<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>てん菜における発育遺伝学的研究 Ⅱ. 葉の大きさおよび形の変異とそれらの相互間の関係</td>
</tr>
<tr>
<td>著者</td>
<td>島本 田也 細川 定治</td>
</tr>
<tr>
<td>言語</td>
<td>北海道大学農学部邦文紀要 Ⅱ. てん菜の発育遺伝学研究</td>
</tr>
<tr>
<td>タイムスタンプ</td>
<td>1970</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>7(2)_p191-200.pdf</td>
</tr>
</tbody>
</table>

北海道大学Collection of Scholarly and Academic Papers：HUSCAP
てん菜における発育遺伝学的研究

II. 葉の大きさおよび形の変異とそれらの相互関係

島本義也・細川定治
（北海道大学農学部工芸作物学教室）

Developmental genetic studies on Beta vulgaris L.

II. Variabilities in size and shape of leaves and their relationships

Yoshiya Shimamoto and Sadaji Hosokawa
（Laboratory of Industrial Crops, Faculty of Agriculture, Hokkaido University, Sapporo, Japan）
Received July 23, 1969

結　論

葉は作物にとって同化器官として重要であることは言うまでもない。従って、葉の機能としての同化能力については種々の作物で多くの研究がなされてきている。また、葉を生産の目的とするタバコのような作物では、葉の取量およびその他の葉に関する量的形質について統計的分析的に研究がなされてきている。しかし、葉そのものを生産の目的としない作物においては、葉に関する種々の形態形質の研究があまりされてきていない。

近年、作物の同化効率と関連して草型（plant type）の重要性が認識されるに至って、種をはじめとする多くの作物で葉部器官の量的形質の遺伝的研究が始められてきた。

根部生育が目的であるてん菜において、ARTSCHWAGERは葉生器官を詳細に記述しているが、それは主に根部に限られ、葉部に関してはみられない。葉部に関する研究は、植物生理学的な観点から伊藤・田中、および伊藤11) 等によってなされたが、量的形質としてとり扱われていない。津田等11) は、一葉重と葉数が根部生育と遺伝的に深い関連性を持っていることを観察し、田中11) も形態学的な観察から実験を行なって同様な事実を述べている。

また、てん菜においては、その生産の目的とするものは地下部の根であるため、生育過程で個体の特性を根部に関連させて観察することは地上部、すなわち葉の形態が品種の特性の指標として重要であるし、しばしば実際に関与されてきている。

本実験の目的は、てん菜における葉の大きさと形に関する量的形態形質の遺伝変異を遺伝パラメーターで表現することによって明らかにし、それらの生育過程による変化、あるいは、葉位による差異を明らかにする事である。さらに、葉位を異にする葉の間の関係、並びに、特定形質の生育時期の関係、および、形質間の関係を遺伝的、あるいは環境的に調査することであり、これらを基礎にして、葉部器官の発育関係を考察することである。

謝辞—本稿をまとめるに際して有益な助言と批判をいただいた北海道大学助教授遠田周弥博士に謝意を表する。

材料と方法

本実験に供試された品種 (又は系統) は、T. K. (つつきさっぱ), K. W. S-E, K. W. S-E-S, H-401 (木育 401 号), Dob-C (Dobrovicka C), S-26 の 6 品種である。前の 3 品種は根茎型で、後の 3 品種は糖分型の品種である。栽培密度は畦幅 60 cm × 株間 50 cm で、4 回反復の実験である。4 月 28 日に播種し、慣行法により肥培管理を行なった。

調査方法は、生育前期 (7 月 15, 16 日), 生育期中 (8 月 22, 23 日), 生育後期 (9 月 19, 20 日) の 3 時期に各ブロックで 10 個体を調査に供試し、各個体から最新成熟葉 (Recently matured leaf) の最大ものと、その葉から上位の葉を 4 枚、計 5 枚について、葉身長、葉幅、葉柄長お
およそ葉長指数（葉身長/葉幅）について測定した。調査した葉の葉位が上位のものから I, II, III, IV, V とした。従って、発生順では、V の葉が先である。

Fig. 1. Blade length (A), blade width (B), petiole length (C) and blade shape (D) in the five recently matured leaves (I, II, III, IV and V) at the three (early, middle and late) growing stages.
結果

1. 葉長形態の変異

供試された品種について調査した結果を、それぞれ品種別、生育時期別および葉位別に葉長を Fig. 1(A) に、葉幅を Fig. 1(B) に、葉柄長を Fig. 1(C) に、葉形指數を Fig. 1(D) に示した。これらの図に示された各点は、4 反復、各プロット 10 個体で計 40 個体の平均値である。

葉長は 7 月の葉において最大であり、8 月と 9 月の葉ではその大きさに関して明らかな差はみられないが、H-401 を除いて、9 月の葉長が 8 月の葉長より大きい傾向がみられる。葉幅は、葉長が同様に、7 月で最大となる。7 月の葉幅は、8 月と 9 月の葉幅の約 2 倍の大きさである。葉柄長は、葉長と並びに葉幅とは逆に、7 月が短く、8 月と 9 月の方が長い。また、S26、H-401 は 7 月において、他品種と比較して、特に短い。T. K. は、8 月と 9 月において、他の品種と比べて、葉柄長が長い。

上述の葉の大きさを表す葉長、葉幅および葉柄長で生育時期を各品種の変動を示すため、生育前期（7 月）と生育中期（8 月）および後期（9 月）の葉は、明らかに異っている。葉形指數は、7 月において大きい葉（V）ほど小さい。すなわち、生育前期では下位葉が大きな傾向を示している。8 月と 9 月の葉では、そのような関係はみられない。生育前期の関係は、生育後期になるに従って、相対的に細長い葉となる傾向を示す。S26 と H-401 は、8 月と 9 月において他品種にくらべて、より細長い葉を持っていることが顕著であるが、7 月では明らかではない。

葉長形態に影響する種々の要因を検討するために行った分散分析の結果は、Table 1 に示した。葉長、葉幅、葉柄長および葉形指數の全ての形質で、品種間、生育時期および葉位間の効果は、いずれも統計的に有意である。品種と葉位の相互作用は葉形指數のみ有意である。品種と生育時期および葉位と生育時期の相互作用は、全ての形質で有意である。2 次の相互作用はいずれの形質でも有意でない。各々の要因効果による分散成分を推定した結果を Table 2 に示した。

Table 2 において、(%) の欄の数字は、全体の分散に対する各分散成分の割合を百分率で表わしたものである。形質ごとに要因効果の大きさを検討すると、葉長は生育時期による効果が大きく、全体の分散の約 50% を占めている。次に大きい効果を持っている要因は、葉位間の効果で、品種による効果がその次に大きい。この主要因の直接効果による分散成分の合計は、全体の分散の 80% 強となり、相互作用の分散は比較的小さい。

葉幅は生育時期の効果による分散が全体の 75% であり、葉位による分散は約 5% で、品種による分散は 16% と低く、この 3 つの主要因の直接効果は全体の分散の 90% 弱を占めている。さらに葉長の特徴として、生育時期と葉位の相互作用による分散成分が、7.5% と他の形質に比較して大きい部分を占めている。

葉柄長は葉位間の分散成分が全体の 58% を占めている。生育時期による分散成分は 19% で、葉長や葉幅と比較して顕著に低い。相互作用の分散成分は全体の 5% 以下で、その効果は小さいと思われる。葉形指數は、生育時期の分散成分が 61% で、葉長や葉幅と同様に、もっとも大きい部分を占めている。次に大きい効果を持っている要因として、品種の効果 (14.2%)、並びに

Table 1. Analysis of variance for blade length, blade width, petiole length and leaf shape

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>Blade length</th>
<th>Blade width</th>
<th>Petiole length</th>
<th>Leaf shape (×100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variety (V)</td>
<td>5</td>
<td>104.97**</td>
<td>21.59**</td>
<td>106.20**</td>
<td>196.70**</td>
</tr>
<tr>
<td>Season (S)</td>
<td>2</td>
<td>1042.03**</td>
<td>1758.02**</td>
<td>521.69**</td>
<td>1343.80**</td>
</tr>
<tr>
<td>Leaf (L)</td>
<td>4</td>
<td>336.70**</td>
<td>197.47**</td>
<td>910.77**</td>
<td>17.95**</td>
</tr>
<tr>
<td>Replication</td>
<td>3</td>
<td>23.18**</td>
<td>17.44**</td>
<td>19.38**</td>
<td>9.98**</td>
</tr>
<tr>
<td>V × S</td>
<td>10</td>
<td>15.26**</td>
<td>3.07**</td>
<td>17.06**</td>
<td>45.76**</td>
</tr>
<tr>
<td>V × L</td>
<td>20</td>
<td>.88</td>
<td>.20</td>
<td>2.07</td>
<td>2.72**</td>
</tr>
<tr>
<td>S × L</td>
<td>8</td>
<td>10.69**</td>
<td>35.10**</td>
<td>5.18**</td>
<td>8.58**</td>
</tr>
<tr>
<td>V × S × L</td>
<td>40</td>
<td>.22</td>
<td>.10</td>
<td>.84</td>
<td>.21</td>
</tr>
<tr>
<td>Error</td>
<td>267</td>
<td>1.76</td>
<td>.58</td>
<td>2.24</td>
<td>1.44</td>
</tr>
</tbody>
</table>

**: significant at the 1% level.
2) 各形質の遺伝変異

葉位を異にする5枚の成熟葉について生育時期別に遺伝変異の大きさを表すパラメーターとして遺伝力（σ²）を求めた。推定方法は分散分析より遺伝分散（σ²）を環境分散（σ²）を求め、σ²=σ²+σ²の式で推定した。結果はTable 3に示した。

Table 3 の下段欄（pool）の行は、葉位を異にする5枚の葉の平均値について求めた値である。

葉位を異にする5枚の各葉の遺伝力で表現される遺伝変異の大きさをみると、葉身長と葉幅では、どの生育時期でも葉位間で差は大きくないが、葉位1から葉位2にたるにつれて大きくなる傾向がある。葉病状においても同様に、葉位1から葉位2にたるにつれて大きくなるが、特に、7月と9月においてその傾向が顕著である。また、9月における上位葉の遺伝力の値はやや高い。遺伝形質に関しては葉位による遺伝力の値の一定の傾向が観察されない。

3) 葉位間、生育時期別および形質間の相関関係

各形質で異なった葉位間の相関関係を示すために、分散分析および共分散分析より推定した遺伝分散と環境分散、および、遺伝共分散と環境共分散を用いて遺伝相関と環境相関を求めた。その結果は Table 4に示した。

Table 4 に生育時期別および形質別に示された各相関係数において、対角線上の空欄を境にして、上半分は遺伝相関を示し、下半分は環境相関を示している。Table 4 の相関関数の値をZ変換し、相関をとった2つの葉位が1と2、2と3、3と4の間でIVとVの場合は0、IとIII、IIとIV、IIIとVの場合は1、1と4、IIとVの場合は2、IとVの場合は3として、0、1、2、3の階級でZ値の平均を出し、さらにそのZ値と相関関数に変換して示したのがFig. 2である。但し、相関関数の値が1.0以上になるとZ変換することが不可能であるので、1.000以上の相関関数の値は全て0.999としてZ値を求めた。また、Table 4およびFig. 2の空欄になっているところは、遺伝分散が零になるので遺伝

Table 2. Variance components of various source and their proportions

<table>
<thead>
<tr>
<th>Source</th>
<th>Blade length</th>
<th>Blade width</th>
<th>Petiole length</th>
<th>Leaf length</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ²_V</td>
<td>1.4952</td>
<td>8.52</td>
<td>.3086</td>
<td>1.60</td>
<td>6.90</td>
</tr>
<tr>
<td>σ²_S</td>
<td>8.4830</td>
<td>48.33</td>
<td>14.3770</td>
<td>74.54</td>
<td>41.80</td>
</tr>
<tr>
<td>σ²_L</td>
<td>4.5279</td>
<td>25.80</td>
<td>2.2552</td>
<td>11.72</td>
<td>12.57</td>
</tr>
<tr>
<td>σ²_R</td>
<td>.2378</td>
<td>1.36</td>
<td>.1873</td>
<td>.97</td>
<td>.1905</td>
</tr>
<tr>
<td>σ²_P</td>
<td>.6749</td>
<td>3.85</td>
<td>.1244</td>
<td>.65</td>
<td>.7413</td>
</tr>
<tr>
<td>σ²_P*V</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.1067</td>
</tr>
<tr>
<td>σ²_P*SL</td>
<td>.3722</td>
<td>2.12</td>
<td>1.4381</td>
<td>7.48</td>
<td>.1226</td>
</tr>
<tr>
<td>σ²_P*EL</td>
<td>1.7594</td>
<td>10.03</td>
<td>.5836</td>
<td>3.03</td>
<td>2.2390</td>
</tr>
<tr>
<td>σ²_E</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.4403</td>
</tr>
</tbody>
</table>

σ²_V: Variance component due to varieties.
σ²_S: Variance component due to differences among growing stages.
σ²_L: Variance component due to differences among the recently matured leaves.
σ²_R: Variance component due to replications.
σ²_P: Variance component due to interaction between varieties and seasons.
σ²_P*V: Variance component due to interaction between varieties and seasons.
σ²_P*SL: Variance component due to interaction between seasons and leaves.
σ²_P*EL: Variance component due to interaction between leaves.
σ²_E: Error variance.
<table>
<thead>
<tr>
<th></th>
<th>Early</th>
<th></th>
<th>Middle</th>
<th></th>
<th>Late</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>a_s^2</td>
<td>a_e^2</td>
<td>h^2</td>
<td>Mean</td>
<td>a_s^2</td>
</tr>
<tr>
<td>Blade length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>18.7</td>
<td>1.15</td>
<td>1.79</td>
<td>.392</td>
<td>15.0</td>
<td>1.82</td>
</tr>
<tr>
<td>II</td>
<td>21.2</td>
<td>1.81</td>
<td>1.58</td>
<td>.534</td>
<td>16.5</td>
<td>3.02</td>
</tr>
<tr>
<td>III</td>
<td>23.3</td>
<td>2.18</td>
<td>1.91</td>
<td>.533</td>
<td>17.4</td>
<td>3.58</td>
</tr>
<tr>
<td>IV</td>
<td>24.7</td>
<td>1.99</td>
<td>2.50</td>
<td>.443</td>
<td>18.3</td>
<td>3.44</td>
</tr>
<tr>
<td>V</td>
<td>26.1</td>
<td>2.07</td>
<td>2.18</td>
<td>.487</td>
<td>19.5</td>
<td>3.59</td>
</tr>
<tr>
<td>pool</td>
<td>22.8</td>
<td>1.80</td>
<td>1.81</td>
<td>.499</td>
<td>17.3</td>
<td>2.98</td>
</tr>
<tr>
<td>Blade width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>11.3</td>
<td>—</td>
<td>.96</td>
<td>—</td>
<td>7.8</td>
<td>.43</td>
</tr>
<tr>
<td>II</td>
<td>13.7</td>
<td>—</td>
<td>.74</td>
<td>—</td>
<td>8.6</td>
<td>.55</td>
</tr>
<tr>
<td>III</td>
<td>15.7</td>
<td>.04</td>
<td>.68</td>
<td>.050</td>
<td>9.2</td>
<td>.58</td>
</tr>
<tr>
<td>IV</td>
<td>17.4</td>
<td>.08</td>
<td>.93</td>
<td>.082</td>
<td>9.8</td>
<td>.74</td>
</tr>
<tr>
<td>V</td>
<td>19.0</td>
<td>.11</td>
<td>1.02</td>
<td>.100</td>
<td>10.5</td>
<td>.86</td>
</tr>
<tr>
<td>pool</td>
<td>15.4</td>
<td>—</td>
<td>.72</td>
<td>—</td>
<td>9.2</td>
<td>.62</td>
</tr>
<tr>
<td>Petiole length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>10.6</td>
<td>.09</td>
<td>1.83</td>
<td>.048</td>
<td>14.0</td>
<td>2.43</td>
</tr>
<tr>
<td>II</td>
<td>13.3</td>
<td>.53</td>
<td>1.81</td>
<td>.228</td>
<td>16.6</td>
<td>2.59</td>
</tr>
<tr>
<td>III</td>
<td>15.6</td>
<td>1.51</td>
<td>2.32</td>
<td>.395</td>
<td>18.9</td>
<td>4.32</td>
</tr>
<tr>
<td>IV</td>
<td>17.4</td>
<td>1.46</td>
<td>1.99</td>
<td>.423</td>
<td>21.3</td>
<td>4.76</td>
</tr>
<tr>
<td>V</td>
<td>18.3</td>
<td>1.59</td>
<td>2.02</td>
<td>.444</td>
<td>22.8</td>
<td>5.51</td>
</tr>
<tr>
<td>pool</td>
<td>15.0</td>
<td>.99</td>
<td>1.58</td>
<td>.385</td>
<td>18.7</td>
<td>3.63</td>
</tr>
<tr>
<td>Blade Shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1.67</td>
<td>1.08</td>
<td>.63</td>
<td>.632</td>
<td>1.95</td>
<td>6.25</td>
</tr>
<tr>
<td>II</td>
<td>1.56</td>
<td>.74</td>
<td>.58</td>
<td>.561</td>
<td>1.92</td>
<td>6.15</td>
</tr>
<tr>
<td>III</td>
<td>1.49</td>
<td>.84</td>
<td>.22</td>
<td>.793</td>
<td>1.90</td>
<td>5.11</td>
</tr>
<tr>
<td>IV</td>
<td>1.42</td>
<td>.56</td>
<td>.27</td>
<td>.675</td>
<td>1.89</td>
<td>4.86</td>
</tr>
<tr>
<td>V</td>
<td>1.38</td>
<td>.38</td>
<td>.28</td>
<td>.576</td>
<td>1.87</td>
<td>4.33</td>
</tr>
<tr>
<td>pool</td>
<td>1.50</td>
<td>.70</td>
<td>.28</td>
<td>.718</td>
<td>1.91</td>
<td>5.33</td>
</tr>
</tbody>
</table>

#: I-younger leaf, V-older leaf.

Table 3. Means, genetic variances, environmental variances and heritability values of some characters in the five recently matured leaves at the three growing stages.
なくていくことを示している。

次に、葉位を基にする5枚の葉の平均値を用い、特定形質の生育期間間の相関関係および生育周期を考慮に入れた形質間の遺伝相関を計算した。結果は Table 5 に示した。

葉身長について、生育期間間の遺伝相関をみると、7月と8月、および、8月と9月の間には比較的高い相関関係を示し、7月と9月の間では低い。すなわち、生育時期が異なるに従って、共通の遺伝的支配の部分が少なくなるものと思われる。

葉形指数では、8月と9月の間に高い遺伝相関関係がみられるが、7月と8月、および、7月と9月の間では遺伝的にほとんど相関関係がみられない。すなわち、7月の葉形指数とは、8月および9月の葉形指数を支配している遺伝的要因は、生育前期とその後の生育時期の各々に特異的に存在するものと推定される。

葉柄長は8月と9月の間で完全な遺伝相関関係を示している。7月と8月、および7月と9月の間でも比較的に高い遺伝相関係数の値を示している。

葉幅においては、8月と9月の間の遺伝相関は完全であった。7月の葉幅においては、遺伝分散を推定することができなかったので7月の葉幅と他の月の葉幅、あるいは各生育時期の形質間の遺伝相関関数を推定することができなかった。

次に生育時期別に形質間の関係をしらべると、7月における葉身長と葉形指数の間には完全な遺伝相関関係が存在し、8月と9月においても、両形質間には高い正の遺伝相関関係を示している。葉幅と葉形指数は遺伝的に負の相関関係にある。葉身長と葉幅の遺伝的関係は8月ではほとんどみられないが、9月においては、明らかに

<table>
<thead>
<tr>
<th>Table 4. Genetic and environmental relations among the different position of recently matured leaves at each growing stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>Blade length</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>Blade width</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>Petiole length</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>Blade shape</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td>V</td>
</tr>
</tbody>
</table>

Note: upper half: genetic correlation coefficients.
lower half: environmental correlation coefficients.
Fig. 2. Mutual relationship among different leaf positions.
Solid line: Genetic correlation.
Broken line: Environmental correlation.

Table 5. Genetic and environmental correlation coefficients.

<table>
<thead>
<tr>
<th></th>
<th>Blade length</th>
<th>Blade width</th>
<th>Petiole length</th>
<th>Blade shape</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>M</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>Blade length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>.997#</td>
<td>.594</td>
<td>-</td>
<td>.956</td>
</tr>
<tr>
<td>L</td>
<td>.406</td>
<td>- .041</td>
<td>-</td>
<td>.059</td>
</tr>
<tr>
<td>Blade width</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>.815</td>
<td>-.014</td>
<td>.361</td>
<td>-</td>
</tr>
<tr>
<td>M</td>
<td>.277</td>
<td>.746</td>
<td>-.215</td>
<td>-.131</td>
</tr>
<tr>
<td>L</td>
<td>.251</td>
<td>-.166</td>
<td>.440</td>
<td>-.017</td>
</tr>
<tr>
<td>Petiole length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>.391</td>
<td>.429</td>
<td>.221</td>
<td>.396</td>
</tr>
<tr>
<td>M</td>
<td>-.244</td>
<td>-.091</td>
<td>-.353</td>
<td>-.174</td>
</tr>
<tr>
<td>L</td>
<td>-.441</td>
<td>-.203</td>
<td>-.339</td>
<td>-.384</td>
</tr>
<tr>
<td>Blade shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>.425</td>
<td>.068</td>
<td>.146</td>
<td>-.168</td>
</tr>
<tr>
<td>M</td>
<td>.518</td>
<td>.400</td>
<td>.297</td>
<td>.268</td>
</tr>
<tr>
<td>L</td>
<td>.112</td>
<td>.096</td>
<td>.517</td>
<td>.285</td>
</tr>
</tbody>
</table>

*: Genetic correlation coefficients.
#: Environmental correlation coefficients.
†: E, M and L were early, middle and late growing stages, respectively.
負の遺伝相関関係を示している。また、9月における葉柄長と葉柄長と、および、葉柄と葉柄長の間係は遺伝的に正の相関関係がみとめられる。さらに、7月の葉柄長、8月の葉柄、8月および9月の葉柄長と正の高い遺伝相関関係を持っている。このことは生育前期において葉柄長の大きい葉をもっているが、その後の生育において葉幅を大きくし、葉柄長を長くする。7月における葉柄長の長いものをその後の生育において、葉身長に比較して、葉幅の広い形の葉になる。8月における葉柄長においては、そのような関係はみられない。7月における葉柄長と9月における葉柄長、その他の7月の葉柄長と9月の葉柄長の間には、遺伝的に密接な相関関係が存在する。また、7月の葉柄長は生育とともに葉柄長と相関関係を示していくのでに対し、葉柄との相関関係がなくなっていく。葉柄長と葉柄長の遺伝的な結びつきは、生育前期では述べたようにみとめられ、生育後期においても正の相関関係を示す。

形質間相関を環境的とすると一定の傾向はほとんど観察されないが、葉柄長と葉幅との関係の場合、いずれの生育時期においても正の相関関係を示し、その傾が生前期では高いが、生育が進むに従って低くなっている。このことは、生前期における環境条件が葉柄長と葉幅に対して同種の効果を持っているが、生育後期には異質の効果をこの両形質におよばせていることを示している。生前期の環境相関はいずれも高く、7月、8月および9月の3段階の生育時期は、形質におよぼす環境要因として全くないに独立である。

考察

葉の大きさを表す葉柄長、葉幅および葉柄長の3種の形質の変異に寄与する要因は、品種の効果、生育時期による効果および葉柄による効果で、この2つの要因の直接効果は、全体の85%を占めており、その中でも特に、生育時期と葉柄による効果が非常に大きい。またこれらの要因の間の相互作用はほとんどみられない。

このことから、葉の大きさは、それを支配している要因の直接の効果で大きく決まわり、相互作用のような複雑な要因の関与は比較的少ないものと思われる。形質指数においては、品種と生育時期との相互作用の効果が22.7%であるので葉の大きさを支配している要因が複雑である。いずれの形質においても、生育時期による効果が重要な要因であり、同時に葉の大きさでは、葉柄による効果が、葉形指数では、品種および品種と生育時期の相互作用の効果も重要な要因であることが結論される。

そこで生長期における葉の大きさ、あるいは、葉形指数の差異をFig.1でみると、明らかである。この点に関して、伊藤は1枚の葉の面積が生育中期（本実験の前期）と生育後期（本実験の後期）の間で異なっている結果を報告している。葉の大きさおよび形が生长期によって異なることは明らかであるが、この原因は、それらの葉が発生するときの環境条件か、或いはてんそれが発生している生长期の相互作用によって葉の大ささあるいは形の分化と考えられる。本実験の結果から、上述の仮説を検討することは困難である。

生育時期の遺伝相関からみると葉形指数においては、生育前期とその後の生育時期と間関係がなく、生育中期と生長期は遺伝相関が高く、Fig.1（D）に示されることに生育期間による葉形指数の分化とは相異なる。このことは、生長期の遺伝的関係を考慮に入れなければならぬことを示している。葉柄長においても、その平均長の生育期間による分化と遺伝相関からみられる生育期間の遺伝的分化と必ずしも一致しない。さらに、生育期間内の環境相関から考えると、形質においても支配している環境条件は生育周期によって異なる。しかし、遺伝的には前述のように、その発生時が問題で、1ヵ月程度の時間差で発生した葉の間では共通的な遺伝的要因によって支配されており、1ヵ月以上で発生した葉の間では支配している遺伝的要因へと異なっている。

各々の生育期間で、葉位の変異をみると、葉の大きさは、葉位が低位になるに従って直接的に大きくなくなっていくことは明らかである（Fig.1（A）、（B）、（C））。遺伝相関で遺伝的関係の関係をみると、葉柄長の生育中期においてのみ明らかな分化をみとめ、なすち、生育中期の葉柄長を支配している遺伝因子は、各葉位に特異的に働く要因と通育的に働く要因があり、葉位が異なるに従って特異的に働く要因によって支配される部分が多くなると考えられる。このことがタバコ植物において表われている。すなわち、タバコ植物において異なる着生位置の葉の間の遺伝相関を推定した結果、葉位が異なるに従って相関が低下していくことから、共通的に支配している遺伝的要因の効果が減少していくと結論している。

次に形質間の相互関係について考察すると、葉柄長と葉幅の関係は、生育後期において遺伝的に負の相関関係を示し、これらの葉柄長と葉幅の両方が葉柄長と正の相関関係を示している。このことは、葉柄長を支配している遺伝的要因が最初に決定され、この葉柄長が葉身
の発育の基礎物質となり、葉長と葉幅の発育に利用される。その際、この基礎物質を両形質の間で奪いあって発育していることを示唆している。この基礎物質が、RENDELの Make, 活性の Potency, ADAMSのInput にあたるものと思われ、この場合は、葉柄長がそれに近いもののと思われる。この関係が生育前期および中間期ではみられないことは、これらの時期においては生育旺盛なため葉長と葉幅の基礎物質が充分にあるため、両者の関係が考えられないが、両者の関係がみられないことが原因と思われる。

また、生育前期の葉柄長は、その後の生育時期における葉柄指数と両の完全な遺伝的相関を示し、育成後期の葉柄長とは正の関係を示している。葉柄は同化産物、栄養物質および木の通路として重要な器官であることがわかる。さらに、葉長を交える働きを持っていることを考慮に入ると、てん菜の葉柄は地上部の骨格的な器官であるとともに、他の器官の量的発育に重要な関係を有しているものと思われる。

遺伝力(4)で表わされた遺伝変異の相対的な大きさの物種による差異は、葉長長において観察された。他の形質では基準の規模はみられなかった。しかし、生育時数によっては明らかに差があり、どの形質も生育中期に遺伝力の値が最大になる。すなわち、各々の形質を支配している遺伝的要因が生育中期に最も効果的に働くことを意味している。ULRICH(3)は、適度の栄養と温度を与えることで栄養生長をいつまでも続けることを報告しているように、生育時期を正確に設定することは困難であるが、通常の農業における栽培条件下で、生育中期、すなわち8月月中旬を中心にその前後の時期が、葉部の形態形質の品種の特性の調査に適しているものと思われる。

これに対して、根重の遺伝力は生育初期に最大で、生育数日数が進むとその値は低下することが島本・細川12によって報告されている。根重の生育中期における遺伝力の値は葉部形質のそれよりもほんの程度であるが、その他の生育期において遺伝力の大きさが示らなかった。根部と葉部の遺伝的関係については、今後、検討を要する。

本研究は、個体について解析した結果が5枚の葉を調査対象として形態形質の変異の解析を試みたが、この5枚の葉の間には、葉の成熟度合いに関連して特に生育前期においてその差が大きいことは遺伝力が低いことからも考えられるが、発生的に対応していることこの5枚の葉は個体内で比較的成熟度が一定している葉と思われるし、また栄養生長期としての間に長時間が続いている葉であると思われる。従って、葉部に関する形態形質の調査を行なった本実験での供試葉は適当と思われるが、生育前期における葉長と上位葉の葉柄長においてなお問題が残る。しかし、さらに古い葉(下位葉)では枯死あるいは物理的な損傷で調査対象葉として適当でない。また、さらに若い葉(上位葉)では生長量が大きいので調査する時間や標本にする葉によって差が大きいので調査葉として適当でないであろう。

要約

(1) てん菜における展開葉において、葉の大きさと葉形の遺伝変異、および両関係の遺伝的関係を、葉位、発育、生育を考慮に入れれてみるべきのが目的である。

(2) 最新成熟期の葉の大きさは、生育時期によって葉柄長によって、葉形指数(長幅比)は生育時期によって全体の変異の半分以上を占めている。

(3) 葉柄による遺伝力の変化は、生育前期の葉柄長に若干みられるが、一般に、各生育時期ではみられない。

(4) 生育期間の遺伝相関は、発育初期の葉柄長で、発生の順位が異なる年と低くなることを除いて、いずれも完全な相関を示す。各種の生育期間の遺伝相関は、葉柄重、葉形長において、生育中期、いずれの形質も遺伝力が最も高い。遺伝指数の遺伝力は、葉の大きさを表す形質に大きく依存し、生育期間の遺伝相関は低いが、中間期と前期の間には高い。

(5) 生育前期の葉柄長は、その後の葉の発育の遺伝的関係を有している。生育前期における葉柄長と葉幅の遺伝的関係を示し、この形質遺伝子は葉柄長と生育期間の遺伝相関を示し、葉の発育の遺伝子が特に依存していることが考えられた。

(6) 上記の事柄から、葉部形質の遺伝変異の調査は、生育中間期が適当であることが考察された。

引用文献

2) ARTSCHWAGER, E. 1926. Anatomy of the veg-
6) 深尾克直 1968. てん葉主根の肥大に関する 形態学的研究. 北海道大学農学部学論文.
8) 酒井寛一 1966. 遺伝理論と育種技術. 育種学最近の進歩 7: 30-33.

Summary

Some metrical characters of fully grown leaves of sugar beet, Beta vulgaris L., were investigated to obtain the informations of their genetic variances and relationships to each other, taking accounts of the growing stage and the sequence of leaf development. Six varieties were used and measured for blade length, blade width and petiole length of the five recently matured leaves which were sampled in the sequence of their development in each of the early, middle and late growing stage. Results are summarized as follows:

1) Major portions of total variances of length, width and shape (length/width) of blade were the variations among growing stage. The variations of petiole length among samples in each growing stage comprised the greatest part of its total variance.

2) The heritability values of petiole length increased as approached to the matured leaf in each growing stage. Heritability values of all the observed characters were highest in the middle growing stage. The blade shape showed the greater heritability value than the characters representing the blade size.

3) The relations between two leaves which were paired an all combination from five leaves in the same growing stage were very closely and genetically correlated, but in petiole length, genetic correlation between two leaves developed at long interval in middle growing stage showed the low value comparatively. Genetic relations in blade length between two successive growing stage were more closely correlated than that between early and late growing stage, and genetic relations in blade shape among the growing stage were closely correlated to each other.

4) The petiole length in early growing stage was formed to have genetically close relationship to the growth of blade length. Although, in the late growing stage, the genetic correlation between blade length and width was negative, these both characters showed positively genetic relationship to the petiole length. From these facts, it could be considered that the growth of blade was dependent on the petiole length.

5) Based on the facts described above, the middle growing stage was concluded to be the most suitable period for the measurement of foliar characters from the view point of studying genetic variability.