<td>0.32</td>
<td>47.3</td>
<td>1.33</td>
<td>92.0</td>
<td>6.51</td>
<td>97.5</td>
<td>45.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>ウゴニツキ</td>
<td>11.5</td>
<td>0.32</td>
<td>13.0</td>
<td>0.36</td>
<td>92.7</td>
<td>4.34</td>
<td>98.0</td>
<td>45.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>ミヨシ</td>
<td>8.0</td>
<td>0.19</td>
<td>56.7</td>
<td>1.64</td>
<td>98.0</td>
<td>5.61</td>
<td>99.5</td>
<td>24.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>ヨネシロ</td>
<td>0</td>
<td>0</td>
<td>16.7</td>
<td>0.47</td>
<td>93.3</td>
<td>4.14</td>
<td>100.0</td>
<td>37.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>フジノリ</td>
<td>13.0</td>
<td>0.33</td>
<td>31.3</td>
<td>0.85</td>
<td>93.3</td>
<td>5.12</td>
<td>98.0</td>
<td>39.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>ササングレ</td>
<td>22.5</td>
<td>0.64</td>
<td>62.0</td>
<td>1.81</td>
<td>90.0</td>
<td>5.47</td>
<td>99.0</td>
<td>46.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>ホウネツモ</td>
<td>0</td>
<td>0</td>
<td>2.0</td>
<td>0.06</td>
<td>73.3</td>
<td>2.67</td>
<td>98.0</td>
<td>31.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>越路早生</td>
<td>0</td>
<td>0</td>
<td>2.0</td>
<td>0.20</td>
<td>86.0</td>
<td>3.58</td>
<td>94.5</td>
<td>31.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>越ひびき</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0.11</td>
<td>64.7</td>
<td>2.13</td>
<td>98.5</td>
<td>35.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>千秋楽</td>
<td>0</td>
<td>0</td>
<td>10.0</td>
<td>0.25</td>
<td>87.3</td>
<td>3.42</td>
<td>99.0</td>
<td>38.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>マンリュウ</td>
<td>4.0</td>
<td>0.41</td>
<td>7.3</td>
<td>0.19</td>
<td>90.0</td>
<td>4.02</td>
<td>97.5</td>
<td>41.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>トネがし</td>
<td>0.5</td>
<td>0.04</td>
<td>12.7</td>
<td>0.37</td>
<td>76.7</td>
<td>2.99</td>
<td>98.5</td>
<td>36.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>農林29号</td>
<td>16.0</td>
<td>0.46</td>
<td>38.7</td>
<td>1.07</td>
<td>96.0</td>
<td>5.64</td>
<td>100.0</td>
<td>44.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>農林25号</td>
<td>16.7</td>
<td>0.43</td>
<td>53.3</td>
<td>1.53</td>
<td>90.0</td>
<td>5.29</td>
<td>99.5</td>
<td>50.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>金南風</td>
<td>1.0</td>
<td>0.10</td>
<td>19.3</td>
<td>0.50</td>
<td>93.3</td>
<td>4.72</td>
<td>99.0</td>
<td>43.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>コンヒカリ</td>
<td>1.0</td>
<td>0.13</td>
<td>6.0</td>
<td>0.15</td>
<td>76.7</td>
<td>3.11</td>
<td>100.0</td>
<td>37.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>クサブエ</td>
<td>0.5</td>
<td>0.05</td>
<td>12.0</td>
<td>0.34</td>
<td>93.3</td>
<td>4.41</td>
<td>97.5</td>
<td>40.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>ヤマビコ</td>
<td>2.5</td>
<td>0.18</td>
<td>16.0</td>
<td>0.46</td>
<td>96.0</td>
<td>3.97</td>
<td>99.5</td>
<td>43.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>中生新千本</td>
<td>20.5</td>
<td>0.52</td>
<td>56.0</td>
<td>1.58</td>
<td>98.0</td>
<td>4.43</td>
<td>99.0</td>
<td>42.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>朝日</td>
<td>44.0</td>
<td>1.15</td>
<td>77.3</td>
<td>2.26</td>
<td>98.7</td>
<td>5.13</td>
<td>100.0</td>
<td>43.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>タチカラ</td>
<td>0</td>
<td>0</td>
<td>28.0</td>
<td>0.72</td>
<td>90.7</td>
<td>4.01</td>
<td>100.0</td>
<td>48.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>農林22号</td>
<td>12.0</td>
<td>0.23</td>
<td>31.3</td>
<td>0.89</td>
<td>86.7</td>
<td>4.63</td>
<td>99.0</td>
<td>44.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>農林18号</td>
<td>2.0</td>
<td>0.11</td>
<td>27.3</td>
<td>0.72</td>
<td>88.0</td>
<td>4.83</td>
<td>99.5</td>
<td>43.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>ホウヨク</td>
<td>4.0</td>
<td>0.21</td>
<td>54.7</td>
<td>1.53</td>
<td>83.3</td>
<td>4.67</td>
<td>99.0</td>
<td>34.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>塚 豊</td>
<td>6.7</td>
<td>0.18</td>
<td>28.7</td>
<td>0.74</td>
<td>94.0</td>
<td>5.00</td>
<td>99.0</td>
<td>47.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>アリアケ</td>
<td>12.0</td>
<td>0.31</td>
<td>51.3</td>
<td>1.54</td>
<td>90.7</td>
<td>4.49</td>
<td>100.0</td>
<td>42.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>農林20号</td>
<td>4.0</td>
<td>0.27</td>
<td>4.5</td>
<td>0.57</td>
<td>89.0</td>
<td>6.30</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>農林22号</td>
<td>1.5</td>
<td>0.21</td>
<td>42.7</td>
<td>2.08</td>
<td>56.0</td>
<td>5.30</td>
<td>49.0</td>
<td>20.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>農林12号</td>
<td>0</td>
<td>0</td>
<td>34.7</td>
<td>1.03</td>
<td>84.0</td>
<td>5.17</td>
<td>89.5</td>
<td>38.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>農林24号</td>
<td>0</td>
<td>0</td>
<td>13.3</td>
<td>0.38</td>
<td>94.7</td>
<td>4.42</td>
<td>98.5</td>
<td>47.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>農林26号</td>
<td>24.0</td>
<td>0.70</td>
<td>46.0</td>
<td>2.26</td>
<td>94.7</td>
<td>6.19</td>
<td>95.5</td>
<td>46.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>農林20号</td>
<td>54.5</td>
<td>1.72</td>
<td>80.7</td>
<td>2.91</td>
<td>86.0</td>
<td>7.61</td>
<td>97.5</td>
<td>51.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>農林1号</td>
<td>2.5</td>
<td>0.13</td>
<td>38.7</td>
<td>1.19</td>
<td>84.7</td>
<td>4.30</td>
<td>92.5</td>
<td>39.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>ハタニンキ</td>
<td>31.0</td>
<td>1.29</td>
<td>54.0</td>
<td>2.35</td>
<td>66.0</td>
<td>9.13</td>
<td>59.0</td>
<td>25.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>ミヤマモチ</td>
<td>3.5</td>
<td>0.12</td>
<td>19.3</td>
<td>0.84</td>
<td>31.5</td>
<td>3.51</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Chinmen-toemen-hongmi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26.0</td>
<td>0.94</td>
<td>100.0</td>
<td>64.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Bhutnuri-36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>63.3</td>
<td>3.57</td>
<td>98.5</td>
<td>40.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Charnack</td>
<td>13.0</td>
<td>0.41</td>
<td>29.0</td>
<td>1.05</td>
<td>74.7</td>
<td>5.04</td>
<td>98.0</td>
<td>36.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>小花</td>
<td>0</td>
<td>0</td>
<td>32.0</td>
<td>1.27</td>
<td>56.0</td>
<td>2.82</td>
<td>99.5</td>
<td>71.34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第1図は低温発芽性（10℃の発芽係数）と適温発芽性との関係を示したもので、図で見られるように供試品種全体として有意な相関関係が認められるけれども、品種によってはかなりこの相関関係から離れているものが存在することが注目される。

2）品種間差異
低温発芽性の品種間差異は第2表に示す如くであるが、これによると各温度階層での発芽性は品種により著しい差異を示す。しかしそ発芽最低温度は品種によって異なり、現在まで報告された10℃よりもかなり低く、低温発芽性の大きな品種は8℃以下でも発芽することとは明らかである。とくに振興早生（6）、北斗（25）、愛達（34）などは8℃の場合80%以上の発芽率を示し、平均発芽日数も16〜18日であった。

10℃での発芽係数をみると最高9.11から最低0までで、いき供試品種を低温発芽性の程度によって分類して見ると第3表の如くなる。表中の数字は第1表に示した品種番号である。

すなわち、低温発芽性の最も高い5品種は、北海道の品種と韓国の在来品種であるが、育成品種である北斗がこの群に属すること、ならびに5品種全部が異常品種であることとは興味ある事実であろう。低温発芽性の高い品種は、韓国の在来品種以外はすべて北海道の品種であることは、高緯度の品種ほど低温発芽性が高いという従来の報告と一致する。これに対し低温発芽性の最も低い品種群を眺めたもの Chinmen-toomen-hongmi (83) と Bhutmuri－36 (84) の印度型品種以外は、全部高寒品種である。すなわち、これらの品種は、より低温度の関東、中国、九州の品種よりもかなり低温発芽性が低いこととなり、高寒度報告したように、登熟期の環境条件特に降雨の頻度が種子の休眠性とむすびつき、それが二次的に低温発芽性に影響を与えたものと思われる。

次に低温発芽性は早生品種ほど高いことが報告されているので、北海道の品種を中心に4月26日種の第1群18品種と5月3日種の第2群15品種の出穂期と低温発芽性との相関関係を調べたところそれぞれ7=-0.308, 7=-0.115で、いずれも有意性がない。これは品種の早熟性の幅が狭いことも一因と考えられるが、そのほかに低温発芽性の最も高い愛達（34）、黒大粒（38）が、韓国の水原で、8月20日前後出穂という中生品種であることから考えて、従来の報告のうちには早熟性の差が大となる場合に貯蔵期間の短絡が生じ、このことが低温発芽性に影響を及ぼしたものもあるのではないかと考えられる。

なお、一般的にみて在来品種中には低温発芽性の高い品種が多く、かつまた在来品種には大粒品種が多いことから、北海道品種を中心に品種100粒種と低温発芽性との相関を調べたが、得られた相関係数は7=0.266で、有意性が認められなかった。

第3表 低温発芽性の程度による品種の分類
1. 最も高い品種（発芽係数5.0以上）
2. 高い品種（発芽係数3.0〜5.0）
3. 中の品種（発芽係数1.0〜3.0）
4. 低い品種（発芽係数1.0以下）
5. 最も低い品種（発芽係数5.0%以下）

3）栽培環境の影響
親植物の栽培環境の要因分析に先立ち、栽培環境を極端に異なる場合の次代種の低温発芽性を比較検討してみると、低温発芽性の概念を理解し、材料の取り扱いを工夫する上においても必要なことであろう。まず極端に異なる栽培条件として、圃場での一般栽培と温室での pot 栽培とを比較してみた。その結果は第4表の如くである。F 検定によれば、品種および品種と栽培条件の相互作用には、いずれも高度の有意性が認められ、すなわち栽培条件の影響は品種によって異なる、一定の傾向が認められない。しかし、この栽培条件の影響は、品種間差に比較すればかなり小さく、低温発芽性の
<table>
<thead>
<tr>
<th>第4表</th>
<th>栽培条件と低温発芽性</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査項目</td>
<td>品種</td>
</tr>
<tr>
<td>発芽率</td>
<td>園場栽培</td>
</tr>
<tr>
<td></td>
<td>温室栽培</td>
</tr>
<tr>
<td>発芽係数</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>(1)－(2)</td>
</tr>
</tbody>
</table>

注）英語は5％水準でのNon-significanceを意味する。

<table>
<thead>
<tr>
<th>第5表</th>
<th>栽培時季と低温発芽性</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査項目</td>
<td>品種</td>
</tr>
<tr>
<td>発芽率</td>
<td>夏季栽培</td>
</tr>
<tr>
<td></td>
<td>冬季栽培</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>(1)－(2)</td>
</tr>
<tr>
<td></td>
<td>(1)－(3)</td>
</tr>
</tbody>
</table>

注）英語は5％水準でのNon-significanceを意味する。

<table>
<thead>
<tr>
<th>第6表</th>
<th>種子の生産地と低温発芽性</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査項目</td>
<td>品種</td>
</tr>
<tr>
<td>発芽率</td>
<td>日本、札幌</td>
</tr>
<tr>
<td></td>
<td>韓国、水原</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>(1)－(2)</td>
</tr>
</tbody>
</table>

注）英語は5％水準でのNon-significanceを意味する。

高い愛達(35)，北斗(25)，胆振早生(6)はいずれの条件でも高く，それの低い品種，越びき(56)，Chinmen-toomen-hongmi(83)はいずれの場合も低かった。
また栽培時季を基準に異なる場合として夏季温構栽培と冬季温構栽培種子の低温発芽性を調査した。その結果は第6表の如くで，F検定の結果，栽培時期，品種およびその相互作用のいずれにも高度の有意性が認められた。すなわち，全品種とも，夏季栽培種子の場合に低温発芽性が高くその差異は非常に大であり，その影響の程度は品種によって異なる。表中の冬季栽培(1)の場合は収穫後の貯蔵期間が短いもので，貯蔵期間を延長させ12月に発芽試験を実施したもので冬季栽培(2)である。
この結果によると全品種とも貯蔵期間の延長により低温発芽力が向上され，夏季栽培のそれとの差異は非常に小となった。したがって栽培環境よりも貯蔵の影響が大であることが認められる。それにしてしても発芽力の差異が
なお大なることは、栽培期間中の気象条件とそれに貯蔵期間中数短日間に及ぶ条件も影響したものと思われる。いずれにせよ低温発芽性の品種間差は大きく、愛農（34），北斗（25），胆振早生（6）いずれの条件でも発芽率が高く、越ひびき（56），Chinmen-toomen-hongmi（83）は何も異なるも低低温発芽性の最も小さい品種の1つで一般わずかの発芽率を示している越ひびきの場合，冬季栽培（3）でかなり高い発芽性を示しているが，これはこの品種が日本品種中では比較的高い低温発芽性をもっており，冬季間の極端な短日条件とその後の貯蔵によりその発芽に影響を及ぼし，それが低温発芽性を高めたものと考えられる。

次に種子生産地の影響を検討するために，韓国の水原産種と日本の札幌産種子に対する発芽発芽性を調査した。その結果は第6表の如くである。

この結果によると品種，栽培地およびそれらの相互作用に就いての有意性が認められた。その影響する程度の品種によって区別で，全品種を通じて高湿度である北海道産種子がより低温発芽性であるが，温度にしても品種間差異は大であるが，無調査が上記の結果より小となったのは，収穫後約2カ月間貯蔵した種子が供試されたので，なお前後程度の休眠性をもっていったからであろう。すなわち，貯蔵により品種間差異は大となり，その反面，生産地の影響を小となることが予想される。

4. 総 要

日本の各地から集めた水稲種72品種と韓国の14品種合計86品種の1966年産種子に対する低温発芽性の品種間差異とその代表的な品種について採種用となった親種物の栽培環境との関係を調査した。その結果を要約すると次のようである。

1）低温発芽性の品種間差異は著しくであり，10℃で発芽率90%以上，発芽係数9.11から全然発芽しない品種まであり，ほぼ連続的な変異を示した。

2）発芽低温湿度は品種により異なり10℃以上にある品種もあるがその低い発芽は6℃以下にある。

3）低温発芽性の品種による品種の分類結果，その最も高い品種は韓国在来品種の一部と高気温度の北海道品種であり，その最も低い品種は近畿型品種の一部と北陸地方の品種である。

4）北海道品種を対象としてみると低温発芽性は，出穂期または1000粒重との間には有意な相関係が見られなかった。

5）栽培物の生育環境として，栽培条件，栽培時期および栽培地を極端に異にする場合，それらは低温発芽性に有意に影響するにしても，その影響は収穫後の貯蔵期間による影響に比して小さく，低温発芽性の差が大なる品種においてはいかなる条件下栽培したものその差は大であった。

6）低温発芽性の検定温度およびその表示方法に対照として考査した。

引用および参考文献

1）松田正英：低温に於ける穂の2，3品種の発芽に就いて，自作記（2）（4），263。

中島真夫：低温の花粉並びに穂の発芽に及ぼす影響，自作記5（1），91。

3）井上重陽：穂種子の発芽温度に関する研究（第一報），自作記7（3），200。

中村深助：穂種子の発芽現象に於ける特性，自作記10（2），177。

4）原 史文：朝鮮水稲在来品種およびこれに栽培品種の発芽速度の特異性に就いて，朝鮮農業会報16巻。

5）郁田 慎：原産地を異なる穂種子の発芽におよぼす温度の影響に就いて，自作記18（2-3-4），38。

6）永松土已：栽培地の地域的分化に関する研究，1報，穂生態形學的に見た発芽力の分化に就いて，遺伝研究19（2），47。

原島重雄：低温に於ける穂の発芽現象に就き水稲栽培の比較，自作記9，407。

西川五郎・上出藤三郎：低温発芽に関し日本水稲栽培，同誌，および印度稲の比較，自作記15，38。

11）長村 真・太田保夫：水稲の発芽生理に関する研究，昭和39年度農業技術研究所以生活遺伝部門生理第一科生検試験試験成績書。

12）小野寺二郎：穂の発芽検定方法として穂の発芽検定並びに吸水力検定に就いて，自作記6，20。

13）森谷雄信：水稲乾燥直播に関する研究，1報，温度と土壌水分に対する発芽力の品種間差異に就いて，日作会東北支部会第4号。

14）岩崎進雄：水中における発芽の発芽速さ，農業技術17（7），306。

佐々木多喜雄：水稲穂種の低温発芽性と初期伸長との関係，農林省北海道農業試験場移転記念研究発表要旨。

15）島 一昌：穂種子の発芽最低温度と温度恒数の品種間差異，育種雑誌4，140。

16）高橋成：穂種子の発芽に関する生理遺伝学的研究，東北大学農学研究所彙報別刷14（1），1。
Summary

The germinability of rice seeds at low temperature is one of desirable characters in considering of direct seeding culture in the area in which growth duration is not always long enough and early culture would be necessary.

The authors studied varietal differences and the effects of some growing conditions of parent plants on the germinability of rice seeds at low temperature as a part of a series of studies on the above mentioned problem. The results of this experiment may be summarized as follows:

1) There were significant varietal differences in the germinability of rice seeds at low temperature, showing over 90% of germination and 9.11 of germination coefficient in the highest variety and non-germination in the lowest varieties of above mentioned character at the temperature of 10°C.

2) The minimum temperature for germination of rice seeds varied with varieties; some varieties germinate at below 8°C, some do not germinate at the temperature of 10°C at all but the minimum temperature for germination seems to be 8° to 10°C in most of the varieties used in this experiment.

3) The classification of the varieties is intended according to degree of the germinability at low temperature; the varieties with highest germinability at low temperature were some Korean local varieties and Hokkaido varieties, while the lowest varieties in the germinability at low temperature were some Indica and Hokuriku varieties.

4) There were non-significant correlation between the germinability at low temperature and heading date among Hokkaido varieties.

5) There were significant effects of the germinability of rice seeds at low temperature by different growing conditions of parent plants such as different cultural method, area, and season. Those effects interact significantly with varieties and became smaller with relatively long term storage of seeds.

6) The method and temperature for the test of germinability of rice seeds at low temperature were discussed.