<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>緑小豆(Amanajun)のアミノ酸組成についての研究 Ⅳ．基本アミノ酸組成成分について</td>
</tr>
<tr>
<td>著者</td>
<td>KASAI, Takanori; SAKAMURA, Sadao</td>
</tr>
<tr>
<td>引用</td>
<td>北海道大学農学部紀要, 57(2): 153-159</td>
</tr>
<tr>
<td>発行日</td>
<td>1973-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2115/12872</td>
</tr>
<tr>
<td>タイプ</td>
<td>bulletin</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>57(2)_p153-159.pdf</td>
</tr>
</tbody>
</table>
AMINO ACID COMPOSITION OF GREEN GRAM
(PHASEOLUS RADIATUS L. VAR. TYPICUS PRAIN)

Part IV. Studies on the Components in Basic Amino Acids Fraction

By Takanori KASAI and Sadao SAKAMURA
Department of Agricultural Chemistry, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
Received March 23, 1972

INTRODUCTION

Green gram seeds have been utilized as raw material for production of bean-seedlings, bean-nodules and boiled bean. From the acidic amino acids fraction of green gram seeds, N-carboxymethyl-β-alanine and six ρ-glutamyl peptides—ρ-glutamylleucine, ρ-glutamylmethionine, ρ-glutamylmethioninesulfoxide, ρ-glutamylphenylalanine, ρ-glutamyltyrosine and ρ-glutamyl-ρ-glutamylmethionine—were isolated. Identification and quantitative analysis of these compounds were reported in previous papers of this series (16, 17, 18). Composition of free and protein amino acids were also described (17).

This paper deals with the isolation and identification of tyramine, adenine and ethanolamine from basic amino acids fraction.

MATERIALS AND METHODS

Separation of Amino Acids Fraction

Pulverised green gram seeds (50 kg) was extracted with 70% aq. ethanol. The extracts were passed through a column of Amberlite IR-120 (H+), the column being washed with water. Amino acids fraction freed from sugars and salts was eluted with 2N ammonia water.

Separation of Neutral and Basic Amino Acids Fraction

The eluate with 2N ammonia water was concentrated under reduced pressure and adjusted to pH 4. After filtration, filtrate was put on a column of Dowex 1×4 (AcO−). Effluent with water from the column contained neutral and basic amino acids fraction. After washing with water, the

column was eluted with 2N acetic acid and eluate was used for studies on acidic amino acids fraction (16, 18).

Separation of Neutral Amino Acids Fraction

Neutral and basic amino acids fractions obtained as described above was put on a column of Dowex 50×4 (NH₄⁺), and neutral amino acids fraction was washed out from the column with water.

Separation of Basic Amino Acids Fraction

After washing with water, the basic amino acids fraction was eluted with 2N ammonia water from the column. Paper chromatogram of the basic amino acids fraction showed two ninhydrin positive spots besides the normally occurring basic amino acids (Fig. 1). The one with higher Rf value was named BU-1 and the other with lower Rf value was BU-3, respectively.

Separation of BU-1, BU-2 and BU-3 from the Basic Amino Acids Fraction

The basic fraction was dissolved in small volume of n-butanol, acetic acid, water (4:1:2 v/v), placed on a cellulose column (4.5×53 cm) and developed with the same solvent system. By repeating the cellulose column chromatography BU-1 fraction and BU-3 fraction were obtained. BU-1 fraction was concentrated under reduced pressure and acidified with hydrochloric acid. After concentration, it was added with ethanol, and the resulting insoluble precipitates were named BU-2. BU-1·HCl was crystallized by adding ether to the ethanol solution. BU-2·HCl was crystallized from water and BU-3·HCl was from ethanol.

Identification of Tyramine (BU-1)

BU-1 gave positive reaction with ninhydrin and phenol reagent. Anal. Found: C, 54.81%; H, 6.97, N, 7.87. Calcd. for C₉H₁₁NO·HCl: C, 55.30; H, 6.91; N, 8.06. IR (KBr) (Fig. 2): 3200 cm⁻¹ (OH), ~2000 (NH⁺), 1660 (NH₂), 1615, 1595, 1460 (C=C), 1230 (phenol-OR), 830 (p-substituted benzene). NMR (D₂O): 2.9 (t, 2H, J = 7 Hz), 3.2 (t, 2H, J = 7 Hz), 6.85 (d, 2H, J = 8 Hz), 7.2 (d, 2H, J = 8 Hz). MS (Fig. 3): m/e 137 (M⁺), 107 (M⁺–CH₂NH₂), 91 (C₆H₅⁺), 78(C₆H₄⁺), 77(C₅H₄⁺), 44(C₃H₄N⁺), 30(CH₂N⁺). UV (λ_max): 222 m ugl (log ε = 3.71), 276 (3.08), 282 (sh)(3.00). From the color reactions and IR and NMR spec-
Fig. 2. IR-Spectra of BU-1·HCl (2) and Tyramine·HCl (1) (KBr).

Fig. 3. Mass Spectrum of BU-1·HCl.

It was deduced that BU-1·HCl has the structure of \(\text{HO\(\bigcirc\)}\text{CH}_2\text{CH}_2\text{NH}_2 \cdot \text{HCl} \). Unequivocal evidences for the structure were given from mass and IR spectra. BU-1 has the same Rf values as tyramine with several solvent systems. Final proof of the structure was obtained by comparison of IR-spectrum of BU-1·HCl with that of authentic tyramine HCl (Fig. 2).

Identification of Adenine (BU-2)

BU-2 did not react with ninhydrin. Heat-treatment of BU-2 with 6N HCl at 120°C for 20 hours afforded a large amount of glycine, which was identified and determined by amino acid analyzer. Anal. Found : C, 33.14% ; H, 3.83 ; N, 38.89. Calcd. for \(\text{C}_9\text{H}_6\text{N}_5 \cdot \text{HCl} 1/2\text{H}_2\text{O} \) : C, 33.22; H, 3.88; N, 38.86. IR (KBr) (Fig. 4): 3300~2000 cm\(^{-1}\) (NH\(_3^+\)), 1695 (C=N), 1615, 1580
Fig. 4. IR-Spectra of BU-2·HCl (1) and Adenine·HCl (2) (KBr).

Fig. 5. Mass Spectrum of BU-2·HCl.

(C=O) 950 (ring-CH). NMR (H<P><P>): 8.45 (s), 8.52 (s). MS (Fig. 5): m/e 135 (M+), 108(M+-HCN), 81(108–HCN). UV(λ_{max}): 262 μg (log ε = 4.14). These data suggested the chemical structure of the BU-2 to be adenine (1, 2, 10, 21). Thus, IR spectrum of BU-2·HCl is completely consistent with that of authentic adenine HCl (Fig. 4).

Identification of Ethanolamine (BU-3)

BU-3 was liquid in free state and crystallized by forming the salt with hydrochloric acid. Anal. Found: C, 23.93% ; H, 8.11; N, 14.02. Calcd. for C₅H₇NO HCl: C, 24.62; H, 8.21; N, 14.36. Low value of carbon content will be due to the very hygroscopic character of BU-3·HCl. IR (KBr) (Fig. 6): 3400 and 1070 (primary OH), ~2000 (NH₄•), 1630, 1500 (NH₄•).
AMINO ACID COMPOSITION OF GREEN GRAM (PHASEOLUS RADIATUS L.)

Fig. 6. IR-Spectra of BU-3·HCl (1) and Ethanolamine·HCl (KBr).

NMR (δ_DCl): 3.22 (t, 2H, J = 6 Hz), 3.9 (t, 2H, J = 6 Hz). MS (Fig. 7): m/e 61 (M^+), 31 (M^+ - CH_2NH_2), 30 (M^+ - CH_2OH). These spectra data suggested that BU-3·HCl has the structure of HOCH_2CH_2NH_2·HCl. BU-3 revealed the same chromatographic behavior as ethanolamine. IR spectrum of BU-3·HCl was completely consistent with that of ethanolamine HCl (Fig. 6).

RESULTS AND DISCUSSION

Tyramine, adenine and ethanolamine were isolated from basic amino acids fraction of green gram seeds.

Tyramine, which has sympathomimetic and blood-pressure raising action, has been found from a variety of plants—Hordeneum vulgare (8, 12, 20, 22, 23), Panicum miliaceum (22), Crinum species (9), Sarothamnus scoparius (5, 6, 13, 25), Chelidonium majus (19), Acacia berlandieri (3), A. greggii, A. roemeriana, A. texensis (4), A. caven, A. aroma (11), Gleditsia triacanthos, Prosopis glandulosa (4), Psittacanthus cuneifolius (11), Phoradendron wattii (7), P. argentinum, Bougainvilea stipitata, Acnistus breviflorus, Celtis spinosa (11), Silibum marianum of Azerbaidzhan variety (15), banana, potato, red plum, avocado, tomato, spinach, orange, eggplant (27), citrus juice (26), scotch broom (14), sowa millet (24)—but its presence in green gram seeds has not been reported.
Tyramine content in green gram seed is relatively high: tyramine·HCl isolated from 50 kg of green gram seeds was 1.1 g, but fairly large amount of tyramine still remained in other fractions contaminated with additional basic components since the isolation work was only done on the fraction containing tyramine alone.

Adenine and ethanolamine were also first isolated from green gram seeds.

Acknowledgement. This investigation was supported in part by a grant from the Ministry of Education of Japan.

References
5) CORREALE, P. and I. CORTESE. Naturwissenschaften, 49, 57 (1953).
6) CORREALE, P. and E. CORTESE. ibid., 41, 139 (1954).
8) ERSPAMER, V. and G. FALCONIERI. Naturwissenschaften, 39, 431 (1952).
AMINO ACID COMPOSITION OF GREEN GRAM (PHASEOLUS RADIATUS L.)

(1962).