| Title | THE CHEMICAL STUDIES ON THE DENATURATION OF PROTEINS (st Report) | |------------------|---| | Author(s) | TADOKORO, Tetsutaro; YOSHIMURA, Katsuji | | Citation | Journal of the Faculty of Agriculture, Hokkaido Imperial University, 25(2), 117-132 | | Issue Date | 1928-12-31 | | Doc URL | http://hdl.handle.net/2115/12648 | | Туре | bulletin (article) | | File Information | 25(2)_p117-132.pdf | # THE CHEMICAL STUDIES ON THE DENATURATION OF PROTEINS (1st Report) RV TETSUTARO TADOKORO and KATSUJI YOSHIMURA The denaturation of proteins is an irreversible change of their colloidal properties by the following treatment. For example, coagulation by heat or freezing and the action of acids and alkalies on proteins causing "Protalbin Säure and Lysalbin Säure" reported by PAAL (13). From the colloid chemical standpoint, Frederico (6), Halliburton (8), Hewlett (10), Neu-MEISTER (II), BRUNNER (I) and STARKE (I6), reported that the coagulation by heat of protein occurs in weak acid medium, while if its acidity or alkalinity is increased, the coagulation is checked. HARNACK (9), BULOW (2), STARKE (16), PAULI (14) and ERB (5), reported that the coagulation by heat of protein occurs in the presence of salt while CHICK and MARTIN (3) reported that the coagulation by heat occurs without salts in any reaction medium, but in their presence the denaturation is concerned with the isoelectric point of the protein. OSBORNE (12) reported that when the protein solution was boiled many hours, the solution became alkaline by the formation of decomposition products and COHNHEIM (4), FODOR (7) and TARCHA-NOFF (17) reported their results concerning the temperature and the condition of the coagulation by heat but there is no report explaining the chemical properties which were changed by the denaturation. ROBERTSON (15) is the only man who investigated the chemical structure of the heat coagulated protein and he stated that the denaturated protein is the dehydrate product of the coagulation. Therefore the following investigations on the chemical changes of the denaturated proteins were made. ## Part I. Denaturation of Rice Protein, Oryzenin #### 1. Materials The denaturated oryzenin of rice was prepared by the following treat-[Jour. Facul. Agric., Hokkaido Irrp. Univ., Sapporo, Vol. XXV, Pt. 2, Dec., 1928.] ment. 250 g. of defatted rice powder were mixed with 1500 ccm of 10% NaCl solution, shaken 30 minutes, settled for one night in an ice chamber, the upper liquid decanted and washed until the filtrate showed no chlorine reaction. The residue was mixed with 1500 ccm of 0.2% NaOH solution, shaken 30 minutes and after being set over night in an ice chamber, the upper liquid was decanted in a pulp filter and starch freed filtrate was obtained. Oryzenin in the filtrate was precipitated with acetic acid and washed several times with water. Then the precipitate was suspended in 70% alcohol and freed from 70% alcohol soluble protein. One part of oryzenin was boiled one hour and another part was frozen many times and these samples as well as the original were treated with the absolute alcohol and ether and dried in a H₂SO₄ desiccator. #### 2. Water, Ash and Sulphur content of denaturated oryzenins The sulphur content was determined by Denis-Benedict's method and the ash content by the ordinary way. | Samples | Samples Water % | | Sulphur % | Sulphur (dry matter %) | |---------------------------------------|-----------------|----------|-----------|------------------------| | Original oryzenin Boiled ,, Frozen ,, | 4·529 | 0.6106 , | 0.5509 | 0.5771 | | | 5·588 | 0.5158 | 0.4979 | 0.5244 | | | 5·339 | 0.6190 | 0.7299 | 0.7711 | TABLE I The ash and sulphur content of boiled oryzenin is less than that of the original, while that of frozen oryzenin is just the opposite. ## 3. Change of turbidity and surface tension of the alkali oryzenin solution in titration with HCl solution A preliminary experiment on the iso-electric point estimation of the oryzenin solutions was made as follows. One tenth g of water free oryzenin was dissolved in 15 ccm of $\frac{1}{5}$ normal NaOH solution and diluted to 300 ccm with water. Ten ccm of the solution was titrated with $\frac{1}{50}$ normal HCl solution and the changes of surface tension and turbidity of the solution at 18°C were observed. Surface tension shown with dynes per I sq cm. TABLE II. (Surface tension) | ccm HCl | 5.20 | 5.25 | 5.30 | 5-35 | 5.40 | 5.45 | 5.50 | 5-55 | 5.60 | |----------------|------|------|-------------|-------------|------|---------------|------|------|------| | Original oryz. | 57.3 | 57.8 | 58.8 | 58.7 | 58.9 | 58.4 | 57.1 | 56.0 | 55.0 | | Boiled " | 58.3 | 58.3 | <u>59-5</u> | 58.8 | 58.o | 58 . 1 | 58.5 | 58.9 | 57.0 | | Frozen " | 58.3 | 58.5 | 58.9 | <u>59-5</u> | 58.8 | 58.4 | 58.o | 57.8 | 55.0 | (Turbidity) | Original oryz. | + | + | ++ | +++ | +++ | +++ | ++ | + | + | |----------------|---|----|-----|-----|-----|-----|----|---|---| | Boiled " | + | ++ | +++ | +++ | ++ | ++ | + | + | + | | Frozen " | + | + | ++ | +++ | +++ | +++ | ++ | + | + | According to the table, to obtain the maximum turbidity and surface tension of denaturated oryzenin a somewhat smaller quantity of acid is needed. #### 4. The specific rotatory power of oryzenin alkali solution One tenth g of each kind of oryzenin was dissolved in 25 ccm of $\frac{1}{6}$ normal NaOH solution and the specific rotatory power of solution was examined by a HAENSH-SCHMIDT half shadow polariscope. After portions of each solution had been illuminated 30,60 and 90 minutes respectively under a quartz lamp at a height of 1 foot, their rotatory power was determined in the same way. TABLE III | | | r 120 | Illumination | | | | | |-------------------|------|--------------------------------|-------------------|-------|-------|--|--| | Samples | α | $\left[lpha ight]_{ m D}^{20}$ | 30 m | 60 m | 90 m | | | | Original oryzenin | -1.4 | 60.55 | 77.85 | 67.93 | 60.55 | | | | Boiled " | -2.0 | 86 50 | 88.66 | 69.20 | 60.55 | | | | Frozen " | -2,I | 90.82 | 77.8 ₅ | 69.20 | 69.20 | | | In the above table, the specific rotatory power of boiled and frozen oryzenin alkali solution is higher than that of the original while the decomposition by illumination of ultraviolet rays is lower than with the original. #### 5. The determination of free amino nitrogen The content of free amino nitrogen of oryzenin was determined by Sörensen's method as follows; 0.1 g of water free oryzenin was dissolved in 10 ccm of $\frac{1}{6}$ normal NaOH solution and after settling 3 days, 10 ccm of neutral formalin was added and titrated with $\frac{1}{20}$ normal HCl until the solution showed a light red colour. Nitrogen N/20 HCl ccm Nitrogen g. Samples (dry matter %) Original oryzenin 1.60 0.00112 1.120 Boiled 1.80 0.00126 1.260 0.00115 Frozen 1.65 1.155 TABLE IV The free amino nitrogen content of denaturated oryzenin is a little greater than that of criginal oryzenin #### 6. The separation and determination of amino acids It is said that the amide, melanin and arginin nitrogen of denaturated casein is superior to that of the original and the same results were observed in frozen vegetable globulin (*Japanese tofu*). The author also examined amino acid nitrogen by Van-Slyke's method (18)(19) which will be described thoroughly in the next chapter. TAELE V | | Original | oryzenin | Boiled o | oryzenin | Frozen oryzenin | | | |----------------|------------|-------------------------|------------|----------|-----------------|---------|--| | | Dry matter | Total N | Dry matter | Total N | Dry matter | Total N | | | Total nitrogen | 17.1095 | 100 | 16.2773 | 100 | 16.9585 | 100 | | | Amide " | 1.0223 | 5 -9 7 53 | 1.7048 | 10.4737 | 1.1249 | 6.6331 | | | | Original | oryzenin | Boiled o | oryzenin | Frozen | oryzenin | |------------------|------------|----------|------------|----------|------------|----------| | | Dry matter | Total N | Dry matter | Total N | Dry matter | Total N | | Melanin nitrogen | 0.3463 | 2 0240 | 0.3101 | 1.9056 | 0.2940 | 1.7337 | | Monoamino " | 10.4713 | 61.2020 | 9.3763 | 57.6049 | 10.3645 | 61.1170 | | Diamino " | 5.2694 | 30.7985 | 4.8857 | 30.0156 | 5.1750 | 30.5161 | | Arginin " | 3.7302 | 21.8019 | 3.4450 | 21.1645 | 3.5356 | 20.8489 | | Cystin " | 0.2262 | 1.3223 | 0.2160 | 1.3274 | 0.2852 | 1.6819 | | Histidin ,, | 1.0978 | 6.4168 | 1.1118 | 6.8303 | 1.2186 | 7.1862 | | Lysin " | 0.2151 | 1.2574 | 0.1128 | 0.6932 | 0.1355 | 0.7990 | According to the above table, amide and histidin nitrogen content of boiled and frozen oryzenin is superior to that of the original, while lysin nitrogen content is just the opposite. Part II. Denaturation of Soybean Protein, Glycinin #### 1. Materials The water extracts of defatted soy-bean powder was filtered through a pulp filter and the clear filtrate was dialyzed in a bladder. The precipitate upon dialysis was washed with alcohol and ether and "glycinin A" was obtained. 50 g of glycinin A were dissolved in 2 liters of 0.2% NaOH solution and the solution was filtered through a pulp filter and divided into 3 parts. One of them was precipitated with diluted HCl, washed with water until no chlorine reaction was observed, then washed with alcohol and ether and dried in the ordinary way. Another part was precipitated with dilute HCl, boiled 2.5 hours in a boiling water bath, the precipitate was washed and dried in the same way as above. Another part was also precipitated with diluted HCl, and frozen many times, the precipitate collected, washed and dried in the ordinary way. Glycinin A was suspended in water, treated 2.5 hours by superheated steam, washed with alcohol and ether and dried. Glycinin A was also mixed with gasoline for 24 hours, filtered and treated with superheated steam to remove the absorbed gasoline and dried. Glycinin A was also treated with pure benzin and treated in the manner above mentioned. Thus the following 6 different samples of glycinins were prepared, namely, glycinin A, boiled-, frozen-, superheated-, gasoline-, and benzin-glycinin. #### 2. Water and ash content of denaturated proteins TABLE VI | | Glycinin A | Boiled-gl. | Frozen-gl. | Super-
heated-gl. | Gasoline-gl. | Benzin-gl. | |---------------------|------------|------------|------------|----------------------|--------------|------------| | Water % | 10.633 | 12.680 | 9.731 | 8.732 | 9.031 | 9.222 | | Ash % | 0.515 | c.466 | 0.405 | 0.618 | 0.738 | 0.538 | | Ash in dry matter % | 0.577 | 0.534 | 0.449 | 0.677 | 0.812 | 0.615 | | Ratio to orig. | 100 | 9 3 | 78 | 118 | 141 | 107 | #### 3. Sulphur and phosphorus content of denaturated proteins The sulphur content was determined dy Denis-Benedict's and the phosphorus content by Neumann's method. The following results were obtained. TABLE VII | | Glycinin A | Boiled-gl. | Frozen-gl. | Super-
heated-gl. | Gasoline-gl. | Benzin-gl. | |---------------------------------------|------------|------------|------------|----------------------|--------------|------------| | P ₂ O ₅ in r g. | 0.01097 | 0.00647 | 0.00739 | 0.01745 | 0.01661 | 0.01876 | | P ₂ in dry matter % | 0.23970 | 0.14150 | 0.16160 | 0.38120 | 0.36290 | 0.40990 | | Ratio | 100 | 59 | 67 | 159 | 159 | 171 | | S ₂ in dry matter % | 0.58770 | 0.63020 | 0.61560 | o.48650 | 0.50780 | 0.44070 | | Ratio | 100 | 107 | 104 | 82 | 86 | 75 | In the above table, the phosphorus content of boiled and frozen-glycinin is less than that of the original, while that of superheated-, gasolineand benzin-glycinin is greater than in the original. On the contrary, the sulphur content of boiled and frozen-glycinin is superior to that of the original while that of the superheated-, gasoline- and benzin-glycinin are less than that of the original. Therefore the denaturation of the former would differ from that of the latter. #### 4. The determination of free amino nitrogen The content of free amino nitrogen of denaturated proteins was determined by Sörensen's method. O.I g of water free glycinin was dissolved in 20 ccm of $\frac{1}{10}$ normal NaOH solution to which was added 10 ccm of neutral formalin (50 ccm of formalin of purchase was titrated with $\frac{1}{5}$ normal NaOH solution using I ccm of I% phenolphthalein as indicator until the solution was colored a slight pink). The solution was titrated with $\frac{1}{20}$ normal HCl solution until it became slightly pink in color. With 20 ccm of $\frac{1}{10}$ normal NaOH solution and 10 ccm of neutral formalin, a control experiment was carried out and necessary correction made. Super-Boiled-gl. Frozen-gl. Benzin-gl. Glycinin A Gasoline-gl. heated gl. N/20 HCl ccm 2.460 3.100 2.600 3.150 3,200 3.180 Free amino N 1.722 2.170 1.820 2,226 2.221 2.240 in dry matter % Free amino N 10.219 13.346 11.303 14.348 14.575 14.138 in total N % Ratio 126 106 100 129 130 120 TABLE VIII According to the table, the content of free amino nitrogen of all denaturated proteins is superior to that of the original and especially so in the case of superheated-, benzin- and gasoline-glycinin. #### 5. The separation and determination of amino acids The determination of amino acids of denaturated proteins was undertaken according to Van Slyke's method (18). To a given quantity of the sample was added 20 times its weight of 20 % HCl; the mixture was boiled and hydrolysed for I6 hours in a sand bath under a reflux condenser. Next, almost all the HCl of the solution was driven off under a diminished pressure at below 40°C. The residue was neutralized and made slightly alkaline by the addition of 10% solution of calcium hydroxide. The ammonia nitrogen liberated was distilled into standard sulphuric acid under a diminished pressure at below 40°C. The remaining fluid was filtered, and separated from melanin nitogen. The melanin nitogen was determined by Kjeldahl's method. The filtrate was acidified with HCl and evaporated under diminished pressure at below 40°C. To the concentrated filtrate were added 18 ccm of conc. HCl and 15 g of phosphotungstic acid and the diamino acids were filtered by suction and treated with a mixture of ether and amylalcohol according to Van Slyke's modified method (19). The diaminoacid nitrogen was determined separately. By using Van Slyke's microapparatus the free amino nitrogen was determined. Table IX shows the results of the experiments described and table X shows the percentage of each nitrogen to the total nitrogen of denaturated proteins. TABLE IX | | Total-N. | Amide-
N. | Mela-
nin-N. | Mono-
amino-N. | Dia-
mino-N. | Argi-
nin-N. | Cystin-
N. | Histi-
din-N. | Lysin-
N. | |----------------------|----------|--------------|-----------------|-------------------|-----------------|-----------------|---------------|------------------|--------------| | Glycinin A | 0.16855 | 0.01533 | 0.00259 | 0.10046 | 0.05015 | 0.02364 | 0.00073 | 0.01390 | 0.01186 | | Boiled-gl. | 0.16261 | 0.01700 | 0.00282 | 0.09297 | 0.04981 | 0.02262 | 0.00127 | 0.01374 | 0.01218 | | Frozen-gl. | 0.16102 | 0.01513 | 0.00256 | 0.09382 | 0.04950 | 0.02494 | 0.00093 | 0.01345 | 0.01016 | | Super-
heated-gl. | 0.15368 | 0.01659 | 0.00304 | 0.08715 | 0.04691 | 0.01991 | 0.00105 | 0.01739 | 0.00856 | | Gasoline-gl. | 0.15745 | 0.01603 | 0.00305 | 0.09050 | 0.94784 | 0.02225 | 0.00132 | 0.01359 | 0.01066 | | Benzin-gl. | 0.15479 | 0.01618 | 0.00278 | 0.08755 | 0.04827 | 0.02284 | 0.00099 | 0.01619 | 0.01824 | TABLE X | | Total-N. | Amide-
N. | Mela-
nin-N. | Mono-
amino-N. | Dia-
mino-N. | Argi-
nin-N. | Cystin-
N. | Histi-
din-N. | Lysin-
N. | |----------------------|----------|--------------|-----------------|-------------------|-----------------|-----------------|---------------|------------------|------------------| | Glycinin A | 100.00 | 9.09836 | 1.53688 | 59.61071 | 29.75405 | 14.03081 | 0.43813 | 8.24813 | 7.03705 | | Boiled-gl. | 100.00 | 10.45653 | 1.73209 | 57.17638 | 30.63500 | 15.91105 | 0.78171 | 8.45035 | 7.49188 | | Frozen-gl. | 100.00 | 9.39932 | 1.59274 | 58.26586 | 30.74208 | 15.49205 | 0.57789 | 8.35659 | 6.31544 | | Super-
heated-gl. | 100.00 | 10.79665 | 1.97849 | 56.69635 | 30.52851 | 12.95585 | 0.68441 | 11.31936 | 5.568 7 8 | | Gasoline-gl. | 100.00 | 10.18534 | 1.93755 | 57.49322 | 30.38389 | 14.13589 | 0.83781 | 8.63646 | 6.77374 | | Benzin-gl. | 100.00 | 10.45694 | 1.80141 | 56,55520 | 31.18645 | 14.76069 | 0.64048 | 10.46347 | 5.32180 | Thus it is seen that in all denaturated glycinin, there is a predominance of amide, arginin- and histidin-nitrogen as compared with original glycinin. Among five kinds of denaturated glycinin, the frozen-glycinin is richest in arginin-nitrogen content, while gasoline- and benzin-glycinin are rich in histidin nitrogen and boiled glycinin or superheated glycinin show decreased arginin nitrogen and increased histidin nitrogen content. # 6. Change of turbidity of the alkali glycinin solution in titration with HCl solution ija(dala Karaja 32.41 As a preliminary experiment on the iso-electric point estimation of the glycinin solutions, the following manipulation was used. One tenth g. of glycinin was dissolved in 15 ccm of 1/25 normal NaOH solution. After standing for 24 hours (15°C), 1 ccm of the protein solution was diluted with 135 ccm of pure water. Ten ccm of the mixture was titrated with 1/100 normal HCl solution. These figures show the turbidity, i. e. the "+" sign indicates degree of turbidity. Super-HCl ccm Glycinin A Boiled-gl. Frozen-gl. Gasoline-gl. Benzin-gl. heated-gl. 5.16 +++ +++ 5.20 +++ +++ +++ +++ +++ 5.24 +++ +++ + + ++++ +++ 5.28 +++ +++ +++ +++ +++ +++ 5.32 +++ +++ 5.36 +++ +++ +++ +++ +++ +++ TABLE XI According to the table, to obtain the maximum turbidity of the boiled glycinin there is needed a somewhat smaller quantity of acid, while the denaturated glycinin showed no marked difference as compared with the original. #### 7. Solubility of denaturated glycinin The solubility of denaturated glycinin in different solvents was examined. 0.05 g of glycinin was mixed with 20 ccm of solvent, shaken for 30 minutes and settled 24 hours. The mixture was then filtered, 15 ccm of filtrate was used for nitrogen estimation by KJELDAHL'S method and the quantity of dissolved protein was calculated. TABLE XI | Normality
of NaOH | 1/5 | 1/10 | 1/20 | 1/50 | 1/100 | 1/150 | 1/200 | 1/500 | 1/1000 | |---|-------|-------|--------|------------------------|-------|-------|-------|-------|--------| | Glycinin A | 100.0 | 100.0 | 100.00 | 100.00 | 85.28 | 75.28 | 68.68 | 46.71 | 17.03 | | Boiled-gl. | 0.001 | 100.0 | 96.85 | 91.13 | 45.56 | 17.08 | 14.24 | 4.56 | 2.84 | | Frozen-gl. | 100.0 | 100.0 | 100.00 | 100.00 | ' | _ | 74.78 | 21.57 | 5.75 | | Super-
heated-gl. | 100.0 | 100.0 | 100.00 | 100.00 | 69.89 | 12.05 | | 9.04 | 4.32 | | Gasoline-gl. | 100.0 | 100.0 | 80.59 | 64.71 | 47.06 | 5.88 | 4.41 | 2.94 | _ | | Benzin-gl. | 100.0 | 100.0 | 100.00 | 98.73 | 86.76 | 32.95 | 14.95 | | | | Normality
of Na ₂ CO ₃ | 2 | 1/2.5 | 1/10 | 1/50 | 1/100 | | | | | | Glycinin A | 86.38 | 95.73 | 97.72 | 100.00 | 93.36 | | | | | | Boiled-gl. | 15.38 | 18.79 | 25.63 | 19.93 | 9.34 | | | | | | Frozen-gl. | 91.97 | 97.72 | 97.72 | 9 9 .6 3 | 97.72 | | | | | | Super-
heated-gl. | 9.04 | 16.27 | 18.08 | 9.04 | 4.52 | | | | | | Gasoline-gl. | 7.64 | 16.41 | 17.64 | 12.35 | 4.70 | | | | | | Benzin-gl. | 8.97 | 17.95 | 26.92 | 14.96 | 8.93 | | | | | According to the table, solubility of denaturated glycinin in NaOH and Na₂CO₃ solution decreased in the following order viz. Frozen-gl.→Boiled-gl.→Benzin-gl.→Gasoline-gl.→Superheated-gl. Almost all denaturated glycinin except frozen-gl. showed their maximum solubility in 1/10-1/2.5 normality. TABLE XIII | Normality of HCl | 1/10 | 1/25 | 1/50 | 1/100 | 1/200 | 1/500 | |-----------------------------|-------|--------------|-------|-------|-------|--------------| | Glycinin A | 95.73 | 100.00 | 99.66 | 98.92 | 81.57 | 19.23 | | Boiled-gl. | 5.69 | 13.10 | 14.24 | 14.24 | 8.54 | 1.61 | | Frozen-gl. | 37-43 | 86.28 | 83.31 | 61.55 | 50.04 | 8.62 | | Superheated-gl. | 3.01 | 3.01 | 6.03 | 6.03 | 1.30 | 0.00 | | Gasoline gl. | 4.12 | 8.82 | 8.82 | 7.67 | 5.25 | 1.67 | | Benzin-gl. | 2.99 | 5.98 | 6.58 | 8.97 | 7.78 | 5.9 8 | | Normality
of oxalic acid | r | 1/5 | 1/50 | 1/100 | 1/200 | 1/500 | | Glycinin A | 20.88 | 49.46 | 52.21 | 21.98 | 5-49 | 2,21 | | Boiled-gl. | 10.25 | 11.39 | 8.54 | 5.54 | 2.84 | 0.00 | | Frozen gl. | 21.85 | 37-39 | 34.51 | 11.50 | 4.60 | 1.49 | | Superheated-gl. | 10.48 | 12.05 | 8.82 | 7.21 | 3.01 | 0.00 | | Gasoline-gl. | 7.06 | 8.82 | 8.82 | 2.94 | 2.07 | 0.00 | | Benzin-gl. | 5.98 | 9 .89 | 8.24 | 6.59 | 2.74 | 0.00 | | Normality
of acetic acid | ı | 1/10 | 1/50 | 1/100 | 1/200 | |-------------------------------|--------|--------|-------|--------------|-------| | Glycinin A | 93-35 | 87.52 | 87.52 | 4.67 | 2.91 | | Boiled-gl. | 15.12 | 7.25 | 6.04 | 6.04 | 3.05 | | Frozen-gl. | 78.17 | 25.04 | 9.16 | 9.16 | 3.02 | | Superheated-gl. | 9.59 | 6.39 | 6.39 | 3.19 | 0.01 | | Gasoline-gl. | 6.24 | 6.24 | 3.12 | 3.12 | 0.00 | | Benzin-gl. | 9-53 | 6.35 | 6,35 | 5. 08 | 0.00 | | Normality
of citric acid | x | 1/5 | 1/50 | 1/100 | 1/200 | | Glycinin A | 100.00 | 98.02 | 23.34 | 14-01 | 5.83 | | Boiled-gl. | 21.17 | 10.88 | 9.67 | 3.02 | 0.00 | | Frozen-gl. | 100.00 | 100.00 | 18.17 | 10.99 | 6.11 | | Superheated-gl. | 9.04 | 8.95 | 6.39 | 3.19 | 0.00 | | Gasoline-gl. | 8.82 | 8.74 | 8.74 | 6 24 | 3.12 | | Benzin-gl. | 13.17 | 12.71 | 11,43 | 3.17 | 0,00 | | Normality
of tartaric acid | 1/5 | 1/50 | 1/100 | 1/200 | 1/500 | | Glycinin A | 100.00 | 49.59 | 18.17 | 14.58 | 2.91 | | Boiled-gl. | 18.14 | 9.07 | 8.46 | 6.04 | 3.02 | | Frozen-gl. | 100.00 | 24.43 | 13.43 | 6.10 | 3.05 | | Superheated-gl. | 12.79 | 5.12 | 3.19 | 3.19 | 0.00 | | Gasoline-gl. | 6.24 | 6.25 | 3.12 | 3.12 | 0.00 | | Benzin-gl. | 12.79 | 6.35 | 6.35 | 3.17 | 0.00 | From the above table, the solubility of denaturated glycinin in acid solution is decreased in the following viz. Frozen- gl. \rightarrow Boiled- gl. \rightarrow Bonzingl.→Gasoline- gl.→Superheated- gl. TABLE XIV | Normality
of NaCl | 7.5 | 5 | 2.5 | 1 | 1/2 | 1/4 | 1/10 | |----------------------|------|------|---------------|--------------|-------|------|--------------| | Glycinin A | 2.74 | 5.49 | 24. 73 | 32.97 | 10 99 | 8.24 | 5.49 | | Boiled-gl. | _ | 0.00 | 1.70 | 5.69 | 2.84 | 0.00 | 0. 00 | | Frozen-gl. | 2.87 | 2.87 | 9.77 | 28.76 | 6.91 | 2.87 | 0.00 | | Superheated-gl. | 0.13 | 301 | 4.21 | 6.ივ | _ | 3.01 | 0.00 | | Gasoline-gl. | _ | 1.27 | 2.94 | 4.12 | 0.00 | | | | Benzin-gl. | _ | 1.29 | 1.79 | 5.9 8 | 1.29 | 0.00 | | | Normality
of MgCl ₂ | | 1/5 | 1/10 | 1/50 | 1/100 | |---|------|-------|-------|-----------------------|-------| | Glycinin A | | 8.24 | 33.84 | 29.13 | 3.83 | | Boiled-gl. | | 7.95 | 7.95 | 7.36 | 0.00 | | Frozen-gl. | | 7.43 | 17.25 | 13. 9 6 | 2.87 | | Superheated gl. | | 4,82 | 6.03 | 4.20 | 0.00 | | Gasoline-gl. | | 2 94 | 2.94 | 0.00 | 0.00 | | Benzin-gl. | | 4.17 | 8.97 | 4,16 | 0.00 | | Normality
of Na ₂ SO ₄ | ı | 1/5 | ı/ıo | 1/25 | 1/50 | | Glycinin A | 5.49 | 26.92 | 32.97 | 45.7 1 | 6.04 | | Boiled-gl. | 2.84 | 16.67 | 17.08 | 16.67 | 2.84 | | Frozen-gl. | 5.75 | 13.96 | 25.88 | 25.88 | 2.87 | | Superheated-gl. | 1.61 | 9.04 | 12.05 | 3.50 | 0.00 | | Gasoline-gl. | 1.67 | 8.82 | 14.71 | 10.00 | 1.67 | | Benzin-gl. | 2.99 | 14.53 | 15.84 | 14.52 | 2.89 | From the above table, the solubility of denaturated glycinin in salt solution decreases in the following order viz. Frozen- gl. \rightarrow Boiled- gl. \rightarrow Benzingl. \rightarrow Superheated- gl. \rightarrow Gasoline- gl. ## Part III. Solubility of Proteins in Denaturated Soybeans #### 1. Materials The denaturated soybeans which were heated, boiled, frozen, soaked in gasoline were defatted is the ordinary way and powdered to make analytical sample. The following table shows denaturation process of soybeans and water and crude fat content of powdered samples. Table XV | Denaturation process of soy-beans | Water % | Crude fat
(dry matter%) | | |--|---------|----------------------------|--| | 1. Original soybeans, ground and powdered | 8.701 | 21.126 | | | 2. Soybeans, kept 48 hrs. at 30°C and powdered | 12.852 | 21.514 | | | 3. " " " " 60°C " " | 11.831 | 21.849 | | | 4. " " " " 110°C " " | 10.415 | 22.392 | | | 5. Soybeans, soaked in water, frozen, dried at 60°C and powdered | 11.269 | 22.245 | | | 6. Soybeans, boiled 4 hrs. dried 60°C and powdered | 10.509 | 22.397 | | | 7. Soybeans, soaked in gasoline 4 days then dried and powdered | 11.701 | 21.031 | | | 8. Soybeans, roasted in ordinary way and powdered | 8.701 | 21.425 | | | | [| 1 | | # 2. Estimation of water, NaCl, alcohol, alkali soluble and insoluble proteins Five g of defatted soy-bean powder was mixed with 50 ccm of water, shaken 30 minutes, settled one night, centrifuged and 25 ccm of upper liquid was used to estimate water soluble nitrogen. The first residue was washed 3 times with 50 ccm of water, and in order to make 10% NaCl solution there were added 25 ccm of 20% NaCl solution and water, taking in account the water already contained in the sample, then shaken 30 minutes, settled one night, centrifuged and 25 ccm of upper liquid was used to estimate NaCl soluble nitrogen. The second residue was washed 3 times with 50 ccm of 10% NaCl solution, next with 50 ccm water and in order to make 70% alcohol there were added 96% alcohol and water already contained in sample, shaken, settled, centrifuged and 25 ccm of upper liquid was used to estimate alcohol soluble nitrogen. residue was washed 3 times with 50 ccm of 70% alcohol and water, and in order to make 0.2% NaOH solution there were added 50 ccm 0.4% NaOH solution and water, calculating the water already contained in sample, shaken, settled, centrifuged and 50 ccm of upper liquid were used to estimate NaOH soluble nitrogen, At last the residue was washed 3 times with 0.2% NaOH solution and insoluble nitrogen was estimated. TABLE XVI | | | Total
N. | Water
sol. N. | NaCl
sol. N. | Alcohol
sol. N. | NaOH
sol. N. | Insol.
N. | |--------------|----------------|-------------|------------------|-----------------|--------------------|-----------------|--------------| | Original | (Dry matter %) | 5.904 | 3.730 | 1.238 | 0.021 | 0.626 | 0,446 | | | (Total N. %) | 100.000 | 63.170 | 20975 | 0.351 | 10.бо9 | 7.560 | | Heated 30°C | (Dry matter %) | 5.725 | 3 348 | 1.187 | 0.022 | 0.755 | 0.506 | | 1 | (Total N. %) | 100.000 | 58 480 | 20.733 | 0.391 | 13.203 | 8.951 | | Heated бо°С | (Dry matter %) | 6.080 | 2.344 | 1.071 | 0.015 | 1.162 | 1.154 | | | (Total N. %) | 100.000 | 38.564 | 17.708 | 0.249 | 19.120 | 18.981 | | Heated 110°C | (Dry matter %) | 6.788 | 0.289 | 0.027 | 0.022 | 0.375 | 4.952 | | | (Total N. %) | 100.000 | 4.264 | 0.409 | 0.327 | 5.532 | 72.950 | | Frozen | (Dry matter %) | 6.466 | 1.701 | 0.767 | 0.017 | 2.989 | 0.712 | | | (Total N. %) | 100.000 | 26.311 | 11 866 | 0.266 | 46.222 | 11.022 | | Boiled | (Dry matter %) | 6.225 | 0.508 | 0.109 | 0,020 | 2.766 | 2.876 | | | (Total N. %) | 100.000 | 8.072 | 1.737 | 0.326 | 43.900 | 45.646 | | Gasoline | (Dry matter %) | 6.536 | 3.332 | 0.984 | 0.014 | 1.127 | 0.711 | | ľ | (Total N. %) | 100,000 | 52.272 | 15.090 | 0.227 | 17.272 | 10.909 | | Roasted | (Dry matter %) | 5.931 | 0.423 | 0.112 | 0.013 | 3.137 | 2.272 | | | (Total N. %) | 100.000 | 7.142 | 1.897 | 0.223 | 52.901 | 38.303 | According to the table, the heated soy-bean shows a decrease in water and NaCl solution soluble nitrogen and an increase in NaOH soluble and insoluble nitrogen content as compared with the original. These changes were observed in heating over 60°C and in the case of heating over 110°C, insoluble nitrogen content was increased to a remarkable extent. In the case of the frozen sample, water and NaCl solution soluble nitrogen content was decreased NaOH solution soluble nitrogen was increased but insoluble nitrogen remained about the same. In the case of boiling, water and NaCl solution soluble nitrogen content was decreased and NaOH solution soluble and insoluble nitrogen were increased. By the treatment with gasoline and roasted soybean, the same changes were observed but not remarkably. #### SUMMARY Form the above experimental results, we would summarize the following differences in the physico-chemical properties between the denaturated rice oryzenin and the denaturated soy-bean glycinin and both of the original ones. - (A) The denaturated oryzenin. - (1). The ash and sulphur content of boiled oryzenin is less than that of the original while that of the frozen one is just the opposite. - (2). In the oryzenin alkali solution, to obtain the maximum turbidity and surface tension of denaturated oryzenin a somewhat smaller quantity of acid is needed. - (3). The specific rotatory power of boiled and frozen oryzenin alkali solution is higher than that of the original while the decomposition by illumination of ultraviolet rays is lower than in the original. - (4). The free amino nitrogen content of denaturated oryzenin is greater than that of original oryzenin. - (5). The amide and the histidin nitrogen content of boiled and frozen oryzenin is superior to that of the original, while the lysin nitrogen content is just the opposite. - (B) The denaturated glycinin - (1). The phosphorus content of boiled and frozen glycinin is less than that of the original while that of superheated, gasoline, and benzin glycinin is superior to that of the original glycinin. On the contrary, the sulphur content of boiled and superheated glycinin is superior to that of the original while on the contrary that of the others is less than that of the original. - (2). The content of free amino nitrogen of all denaturated proteins is superior to that of the original and especially so in the case of superheated, gasoline and benzin glycinin. - (3). In all denaturated glycinin, there is a predominance of amide, arginin and histidin nitrogen as compared with the case of original glycinin. Among five kinds of denaturated glycinin, the frozen glycinin is richest in arginin nitrogen content, while gasoline and benzin glycinin are rich in histidin nitrogen. Boiled or superheated ones show decreased arginin nitrogen and increased histidin nitrogen content. - (4). In glycinin alkali solution, to obtain the maximum turbidity of the boiled glycinin a somewhat smaller quantity of acid is needed while the other denaturated glycinin showed no marked difference as compared with the original. - (5). The solubility of denaturated glycinin in NaOH and Na₂CO₃ solution decreased in the following order viz. Frozen- gl.→Boiled- gl.→Benzin-igl.→Gasoline- gl.→Superheated- gl. Almost all denaturated glycinin except frozen- gl. showed their maximum solubility in I/IO-I/2.5 normality. The solubility of denaturated glycinin in acid solution is decreased in the following order viz. Frozen- gl.→Boiled- gl.→Benzin- gl.→Gasoline- gl. →Superheated- gl. The solubility of denaturated glycinin in salt solution is decreased in the following order viz. Frozen- gl.→Boiled- gl.→Benzin- gl.→Gasoline- gl. →Superheated- gl. (C). The denaturated soybean. The heated soy bean showed a decreased water and NaCl sol. soluble nitrogen content and an increased NaOH soluble and insoluble nitrogen content in comparison with the original. The changes observed in heating over 60°C and also in the case of heating over 110°C, showed that the insoluble nitrogen content was increased to a remarkable degree. In the case of frozen, water and NaCl sol. soluble nitrogen content was decreased but increased in case of NaOH sol. soluble nitrogen. In the case of boiling, water and NaCl sol. soluble nitrogen content was decreased and NaOH soluble and insoluble nitrogen increased. By the treatment with gasoline and benzin, the same changes were observed but not to a remarkable degree. ### REFERENCE - (1) BRUNNER: Dissertation, Bern (1894). - (2) Bülow:-Pflügers Arch. f. d. Ges. Physiol. 58, 207 (1889). - (3) CHICK U. MARTIN: Journ. of Physiol. 40, 404 (1910), 43, I (1911), 45, 61 (1912). - (4) COHNHEIM: -Zeits. f. Physiol. Chem. 33, 455 (1901). - (5) ERB:-Zeits. f. Biol. 41, 309 (1901). - (6) Frederico:—Zentralbl. f. Physiol. 3. 23, 601 (1890). - (7) Fodor: -Kolloid Zeitschr. 27, 29, 30 (1922). - (8) HALLIBURTON:-Journ. of Physiol. 5, 155 (1885). - (9) HARNACK: -Ber. d. deutsch. Chem. Ges. 22, II, 3046 (1889). - (10) HEWLETT:-Journ. of Physiol. 13, 493 (1892). - (11) NEUMEISTER:—Zeits. f. Biol. 24, 272 (1888). - (12) OSBORNE:-Ergebnisse d. Physiologie 10, 47 (1910). - (13) PAAL:-Ber. d. deutsch. Chem. Ges. 35, II, 2195 (1902). - (14) PAULI:-Pflügers Arch. f. d. Ges. Physiol. 78, 315 (1899). - (15) ROBERTSON: physik. Chem. d. Eiweisskörper (1914). - (16) STARKE: -Sizungsber. d. Ges. f. Morphol. u. Physiol. (1897). - (17) TARCHANOFF:-Pflüger Arch. f. d. Ges. Physiol. 33, 303 (1886). - (18) VAN SLYKE: Journ. Biol. Chem. 10, 15-85 (1911-1912). - (19) VAN TLYKE:-Journ. Biol. Chem. 22, 281 (1915).