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The success of the modern methods of breeding hybrid corn prompted 
utilization of the hybrid vigor in the breeding of other crops. However, 
the necessity in many crops of making the crosses by laborious hand pro­
cedures prevented its wide adaption. The procedure of making hybrids is 
greatly facilitated in certain crops by the utilization of male sterile lines. 
Male sterility has been found in many crops and is generally called pollen 
sterility. All individuals with male sterility fail to produce male gametophytes 

This paper comprises part of a thesis submitted to Hokkaido University in partial 
fulfiment of the requirements for the degree of Doctor of Agriculture. 
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although they produce normal functional female gametophytes. Male sterility 
is caused mainly by hereditary mechanisms of cytoplasm and/or specific genes, 
but also occasionally by some environmental factor such as temperature and 
chemical substances. Because of its ease in maintaining male sterility and 
in restoring the fertility in commercial croping, the so-called "cytoplasmic 
male sterility" is most useful for the production of hybrid. 

The primary object of the present investigations was to clarify the physio­
logical mechanism causing the cytoplasmic male sterility in various crops 
such as sugar beet, maize and sorghum. Another was to seek out some 
efficient criteria which would be useful for the pre-anthesis selection of 
male sterile plants and/or lines. Thus, the author has conducted the physio­
logical and morphological studies on the cytoplasmic male sterile lines in com­
parison with their maintainers in these crops. These studies were expected 
to contribute to seeking out the maintainers and restorers, and inducing 
artificial male sterility in practice. A large number of studies have already 
been from the point of view of physiology and morphology of pollen, but 
there is little information available on the development and differentiation 
of male gametophytes, and particularly in development of anthers. This 
study is expected to contribute to this field of investigation. 

The author would like to acknowledge the continuing guidance and 
encouragement of Dr. Sadaji HOSOKA W A, Professor of Industrial Crops, Fac­
ulty of Agriculture, Hokkaido University. The author also wishes to thank 
Dr. Man-emon TAKAHASHI, Dr. Yozo OKAZAWA and Dr. Chikahiro TSUDA 
for their helpful advice during the preparation of this manuscript. The 
author also would like to express his appreciation to Dr. Yoshiya SHIMA­
MOTO, Dr. Eishiro SHIKATA and Mr. Hiroyasu FUKUJU for frequent, stimu­
latory, and helpful discussion. The author must also express his sincere 
appreciation to the members of the Laboratory of Industrial Crops, Faculty 
of Agriculture, Hokkaido University and the Sugar Beet Section of Hokkaido 
Agricultural experiment Station. The cost of the study was partly met by 
grants from the Hokkaido prefectural goverment and the Japanese Ministry 
of Education. 

II. Literature Review 

Since ARCHIMOWITSCH3) report the male sterility of sugar beet in 1931, 
many detailed studies and investigations have been conducted.4.7.58.72.92.93) Many 
research workers35.48.84,1l2) have made efforts to utilize the male sterility for 

hybrid seed production. The first review of cytoplasmic male sterility was 
made by ED WAR DSON40) in 1956. Larser and LERSTEIN13) reviewed much 
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additional literature and tried to find out exactly when abortion occurs and 
what happens when it begins. According to these reviews, the predominate 
causes of cytoplasmic male sterility can be listed as follows, 1) abnormal 
behavior of the tapetal cell, 2) the structural changes in the stamen filament, 
3) callose dissolution, 4) virus, 5) differences of amino acid components in 
anther, and 6) enzymatic activities. 

1) Abnormal behavior of the tapetal cell 

According to most literature, the tapetum has been implyed to play an 
important role as the direct or indirect cause of pollen abortion. The be­
havior of tapetum in relation to pollen abortion is classified into the following 
3 types, a) tapetal behavior is normal but the pollen fails to develop/8,117) 
b) tapetal cells do not degenerate normally, and c) lack of tapetumllS). The 
chief function of the tapetum has often been said to be the production and 
transport of enzymes, hormones and nutritive materials which are utilized 
for microsporegenesis, but its role in exine formation and maintaining a pool 
of nucleosides for DNA synthesis renewed emphasisI20,121). Thus it is now 
presumed that the tapetal abnormality is closely associated with the failure 
to nourish the microspores. 

2) Structural changes in the stamen filament 

ROHRBACH lOO) showed the structural changes in the stamen filament in 
male sterile sugar beets, and suggested the pollen abortion resulted from 
nutritional indeficiency caused by the stamen abnormality. On the other 
hand, KINOSHITA72) suggested that the stamen abnormality of this plant was 
caused by the male sterility. Joppa, McNEAL and WALSH69) with Triticum, 
ALAM and SANDALl) with sundangrass and IWANAMI and HOSODA62

) with 
Brassica reported that the male sterility resulted from the stamen abnormality. 
Larser failed to show any structural differences in this organ, between normal 
and cytoplasmic male sterile sorghum. 

3) Callose dissolution 

FRANKEL, IZHAR and NITSAN38), and IZHAR and FRANKEL64,65) present 
the evidence that faulty timming of enzymatic digestion of callose causes 
the microspore abortion in Petunia. Acording to this, callase activity changes 
depending upon pH value, and they suggested that the changes of pH are 
presumably associated with those of amino acid components. HosoKA w A, 
TSUDA and T AKEDA59,60) presented the particular change of pH value of 
anther in male sterile sugar beets during its development and the eventual 
inactivation of some enzymes. W ARMKE and OVERMANI22) found that the 
callose wall of diard degenerated earlier in the sterile plants. 
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4) Virus 

Because the nature of the cytoplasmic factor has not been obvious and 
since the behaviour of virus has been similar to those of genes, virus has 
been extensively investigated in connection with cytoplasmic inheritance. 
The investigations as to whether virus is responsible for the cytoplasmic 
factor in cytoplasmic male sterile plant have been carried out by means of 
grafting, inoculation or thermo treatments. FRANKEL 36,37), EDWARDSON and 
CORBETTSll , and CORBETT and EDW ARDSONSO) reported that male fertile plants 
grafted on the male sterile petunia showed the male sterility. CECH and 
POZDENA13) with Humulus and CURTIS22) with Beta vulgaris also demon­
strated graft transmissibility of male sterility. CLEIJ19) with Beta vulgaris 
reported the sterile plant changed to normal plant with thermosock experi­
ments. ATANASOFFo,6) reviewed numerous studies on cytoplasmic male ste­
rility in viral trasmission. He insisted it should be reconsidered that the 
cytoplasmic factor was virus in many more plants. OHTAss,S9,90) reported that 

by means of inoculation and thermotreatment pollen fertility was decreased 
because of interaction between the cytoplasmic factor and particular virus in 
Capsicum. He speculated that the entities involved in the cells had originated 
from an exogenous viruses in the course of evolution, followed by the loss 
of infectionity. In this process, it could have arrived in the state of a plas­
matic particle of RNA nature. BREWBAKERS) suspected that cytoplasmic 
inclusions were virus particles that survive only in plants with a virus sus­
ceptible genotype (ms, ms), and that the virus lived symbiotically in diploid 
somatic cells, but killing the haploid pollen cells. There are other investi­
gations which insist that cytoplasmic factors are viruses or virus like fac­
tors. There are however many experiments that do not support the virus 
nature19,72,79, 103,107,115,127) EDW ARDSON32) showed inclusions in dense cytoplasmic 

area in root tip cell of cytoplasmic male sterile maize by electron micro­
scopic technique. He did not believe however that these inclusions could 
be viruses. Electron microscopic studies of anther tissues have been carried 
out by DE VRIES and lE23) , and W ARMKE and OVERMANN122). But they 
have not found prominent differences in ultrastructure between two types 
of fertility. 

5) Differences in amino acid component 

FUKASA W AS9) studied by paper chromatography wheat and maize anthers, 
relatively large quantity of alanine was present during meiosis and micro­
spore stage in male sterile anthers, while a definite lack of proline was noted 
in male sterile anther during the formation of microspores. Similar relation­
ships of free amino acid in anther tissue were studied in sugar beetso9,6o,100), 
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sorghum11l and vegetable crops45.46) but in PetuniaS1•65)) a large amount of 

proline was noted in both fertile and sterile anthers. 

6) Enyzmatic activities 

Various enzymes of many crops such as maize, petunia, sudangrass and 
Brassica have been studied in respect to male sterility2.15.24.S4.41.6S.78.123). Enzymes 

such as succinic dehydrogenase, amylase, polyphenol oxidase, peroxidase, 
cytochrome oxidase, acid phosphatase, invertase, phosphatase, catalase, ascor­
bic acid oxidase and esterase have been reported. In the results of these 
experiments, peroxidase and polyphenol oxidase show more intense activities 
in sterile anther, but the remainder showed equal or less intensity in com­
parison with normal anther. 

As mentioned above, it seems likely that some relationship exists be­
tween these physiological and morphological abnormalities and male sterility. 
These abnormalities were also noted much differently among crops. The 
most common phenomena related with male sterility among various crops 
were abnormal behavior of tapetum and a lack of proline. 

III. Sugar Beet 

A. Histochemical Observation of Anther 

It is naturally expected that the metabolism of carbohydrate, ammo 
acid, protein, nucleic acid and fat, and enzymatic activities in anther tissues 
showes a remarkable difference between normal and male sterile types of 
sugar beets during the development of anthers. 

Materials and Methods 

Cytoplasmic male sterile line TA-2-CMS and its conterpart 0 type T A-
2-0 were used in these experiments. Fresh anthers were smeared on slide 
glasses. Then respectively under microscope reducing sugar, starch grain 
and fat in fresh anthers were detected by means of Fehlin's reagent, IKI 
solution and Sudan III reaction. For the observation of localization of starch 
grains, flowers of the fertile and sterile plants were fixed in formalin-acetic 
alcohol (FAA), dehydrated in ethyl-buthyl alcohol series, and embedded in 
paraffin in the usual manner. Sections were cut to a thickness of 15 p.m 
and were stained with IKI solution and modification of triple stain of Hime 
et al. (Fig. 2)51J. The degree of the reaction was recorded by the following 
standard of microscopic observation; O( - )-4(tH-) more definitely presented. 
Deoxyribonucleic acid (DNA) was stained with Azure A in blue to green, 
polysaccharides were stained with periodic acid Schiff's (PAS) reaction to red 
and basic group of protein was stained with Naphtol yellow S to yellow. 
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Fig. 1. Tracings of paperchromatograms of amino acids 
in fertile and sterile sugar beets_ 

Free amino acids were detected by paper chromatography (Fig. 1). 
Flowers of fertile and sterile plants were cut to 26 pm by freezing mi­

crotome. Peroxidase and succinic dehydrogenase activities were examined 
by benzidine and tetrazolium salt methods, respectively (Fig. 3). 

Results 

Table 1 and 2 showed the reaction of reducing sugar and starch grains, 
respectively. Table 3 showed the ANOV A of these results. Plate I showes 
the results of IKI reaction of transverse sections at several stages of anther 
development. During the early stage of microsporogenesis, many starch 
grains were observed in endothecium of both fertile and sterile anthers. 
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Fix the tissues in FAA,dehydrate and infiltrate paraffin 

Section the tissues in 1'5).IID 

Mount and sections bring to water 
Hydrolyze section Ii HCl at 60'b for 15 minutes 

Wash in cold dist. water 

Triple stain 

• Stain in Azure A-S0 2 (O.5g azure A in 100 ml 

of 302 water prepared freshly) for 5 minutes 

• Rinse 2 times in 302 water -for 2 minutes 

• Wash in water 
-Place in periodic acid solution for 5 minutes 

( O. 8g periodic acid with 10 ml of. 0.2 M sodiwn 

acetate and 90 ml dist. water) 

• Rinse in water 
-Stain in Schiff's reagent for minutes 

• Wash in running tap water for 2 minutes 

-Stain in 0.2 10 naphtol yellow S in 1 fo acetic 

acid for 2 minutes 

.Wash in water 

Dehydrate in tertiary butyl alcohol 
Clear in xylene and mount in balsam 

Fig. 2. The procedure of triple stain for demonstration of DNA, 
polysaccharides, and the basic proteins. 

Benz id tne react; on 

Section the. freeze tissues in 26 ~m 

Stainino- for neroxidase 

.Place the sections in 0.04 % solution of 

benzidine in 0.01 M acetate buffer at pH 5.0 

for 1 minute at room temperature 
-Place the sections in 15 10 sodium nitroprusside 

with 0.06 % H202 
.Place the sections in 9 % nitroprusside in 

2~ 10 ethyl alcohol 

_Incubate the sections for 1 hour at 4°C 

Mount in glycerin-gelatin 

Tetrazoliwn salt method 

Section the freeze tissues in 26 

Staining for succinic dehydrogenase 

• Place the sections in solution composed of 

3 ml of 0.1 t,: sodium succinate, 2.4 ml of 

0.1 M Sorensen phosphate buffer at pH 7.6, 

0.6 ml of O.2~ ,1, Nitro-BT, and 0.2 ml of 

0.1 (, phenazine methosulfate 

• Incubate the sections in this solution 

for 15 minutes at 37
Q 

C 

MOWlt in glycerin-gelatin 

Fig. 3. The procedure for determination of enzymatic activities. 
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TABLE l. Reaction of reducing sugar with Fehling's reagent In 
sugar beet anthers during their developmental stages 

Type of 
Developmental stage of anther 

fertility Reaction 
PMC T MS P A 

0 3 4 

1 1 4 6 

Fertile 2 8 1 

3 7 6 

ave 0.3 0.5 1.6 2.9 3.0 

0 2 2 1 

1 2 4 2 

Sterile 2 7 3 3 2 

3 6 4 

ave 0.5 1.4 1.3 2.7 2.7 

PMC: Pollen Mother Cell P: Pollen 
T: Pollen Tetrad A: Anthesis 

MS: Microspore 

Reaction 0 (absent) 1, 2, 3 (more definitely presented) 

TABLE 2. Starch reaction with IKI in sugar beet anthers 
during their developmental stages 

Type of 
Developmental stage of anther 

fertility Reaction 
PMC T MS P A 

0 1 

1 4 5 

2 
Fertile 

2 4 

3 2 10 

4 4 7 3 

ave 4.0 3.8 3.1 1.5 0.8 

0 

1 3 3 

Sterile 
2 4 2 

3 3 3 1 

4 2 8 8 

ave 4.0 3.7 4.0 2.0 1.2 

Symbols are the same as Table 1. 
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TABLE 3. Analysis of variance for reducing sugar and starch 
reactions in sugar beet anthers 

Reducing sugar Starch 
Source d.£. 

MS 
d.£. 

MS 

Fertilities (F) 1 4.13** 1 1.88** 

Stages (S) 4 18.08** 4 20.57** 

FxS 4 3.21** 4 1.47** 

Errors 68 0.32 69 0.30 

TABLE 4. Histochemical 0 bserva tions of the tissue 
in fertile and sterile anthers 

a) DNA 

tissue 

PMC or Pollen 

Tapetum 

Transitory tissue 

Epidermis 

Parenchyma 

b) Polysaccharides 

tissue 

PMC or Pollen 

Tapetum 

Transitory tissue 

Epidermis 

Parenchyma 

F 
S 

F 
S 

F 
S 

F 
S 

F 
S 

S 
F 

F 
S 

F 
S 

F 
S 

F 
S 

Developmental stage of anther 

PMC T 

+ 
+ 

+ 
+ 

MS 

+ 
+ 

Developmental stage of anther 

PMC 

+ 
+ 

t\­

t\-

T 

± 

± 

+ 
* 

t\­

* 

MS 

± 

± 

+ 
+ 

t\­

tl-

P 

P 

+ 

± 

± 

+ 

25 
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TABLE 4. (continued) 

c) Proteins 

Developmental stage of anther 
tissue 

PMC or Pollen 

Tapetum 

Transitorp tissue 

Epiderims 

Parenchyma 

F 
S 

F 
S 

F 
S 

F 
S 

F 
S 

(absent) 

PMC 

+ 
+ 
+ 
+ 

± 

± 

T 

± 

± 

-1+ 
-1+ 

± 
± 

± 
± 

F: fertile 
S: sterile ±, +, -1+, -Itt: (more definitely presented) 

TABLE 5. Average diameter of anther locules 

MS 

± 
± 

-1+ 
-Itt 

± 

± 
± 

and average 

radial width of anther walls in sugar beet anthers 
during their developmental stages (pm) 

Fertile Sterile 

PMC T MS P PMC T MS 

Anther 158.0 213.0 245.0 262.0 149.5 242.8 233.0 

Epidermis 8.0 8.5 9.3 10.8 7.3 8.8 8.8 

Transitory 13.8 15.5 15.0 17.5 12.3 17.0 17.5 

Tapetum 13.3 34.0 22.0 16.0 12.5 37.3 34.5 

Symbols are the same as Table 1. 

P 

± 

P 

212.0 

9.0 

18.0 

0.0 

As the stage of anther advanced, the amount of starch grains of fertile 
anther decreased gradually. While male sterile anther remained even in 
anthesis. Tapetal cells disappeare completely in fertile anther, but in con­
trast, in sterile anthers became abnormal. Plate II showed the results of 
Sundan III stain. In fertile plants, materials stained with Sudan III were 
decreased gradually as the stage of anther advanced, but in sterile plants 
they remained. Table 4 and Plate III showed the results of triple stain. 
The intensities of reactions were much different among tissues, but no con­
spicuous difference could be observed between the two types of fertility. 
Since tapetum was deeply stained, it was presumed that the tissue had strong 
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TABLE 6. Changes In activities of peroxidase with 
benzidine reagent in sugar beet anthers 
during their developmental stages 

H-19 TK-76 
Type of Activity Developmental stage of anther Deveolpmental stage of anther 
fertility 

PMC T MS P PMC T MS P 

0 1 9 1 
1 5 1 2 5 4 3 

Fertile 2 1 10 3 3 4 8 4 6 
3 2 4 6 2 1 

ave 1.0 2.1 2.6 1.6 0.7 2.1 2.3 1.6 

0 2 
1 2 1 9 

Sterile 2 2 3 1 1 5 13 6 3 
3 5 11 4 1 4 1 

ave 1.5 2.4 3.9 2.8 1.2 2.1 2.4 2.3 

Symbols are the same as Table 1. 

TABLE 7. Changes In activities of succInIc dehydrogenase with 

tetrazolium salt method during their developmental stages 

H 19 TK 76 
Type of Activity Developmental stage of anther Developmental stage of anther 
fertility 

PMC T MS P PMC T MS P 

0 3 3 
1 2 2 14 

Fertile 2 2 4 9 3 
3 8 8 5 18 17 5 

S 3.0 3.0 23 1.1 3.0 3.0 2.2 1.0 ;j ave 
0; 

"" 0 1 3 2 1 
to 

E-< 1 2 4 5 2 12 2 3 
Sterile 2 1 1 6 4 11 17 1 

3 1 2 1 9 6 
ave 1.8 1.7 1.5 0.4 1.1 2.5 2.2 1.0 

0 5 3 10 16 
1 3 1 4 

a Fertile 2 2 4 3 4 14 5 
~ 3 6 4 14 2 '0 
p., ave 2.8 2.5 0.8 0.5 2.8 2.1 0.9 0.2 ... 
0 0 8 4 5 1 4 
U 1 2 3 3 1 8 2 14 ::g 
p., Sterile 2 1 5 5 15 10 

3 1 2 
ave 1.8 1.6 0.3 0.2 1.0 2.0 1.4 0.0 

Symbols are the asme as Table 1. 
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__ H-19 

•• .,... H-19-MS 
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OL---~ __ ~ __ ~ __ ~ __ __ 
PMC T MS P 

Developmental stage 

Fig. 4. Peroxidase activities of sugar beet anthers; 

Anther walls 
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Fig. 5. Succinic dehydrogenase actIvitIes of sugar beet anthers. 
Symbols are the same as Fig. 4. 
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physiological activities. The tapetal cells were large in size, and the tapetal 
cytoplasm showed a deep yellow color indicating the existence of abundant 
proteins. The tapetal nuclei were slightly stained by a greenish blue color 
responsible for contents of DNA. At the same time, the size of anther 
and the thickness of anther wall were measured. The results were shown 
III Table 5. 

Data obtained in enzyme experiments were shown in Table 6, 7, Fig. 
4, 5, and Plate IV. There were marked increases in peroxidase activities 
III both fertilities up to micros pore stage, and then there was a decrease 
in intensity in fertile anther, while peroxidase activity in sterile anther re­
mained almost constant. Succinic dehydrogenase activities were decreased 
gradually or fluctuated irregularly. This activity was much more intense 
in fertile anthers than in sterile anthers. The localization of peroxidase 
activities was observed mainly in endothecium and middle layer, but that 
of succinic dehydrogenase was observed in tapetum, and PMC or tetrad. 

B. Experiment by Radioisotope as a Tracer 

Materials and Methods 

In this experiment, HC and 3H were used as the tracers. The fates 
of photosynthates and nucleic acid precursor were traced in both types of 
fertility by means of radioisotopical technique with 14C and 3H. The materials 
used were TA-I-CMS, male sterile line and its 0 type TA-I-O. The amount 
of the translocation of photosynthate and the incorporation of nucleic acid 
precursor to anther tissue were examined. 14C02 (about 1.5 mCi) was fed 

I.!ethods of Isotope Fedding 

Chemical Fixation --- Paraffin Section --- Removal of Paraffin 

Autoradiography 

[

Dipping method 
Exposure 
Development ( Conidol X, 20·C 4 mins ) 
Fixation (conifix 20· C 15 mins ) 

Rinse in tap water 
Stain 

Microscopic observation 

slide glass 

utoradiography 
lemulson 

-hot water 
( ca.50 C) 

Fig. 6. Procedures of microautoradiography. 
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to both fertile and male sterile plants, and one day after 14C02 was fed, 
the anthers in various developmental stages were sampled, dryed and assayed 
for 14C. Flowers of both fertilities were fixed in FAA, dehydrated in an 
ethl·butyl alcohol series, and embedded in paraffin in the usual manner. 
Sections were cut to thickness of 15 pm and microautoradiogram were made 
by means of dipping method (Fig. 6). In addition to this, 3H-thymidine 
was applied through the stalk. In this study, annual cytoplasmic male sterile 
line TA-2-CMS and its 0 type TA-2-0 were used. These inflorescences 
were cut and put into 3H-thymidine solution. Microautoradiogram was made 
the same as above. 

Results 

The amount of translocation of the assimilate at each developmental 

U 
:::1 
E 

4 

2 

•...... -...... 
............ 

'. 
'e .... 

", 
' . ... 

\'e 

-0- Fertile 
--- Sterile 

.. -......• 

O~-P-M~C---T~-M--S--~P~~A~--

Developmental staoe-
Fig. 7. Amount of 14C incorporated into sugar beets anther. 
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stage in both fertile and sterile anthers was measured (Fig. 7). The amount 
of translocation of the assimilate into sterile anthers was less than that of 
fertile anthers. It was found to be the highest at microspore stage of fertlie 
anthers. Distribution of the assimilate into various tissues at each develop­
mental stage was shown in Table 8, and the autoradiogram was shown in 
Plate V-I, 2. The autoradiogram showed that at an early stage of develop­
ment silver grains were distributed equally over the all tissues in both types 
of fertility, while at the microspore stage the difference between fertile and 
sterile anthers became obvious. At the same stage, a large amount of 14C_ 
assimilate existed in fertile anther. The sterile anther showed a conspicuous 
14C-assimilate in tapetal cells showing morphological abnormality, but not in 
microspores. At pollen stage, it was obvious that fertile pollen grains have 
much more 14C-assimilate than sterile anther in which no 14C-assimilate could 
be detected. The microautoradiograms of 3H-thymidine experiments were 
shown in Plate VI. The localization of 3H was detected easily in the nuclei 
of cambium of seed stalk, peripheral cells of ovary, and anther filament in 
both types of fertility. The localization of 3H in tapetal cells was detected 
at tetrad and microspore stages during the development of fertile anther, 
but could not be detected at any developmental stages of sterile anther. At 
early stages of anther development there were no clear differences in both 
types of plant between the amount of translocation of l4C-assimilate and 
that of the incorporation of 3H-thymidine into the nucleus. However at 
micros pore stage the amount of 14C-assimilate translocated into anther showed 

TABLE 8. Distribution of He-compound in anther tissue 
of fertile and sterile sugar beets 

Developmental stage of anther 
tissue 

PMC T MS P 

F * PMC or Pollen * + + 
S * 1tt ± 

F * * * Tapetum 
S * 1tt + 

F * Anther wall 
1tt * ± 

S * 1tt * 
F * 1tt * + 

Parenchyma 
S * 1tt + ± 

Symbols are the same as Table 4. 
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quite a difference between both types of fertility (Fig. 7). Results obtained 
by autoradiography did not show such a clear-cut difference (Table 8). This 
is because the amount of HC-assimilate measured was obtained from all 14C 
in whole anther tissue, but microautoradiographic measurements only showed 
the results of materials which do not melt away by a serial method. Al­
though many silver grains were observed in micros pore of fertile plant, in 
sterile plant no silver grain was found. As the author previously recognized 
the remaining of starch grains in anther wall of sterile plant, it was presumed 

that the supply of assimilate from anther wall to microspores were quite 
obstructed. This obstruction was closely associated with the ab normal 
metabolic activities of tapetal cells. Though a small amount of translocates 
though filament were observed in sterile anther at microspore stage, it quite 
decreased at pollen stage, and at this stage the anther shape was fiat. 
This showed that the metabolic activities of sterile anther were almost 
inhibited so that anther did not act as sink. The author assumed that 
abnormal features of anther filament was due to the results of sterility, but 
not the cause. Though tapetal cells had already disappeared at pollen stage, 
many silver grains were found in fertile pollen. It was estimated that the 
assimilates were translocated into pollen grains without the mediation of 
tapetum. Moreover SH-thymidine was translocated to the anther filament 
in both types of fertility, but incorporation of 3H-thymidine into tapetal cell 
nucleus were observed only in fertile anther. However, based on the histo­
chemical observations, there also many nuclei in sterile tapetal cells. It sug­
gested that even in sterile tapetal cells DNA synthesis occured. From these 
observations, the differences of 3H-thymidine incorporation into tapetal nuclei 
were caused by the decreased translocation of thymidine or less activities of 
DNA synthesis in sterile anther. It was presumed that abnormal DNA syn­
thesis brought about the disturbance of genetical information and resulted 
III microspore degeneration. 

C. Electron Microscopic Experiment 

The author attempted to examine the morphological differences of tapetal 
cell organella between fertile and sterile plants. At the same time, since 
there have been a few reports that cytoplasmic male sterility is controlled 
by virus, the author expected to obtain some evidence whether such is the 
case. 

Materials and Methods 

Anther tissues of cytoplasmic male sterile sugar beets, T A-I-CMS, and 
those of corresponding ° type, T A -1-0, were observed under microscope. 
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Anthers of various developmental stages were fixed with 2% glutaladehyde 
and 1% osmic acid. Samples were dehydrated in an ethyl-propylen oxide 
series, and embedded in SPURR'Sl09) low biscosity embedding media. Ultra 
thin sections were stained with uranyl acetate and lead citrate, and observed 
under electron mIcroscope. 

Results 

Electron microscopic photograms of anther tissues were shown in Plate 
VII. Both fertile and sterile tapetal cell of PMC stage (Plate VII-I-I) have 
nuclei (N), mitochondria (M), plastids (P), ribosome (R) vacuoles (V) and so on. 
At this stage, no clear difference was observed. As the stage advanced to 
tetrad (Plate VII-1-2), organelles assumed to pro UBISCH bodies 119) observed 
at inner tapetal cell walls of anther locule side. Electron dense materilas (d m) 
were also observed between tapetum and endothecium, between tapetal walls, 
and in anther locule. It was presumed that the materials were closely related 
with degeneration of middle layer. At this stage, endoplasmic reticulum (ER) 
were developed and ribosome (R) were scattered in crowd. Male sterile 
tapetal cells were closely similar to fertile ones. After that (Plate VII-1-3), 
tapetal cell walls and cristea of mitochondria almost disappeared in sterile 
anther. A clear-cut difference between fertile and sterile anther was observed. 
In fertile plants of microspore stage (Plate VII-2-1) callose wall, tapetal cell 
wall and electron dense materials had already disappeared, and sporopollenin 
was deposited at pollen exine, but pollen intine was not formed. In fertile 
tapetal cells of this stage, many UBISCH bodies were developed, few plastids 
and many mitochondria were observed. In sterile tapetal cells of microspore 
stage, UBISCH bodies were not observed in the tapetal cytoplasm, and mito­
chondria had already disappeared. As the anther advanced (Plate VII-2-2), 
in fertile anther, tapetal cells were collapsed, tapetal mitochondria were re­
leased in anther locule, and mircospore formed exine and intine. On the 
other hand, in sterile anther, tapetal mitochondria were collapsed, plastids 
were seen in anther locule, and microspore had poor exine and no intine. 
Furthermore, peculiar granular substances (0) were gathered at germ pore 
of fertile microspores, but not in sterile microspores. From these results, 
the process of degeneration of tapetal cell was inhibited in sterile anther. 
It was presumed that male sterility of sugar beets inherited cytoplasmically, 
was closely related to the abnormal behavior of UBISCH bodies and mito­
chondria. 
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A. Histochemical Experiments 

Materials and Methods 

H. NAKASHIMA 

IV. Maize 

Changes of carbohydrate, components of ammo acid and activities of 
enzymes in anther tissues were studied. Cytoplasmic male sterile maize W23T 

and its maintainer W23 were used in carbohydrate and amino acid experi­
ments. Electrophoretic studies of various enzymes were made using the 
acrylamid. Three maize hybrids, WF9 xW22, having normal cytoplasm, 
WF9T X W22 having T type cytoplasm and WF9c X W22 having C type cyto­
plasm, were used in this experiment. 

Results 

Carbohydrates and amino acids were studied by the same methods as 
those for sugar beets. Reducing sugars in anther tissues increased gradually 
till the micros pore stage, and then maintained its level or tended to decreased 
until anthesis (Table 9). Starch grains in fertile anthers increased till the 
tetrad stage, and then decreased till micros pore stage, and after that, they 

TABLE 9. Reaction of reducing sugar with Fehling's reagent 
III maize anthers during their developmental stages 

Type of 
fertility 

Fertile 

Sterile 

I: 1966 
II: 1967 

Recation 

o 
1 

2 

3 

4 

ave 

PMC 
I II 

3 

6 

6 

2.2 

1 

5 

2 

2 

1.5 

o 5 

1 

2 

3 

4 

ave 

2 

2 

0.8 

6 

4 

1.4 

Symbols are the same as Table 1. 

Developmental stage of anther 
T MS 

I II I II I 

4 1 

3 3 6 2 

8 3 32 20 12 

3.7 2.9 3.8 4.0 3.7 

2 

4 1 1 4 

3 3 9 4 4 

8 3 13 9 6 

4 3 7 1 

2.4 2.8 2.5 3.2 2.3 

P 

II 

7 

11 

3.6 

1 

1 

7 

11 

3.4 
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TABLE 10. Starch reaction with IKI in maize anthers 
during their developmental stages 

Developmental stage of anther 
Type of Reaction PMC T MS P 
fertility 

I II II I II II 

0 6 

1 6 20 

Fertile 
2 11 14 3 5 5 25 

3 5 1 3 15 14 8 2 

4 9 20 19 1 16 28 

ave 2.3 1.8 3.4 3.4 3.4 1.6 4.0 3.9 

0 1 2 10 16 

1 1 6 1 11 6 32 

Sterile 
2 11 3 2 18 16 23 2 

3 1 6 28 36 4 

4 12 8 7 

ave 2.0 1.2 3.5 2.8 2.8 1.7 0.4 0.7 

Symbols are the same as Table 9. 

increased again at pollen stage. In sterile anther they increased till tetrad 
stage and then decreased rapidly (Table 10). The behavior of starch grains 
in maize was different from that of sugar beets. The localization and changes 
of starch grains in anther tissues were shown in Plate VIII. At early stage 

, of anther development, a large amount of starch grains were found mainly 
in endothecium and conective. As anther developed, the amount of starch 

grains disappeared in anther walls of both types of fertility, but fertile pollem 
grains showed a prominent IKI reaction. Paper chromatography of free 
amino acids in anthers showed that the nearly matured anthers in fertile 
plants had the proline, while sterile anther did not have this amino acid. 
Enzymes such as glutamic dehydrogenase, esterase, malic dehydrogenase, 
acid phosphatase and peroxidase were examined by electrophoresis (Fig. 8 

and Plate IX). Enzymatic banding pattern of esterase and acid phosphatase 
were obviously different among three hybrids. For glutamic dehydrogenase, 
enzymatic banding pattern was not obvious, but there seemed to be differences 

among hybrids. Activity of this enzyme was the weakest in C type. In 
contrast to this, peroxidase activities more intense in sterile anther than in 
fertile anther, especially for C type of sterility. 
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Glutamic 

dehydrogenase 

Esterase 

J>Jalic [===:II]III====J dehydrogenase 

Acid 

phospltatase 

Peroxidase 

WF9x''o'22 

Fig. 8. Electrophoreic banding pattern of isozymes of various 
enzymes in crude homogenates prepared from maize 
anthers having different cytoplasms. 

B. Respirations of Anther and Distribution of He-assimilate 
in Plant Organs 

Previous experiments suggested that metabolic activities were quite de­
creased in male sterile anther. This experiment was carried out to find 
what pathways in metabolics were inhibited. 

Materials and Methods 

For the study of the respiration of anther, W23T, cytoplasmic male 
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Fig. 9. Scheme for the isolation of He-labeled components63). 
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sterile line having T type cytoplasm, and W23, maintainer, were used in this 
experiment. Anthers at three developmental stages such as early micro­
spore, late micros pore and pollen stages were collected. Respiration rate 
was measured by using Warburg's manometolic method at 30°C with 100 
anthers. In another experiment to find the efficiency of the distribution 
of HC·assimilate in plant organs, W23T, W375BT and their maintainer W23 
and W375B were used. At about the microspore stage, inflorescence of two 
types were cut and put in water. One day after 14C02 was fed, various 
organs were sampled, dryed, ground, and assayed for 14C. The scheme for 
the isolation of 14C-Iabeled components were shown in Fig. 963). Basic frac­
tion of both ethanol soluble and insoluble groups of anthers in W23 lines 
were fractionated by paper chromatography. Nutral fractions of ethanol 
soluble group of anther, spikelet and rachis of W375B lines were also frac­
tionated by paper chromatography. After developing, autoradiography were 
made using X ray film. 

Results 

Until microspore stage no difference in amount of respiration in anther 
between fertile and sterile plants was found, but as anther development pro­
ceeds, a clear differece was detected; indicating that sterile anther showed 
decreased respiration (Fig. 10). The amount of respiration in sterile anthers 
was about 1/3 of that in fertile anthers. The amount of translocation of 
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14C-assimilates and the distribution per­
centages of each fraction were shown in 
Table 11. At about microspore stage, 
there were larger amounts of 14C-assimi­
late in fertile anthers than in sterile an­
thers. The distribution percentages of the 
primary metabolite such as sugars, amino 
acids and organic acids fractions were 
about 40% and 60% for fertile and sterile 
anther respectively. On the other hand, 
those of the secondary metabolites such as 
alcohol insoluble fractions, fat and others 
were about 60% and 40% for fertile and 
sterile anthers respectively. The distri­
bution percentages of sugars and amino 
acids were larger, but those of organic 
acids tended to be smaller in sterile an­
thers than in fertile anthers. Further­
more, in sterile anthers, ethanol insoluble 
and 6N HCl insoluble fraction (cell wall 
fraction) showed high distribution per­
centages, but proteins and fats fractions 
showed lower values. In spikelet (without 
anthers), there were derar differences in 
amount of translocation of 14C-assimilate 
between both fertilities. The distribution 

...... 
til .... 
(]) 
.c .... 
c: 
ttl 

0 100 0 ..... -=t 
(]) 

->0:: 
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~:~~ .. l 
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Fig. 10. Respiration of maize 
anthea. 

-0 - fertile pollen 
-0- microspore 
- 6 - young microspore 
...• ... sterile pollen 
...•... micros pore 
.......... young microspore 

percentages in spikelet were not similar to those of anthers. 
was no dear differece in amount between both fertilities. 

In rachis, there 
The amount of 

translocation of 14C-assimilate and distribution percentages were shown in 
Table 12. The amount of translocation increased in the following order, 

leaf brade<leaf sheath<internode, this tendency was the same in both types 
of fertility. The paper chromatographic analyses of amino acids and amino 
acid residues in anthers were shown in Table 13. As reported previously, 
proline was not detected in sterile anthers, but proline residue was found in 
anthers of both fertilities. The number of 14C-labeled amino acid was 6 in 

fertile anther and 2 in sterile anther. The number of 14C-labeled amino 
acid residues was 8 in fertile anther and 0 in sterile anther. Autoradio­
graphy of sugar fraction was shown in Plate X. It was detected that main 
components of sugars were sucrose, glucose and fractose. Maltose was exist 
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only in fertile anther, but was not detected in pollen grains of maize. The 
incorporation of HC into fat fraction was observed in fertile anther, but not 
in sterile anther. The translocation of 14C-assimilate per dry weight of each 
organ in fertile plants was increased in the following, anther > spikelet > rachis, 
but in those of sterile plants the reverse relationship was observed. It was 

TABLE 11. The distribution of 14C incorporated into fertile 
and sterile anthers, spikelets and rachis 

Anther Anther Spikelet Rachis 

W23 W23T W375B W375BT W375B W375BT W375B W375BT 

Total (mpCi/mg. ) 
dry. wt. 51.3 3.6 55.7 4.8 21.4 9.4 11.3 15.5 

Ethanol sol. 69.2(%) 69.4 68.4 75.0 62.1 57.0 60.2 71.5 

Neutral Fraction 18.7 30.6 10.1 31.3 30.4 33.3 39.0 54.2 

Acidic Fraction 11.7 5.6 11.3 8.3 8.9 6.5 6.2 7.1 

Basic Fraction 8.4 22.0 16.0 20.8 8.9 8.6 5.3 5.2 

Petrolium Ether 9.0 0.0 4.1 0.0 0.4 0.0 0.0 0.0 Fraction 

Others 21.4 11.2 26.9 14.6 13.5 8.6 9.7 4.5 

Ethanol insol. 30.8 30.6 31.6 25.0 37.9 43.0 39.8 29.0 

6N HCl sol. 

Basic Fraction 9.0 2.8 11.9 4.2 3.7 2.2 1.8 1.3 

Others 19.9 22.2 15.4 12.5 17.8 16.1 19.4 12.2 

6N HCl insol. 1.9 5.6 4.3 8.3 16.4 24.7 18.6 15.5 

TABLE 12. The distribution of 14C incorporated into 
fertile and sterile maize plant 

1st Leaf Blade 1st Leaf Sheath 1st Internode 

W375B W375BT W375B W375BT W375B W375BT 

Total (mpCi/mg. dry. wt.) 5.1 8.4 34.1 57.0 43.4 83.5 

Ethanol sol. 58.8(%) 65.5 32.0 47.5 40.1 41.7 

Neutral Fraction 13.7 37.0 17.3 16.8 17.1 15.3 
Acidic Fraction 3.0 8.3 3.0 5.6 3.9 4.9 

Basci Fraction 4.7 11.9 4.7 9.3 10.1 11.4 
Petrolium Ether Fraction 

Others 25.5 8.3 7.0 15.8 9.0 10.1 

Ethanol insol. 41.2 34.5 68.0 52.5 59.9 58.3 

6N HCl sol. 

Basic Fraction 6.0 6.0 3.5 3.2 2.5 3.8 

Others 17.6 16.6 21.1 21.6 13.8 22.3 

6N HCI insol. 17.6 11.9 43.4 27.7 43.6 32.2 
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Table 12. (Continued) 

2nd Leaf Blade 2nd Leaf Sheath 2nd Internode 

W375B W375BT W375B W375BT W375B W375BT 

Total (m,uCi/mg. dry. wt.) 11.8 12.4 23.8 36.9 83.3 121.7 

Ethanol sol. 53.4(10) 49.2 41.6 37.7 36.9 53.2 

Neutral Fraction 29.7 16.1 21.4 17.9 4.8 13.1 

Acidic Fraction 9.3 9.7 5.0 3.5 3.1 6.2 

Basic Fraction 12.7 12.9 7.2 6.3 24.5 20.3 

Petrolium Ether Fraction -

Others 1.7 10.5 8.0 10.0 4.5 13.6 

Ethanol insol. 46.6 50.8 58.4 62.3 63.1 46.8 

6N HCl sol. 

Basic Fraction 11.9 11.3 5.5 5.4 7.2 6.3 

Others 16.9 20.2 15.1 20.3 31.0 27.4 

6N HCl insol. 17.8 19.3 37.8 36.6 24.9 13.1 

TABLE 13. The detection of amino acids and 

amino acids residues 

Non-radiocative Radioactive 
Free Fraction of Free Fraction of 
Amino acid Protein Amino acid Protein 

W23 W23T W23 W23T W23 W23T W23 W23T 

Leucine + + 1tt 1tt ± * Phenylalapine ± + * * * Valine; Methionine + * 1tt 1tt + + 
Tryptophan ± + + + + 
Proline * + + + 
Alanine 1tt * 1tt 1tt * * * Glycine; Serine + * + + * + 
Glutamic acid + + + + + + 
Histidine ± + + + + 
Aspartic acid ± + + + + 
Spmbols are the same as Table 4. 

considered that the obstruction of translocation of nutrient into sterile anther 
tissue followed the abnormal 1:ehavior of tapetum and abortion of pollen. 
From this study, the translocation of assimilate from rachis to spikelet was 
also obstructed. It is well known that the translocation of assimilate is 
obviously large in amount in young tissues and organs being under develop­
ment and differetiation. From the point of view of the relationship between 
sink and source, it was presumed that no difference was found in the photo-
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synthetic potentiality of leaves of both types of plant, but the amount of 
translocation of HC-assimilate into the flower parts was much different be­
tween both types of fertility. Since the tassel of maize did not have female 
organ, these phenomena demonstrated the capacity of anther to accept the 
photosynthetic products. From the chemical constituents of anthers it was 
speculated that in fertile anther the second metabolic products were easily 
synthesized from the primary metabolic products, but in sterile anther this 
potenciality was obstructed. Though the amount of translocation of HC_ 
assimilate is remarkably different between the two types, there were many 
problems to compare only distribution percentages of constituents. In com­
parison to fertile anther, it was found that in sterile anther there were high 
distribution percentages in sugars and amino acids similar to polysaccharides, 
and low distribution percentages in proteins and organic acids fractions. 
Because distribution percentage of amino acid was high, but protein distri­
bution percentage was low, and that of orgainc acids which was closely 
associated with mitochondrial fraction was low, it suggested that these phe­
nomena demonstrated the obstruction of protein synthesis and low respira­
tion in sterile anther. Furthermore, since there were few 14C-Iabeled amino 
acids and no 14C-labeled amino acid residues in sterile anther this also sug­
gested that, in this stage protein synthesis was completely obstructed. The 
organs except anther and rachis showed no common tendency in distribution 
percentages between organs and between fertilities. From the above men­
tioned data, the following points can be speculated; at the micros pore stage 
of sterile maize various metabolic pathways in anther are obstructed, and 
associated with this little amount of assimilation products is translocated to 
flower parts. 

v. Sorghum 

In this chapter, sorghum, autogamous plant, was studied. Cytoplasmic 
male sterility of sorghum was actually used in plant breeding. 

A. Changes of Carbohydrates and Amino Acids in anther tissues 

Materials and Methods 

In this study, Combine Kanr 60 (A-line), cytoplasmic male sterile line 
and Combine Kanr 60 (B-line), its maintainer, were used. Changes of qua­
ntity of reducing sugars and starch grains during mircosporogenesis were 
examined with the same methods as used in sugar beets and maize reported 
previously. Free amino acids in anther tissues were also examined by paper 
chromatography. 
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Results 

The results of reducing sugar examination are shown in Table 14. Until 

micros pore stage of anther development, reducing sugars were increased III 

TABLE 14. Reaction of reducing sugar with Fehling's reagent in 
sorghum anthers during their developmental stages 

Developmental stage of anther 
Type of Reaction PMC T MS P 
fertili ty 

I II I II I II I II 

0 10 6 2 4 

1 5 14 8 12 1 2 1 2 

2 17 3 20 4 10 5 15 
Fertile 

3 2 1 3 10 20 16 2 

4 7 9 

ave 0.3 1.4 1.2 1.6 2.6 2.9 3.1 2.0 

0 9 9 5 

1 5 7 10 8 1 5 

2 1 13 1 11 7 lO 8 9 
Sterile 

3 5 18 8 16 11 6 

4 1 11 12 

ave 0.5 1.5 0.8 2.3 2.5 3.0 3.1 2.1 

Symbols are the same as Table 9. 

TABLE 15. Starch reaction with IKI in sorghum anthers 
during their developmental stages 

Developmental stage of anther 
Type of Reaction PMC T MS P 
fertility 

I II I II II I II 

0 

1 2 14 

2 2 13 7 24 
Fertile 

3 2 13 13 18 6 2 2 

4 13 27 9 27 20 

ave 3.9 3.7 2.9 2.9 2.3 1.7 3.9 4.0 

0 4 1 9 

1 1 2 6 18 13 11 

2 4 27 8 18 18 
Sterile 

3 8 16 9 7 6 

4 7 24 1 

ave 3.3 3.6 2.5 2.0 2.5 1.4 1.5 0.6 

Symbols are the same as Table 9. 
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reaction in accordance with the anther development. Starch grains detected 
by IKI in whole anthers tended in both types to decrease until microspore 
stage, as shown in Table 15. In sterile anthers, reaction of IKI continued 
to decrease, but in fertile anther, it increased as well as in maize. This 
is because of accumulation of starch in pollen grains. The photograms of 
changes and localization of starch grains in anther tissues were shown in 
Plate XI. At early stages of anther development, a large amount of starch 
grains were seen in endothecium and connective in both types of plant. 
As anther development proceeded, starch reactions in anther wall disappeared 
in both types of plant. The results of free amino acids by paper chromato­
graphy showed that proline could be detected only in fertile anther at pollen 
stage. Microspores were covered with callose wall in fertile plant, but not 
in sterile plant. 

VI. General Discussion 

Genetic male sterile plants have normally functioning female organs. 
Namely, male sterile plants undergo the normal macrosporogenesis and the 
abnormal microsporogenesis. It is apporopriate to conclude that stamen, 
anthers and filaments, showed abnormal behavior. The author observed the 
differences between fertile and cytoplasmic male sterile plants, such as sugar 
beets, maize and sorghum, from the point of view of morphology and phy­
siology. The author attempted to discuss the following male sterile factors. 

1) Abnormal behavior of the tapetal cell 

In all crops examined in this study, abnormal behavior of tapetum was 
accompanied with male sterility. Under unfavorable conditions of environ­
ment such' as temperature, light, moisture, gametocide and irradiation, male 
sterility was often brought about, with which the abnormal behavior of 
tapetum was accompanied. Thus it can be concluded that the most common 
phenomena in male sterility are tapetal abnormality, although according to 
TOKUMASUllS), and eRE et al1S). a few species such as Pelargonium and rice 
plant do not show the abnormal tapetum. However, up to the present, 
the role of tapetum in microsporogenesis has not been satisfactorily clarified. 
The chief function of tapetum has been supposed to be the production and 
transport of enzymes, food materials, and growth substances for developing 
pollen mother cells and pollen grains. There are two types of tapetum ;77,120) 

a) Secretary or Glandular tapetum; the tapetal cell remain intact and gradully 
absorbed in situ. b) Amoeboid or Plasmodial tapetum; the tapetal cell walls 
break down and the tapetal protoplasts invade the central portion of anther 
sac and fuse to form a composite mass of tapetal peri plasmodium in which 
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developing young micros pores are bathed. Sugar beets, maize and sorghum 
studied here have the secretary tapetum, and both tapetal cells of fertile 
and sterile of these plants collapse in different way. This collapse is an 
abnormal phenomenon for cell development, so it is difficult to explain the 
cause of male sterility to the collapse of tapetal cells. Physiological and 
morphological differences during the collapse of tapetum in both fertile and 
sterile plants must be compared in order to clarify the cause of male sterility. 
From the data in Table 5, it is apparent that tapetal cells in sterile anther 
show the collapse of tapetal cells but not the hypertrophy. From the re­
sults of enzymatic activities, succinic dehydrogenase activities are remarkable 
in tapetal cells and its activities are more intense in fertile than in sterile 
anther. Based on the results of distribution of HC-assimilate in anther tis­
sues, a fairly large amount of HC-assimilate is translocated in abnormal tape­
tum of sterile plants (Plate V -2). Examination of the ultrastructure of tape­
tal cells by electron microscope showed that UBISCH bodies did not develop 
and mitochondria became abnormal in tapetal cells of sterile anthers. It is 
presumed that these phenomena in abnormal tapetal cells are responsible 
for pollen sterility. According to ECHLIN29), UBISCH bodies are speroidal 
structure in anther of many genera of angiosperms, both monocotyledons 
and dicotyledons, and some gymnosperms. They occur in large numbers 
on the walls of the tapetal cells, especially those lining the anther loculus. 
The walls of the coating of UBISCH bodies apparently consist of sporopollenin 
the main constituent of the mature microspore exine9), and a material of 
considerable durability and characteristics resistance to acetolysis. The de­
velopment and function of UBISCH body is not obvious, but it has been 
supposed to be formed during the collapse of tapetal cells. Exine of micro­
spore in sterile anther is not completely formed (Plate VII-2). In sugar 
beets, that the UBISCH bodies did not develop in sterile anther was closely 
associated with male sterility. However this phenomenon has not been 
found in wheat23), sorghum91, 122) and capsicum56) Mitochondrion which is one 
of the important components of cell showed abnormal features in cells of 
sterile anther. In sugar beets, normal mitochondria were not found in sterile 
tapetal cells after microspore stage. This seems to be responsible for the 
decrease in oxygen uptake in the sterile anther of maize (Fig. 10). 

2) Structural changes of the stamen filament 

In the study of translocation of 14C-assimilate into the anther tissues, the 
amount of traslocation was less in sterile anther than in fertile anther (Fig. 
7). In the observation of microautoradiography, many silver grains which 
show the existence of HC were observed in pollen tetrad and in anther walls 
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of both types of fertility till microspore stage, but in micros pore itself, less 
silver grains were found in sterile plant than in fertile plant (Plate V -1, 2). 
It suggested that sterile anther did not act as sink. Thus it was presumed 
that this decrease of translocation was not caused by the abnormal bascular 
bundle system in sterile filament. This presumption was supported by the 
facts that translocation of 14e-assimilate into spikelet of sterile plant was 
markedly decreased in amount, and incorporation of 3H-thymidine was found 
in filament of sterile plant. On the base of these experiments, it is con­
cluded that the abnormality of filament was the result, but not the cause 
of pollen sterility. 

3) Callose dissolution 

As far as the present study of sorghum is concerned, fertile micro­
spores were covered with callose wall, but not in sterile microspores as in 
petunia64l . This phenomenon was not found in sugar beets and maize. Fur­
thermore, in morphological observation of sugar beets anther under electron 
microscopic level, there was no difference in existence of callose wall between 
two types of fertility. It was concluded that the relationships between callose 
wall of micros pore and male sterility differ from species to species. 

4) Virus 

Electron microscopic observations by EDW ARDSON32l showed that root tip 
cells of cytoplasmic male sterile corn had the inclusions and similar inclu­
sions were seen in tapetal cells of sterile and maintainer lines. According 
to BRBWBAKER82l, 'an intriguing possibility emerges from electron microscopic 
observations of unique cytoplasmic inclusions in cytoplasmically sterile plants. 

It is supported that these inclusions are virus particles that survive only 
in plants with a virus-susceptible genotype. The virus lives symbiotically 
in diploid somatic cells.' According to his theory, complete male sterile 
type can not be expected to appeare in F z generation, but in sugar beets, 
complete male sterile types were found in that generation. Furthermore in 
the present study of sugar beets, virus or inclusion could not be detected 
in anther tissues, with electron microscopy. FUKASAw A and NISHIYAMA43l 

reported the differences in histone of young spikes between fertile and sterile 
types of wheat. And ALAM and SANDLALzl reported the total protein and 

the basic protein of anther by electrophoresis. Evidence from their study 
for basic protein in male sterile sudangrass suggested that histone might 
be repressing the regulator gene(s). This could cause the failure of the syn­
thesis of some specific protein(s) and subsequently resulting in pollen degenera­
tion. In the present 3H-thymidine fed ding experiment, silver grains due to 
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SH were detected in fertile tapetal nuclei, but not in sterile ones. This may 
suggest less translocation of SH-thymidine or timing lag of synthesis of nucleic 
acid. This difference may induce the disturbance of genetic information. 
and result in the physiological and morphological abnormalities associated 
with male sterility. The abnormal behavior of tapetal cell was closely related 
with that of mitochondria (Plate VII-I). Evidence of the genetic continuity 

of the mitochondria comes from observation of poky in Nurospora, and 
petite in yeast. SHAH and LEVINGS104,105) reported that the buoyant densities 
and molar % GC of the chloroplast DNAs and mitochondrial DNAs were 
identical for the normal and cytoplasmic male sterile maize hybrids. They 
concluded that the techniques used in their investigation had limited resolu­
tion, therefore, if the differences between the two cytoplasms were due to­
minute alternations in their DNAs, such mutation would remain undetected. 

Cytoplasmic factors controlling male sterility were investigated exclusively, 
but the evidence for genetic factors was not clear. There are other investi­
gations by means of grafting, inculation or thermo treatment which insist 
that cytoplasmic factors are viruses or virus like factors. Conversely there 
are many experiments that do not support the virus nature. In this present 
experiment, the author could not support the virus nature. 

5) Differences in amino acid compornent, especially the existence 
of proline 

In many investigations, proline at pollen stage was not dected in sterile 
anther. In the studies on sugar beets, maize and sorghum, similar results 
were obtained. From this, it was easily presumed that amino acid con­
stituents were different between both types of fertility, and amino acid me­
tabolism was disturbed in sterile plant. Paper chromatographic investigation 

of 14C-assimilate into maize anther revealed 6 14C-Iabeled amino acids in fertile 
in contrast to 2 in male sterile, and 8 14C-Iabeled amino acid residues in 
fertile in contrast to 0 in male sterile. Proline residue was detected in even 
in sterile anther. HOSOKAWA et ai.59 ,60) reported that proline was not detected 
in both types of fertility by pollen stages, and was detected only in fertile 
anther at pollen stage and anthesis. From this, it was concluded that de­
ficiency of proline in sterile anther was the result but not the cause of sterility. 

6) Enzymatic activities 

It was found that peroxidase activities were more intense in sterile anther 
than in fertile anther at the later stage of development in sugar beets and 
maize. On the other hand, succinic dehydrogenase activities were more in­
tense in fertile sugar beets anther than in sterile anther, and malate dehy-



CYTOPLASMIC MALE STERILITY 47 

drogenase and glutamic dehydrogenase aCtivities were more intene III fertile 
maize anther than in sterile anther. These decreased enzymatic activities 
were supposed to be closely associated with the abnormality of mitochondria. 

From the point of view of metabolism, primary metabolisms such as 
photosynthesis, glucolysis, TCA cycle and amino acid synthesis might be con­
sidered at first. Photosynthesis is mainly carried out in the leaves. Plant 
height, plant weight and yielding ability are similar between both types of 
fertility, so no difference in photosynthetic potential can be expected between 
both types. From the investigation of translocation of 14C-assimilate of maize, 
in male sterile organs except for anther and spikelet, there were large amount 
of translocate in comparison with fertile organs. From the point of view 
of primary metabolism, it was presumed that male sterility was closely related 
with the disturbance of TCA cycle, because of less distribution percentages 
of organic acid fraction of 14C-assimilate, low respiratory activity, morphologi­
cal abnormality of mitochondria and less enzymatic activities such as succinic 
dehydrogenase, malic dehydrogenase and glutanic dehydrogenase. It was 
easily presumed that this abnormality of TCA cycle was closely associated 
with the disturbance of glycolysis and amino acid metabolic products, such 
as cellulose, lignin, starch, polysaccharide and nucleic acid, and it appeared 
that there was not such a prominent difference between fertile and sterile 
plants. For protein and fat, more distribution percentages of 14C-assimilate 
were detected in fertile plants than in sterile plants. Further more, decolori­
zation of male sterile anther suggested less synthesis of carotinoid. It was 
noticed that clear differences between both types were mainly observed in 
protein and fat fractions which were derived from amino acids and organis 
acids. From histochemical observation, semi quantity of starch grains, poly­
saccharides, proteins, fats and nucleic acids were found to be similar in 
both types at early stage of developments. These facts suggested that the 
metabolic pathways in male sterile anthers were not perfectly obstracted 
but metabolic activities were decreased at late stage of developments. Starch 
grains and fats which remained in later developing stage of sterile anther 
suggested that synthate was not used by further metabolic pathways. 

To summarize, it was concluded that cytoplasmic male sterility was 
closely associated with the abnormal behaviors of tapetal cells, and abnormal 
behavior of tapetal cells were originaly related with abnormal TCA cycle 
in mitochondria. 
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Summary 

Male sterility found in many crops such as maize, sugar beet, onion, 
sorghum and wheat etc. has been put to practical use for hybrid seed pro­
duction and genetical studies of this phenomenon have also been conducted 
by many research workers. However the physiological mechanism of the 
cytoplasmic male stertility of the plant has not been elucidated satisfactorily, 
and there remain numerous unexplained problems. In order to clarify the 
physiological causes responsible for cytoplasmic male sterility, the author 
conducted physiological and morphological studies on the phenomenon mainly 
on sugar beet, maize and sorghum. 

The results obtained up to the present can be summarized as follows: 

A) Sugar Beet 

1) Reducing sugars III fresh anthers smeared on slide glasses were 
observed using Fehling's reagent under a light microscope. It was noted 
that in both types of fertility, the amount of reducing sugar increased gradua­
lly as the stages of anther developed. 

Starch grains in fresh anthers smeared on slide glasses were observed 
by means of IKI solution under a light microscope. In earlier developmental 
stages of anthers, a large amount of starch grains was observed in both 
types of fertility, and as a result of histochemical studies a large amount 
of starch grains was also found in the endothecium and parenchyma. At 
the pollen stage, starch grains were not observed in fertile anther tissues, 
but starch grains were seen in sterile anther tissues. 

Lipids in fresh anther smeared on slide glasses were detected by means 
of Sundan III stain method under a light microscope. It was also noted 
that lipids were detected at the pollen stage of sterile anthers, but were 
not detected in fertile anthers. 

Examinations of paper chromatography of free amino acids showed 
that nearly all mature fertile anthers contained proline, however it was shown 
that male sterile plants did not have this amino acids. 

2) The diameter of anther sac, thickness of epidermis, transitory tissues 
and tapetum were measured. Each measurement was significantly different 
among the developmental stages of anthers, and the measurements of tissues 
were significantly different between both types of fertility except for that 
of the epidermis. 

Applying the histochemical method of triple stains for DNA, polysac­
charides and proteins, the following results were obtained. The reaction 
intensities of DNA, polysaccharides and proteins were apporoximately the 
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same in both types of fertility. At the mature pollent stage, reaction of 
polysaccharides in fertile plants completely disappeared, on the other hand, 
those of sterile plants still remained in the endothecium. 

3) Flowers of various developmental stage of types of fertility were 
cut to a thickness of 26 flm by using a freezing microtome. Histochemical 
methods were used to estimate the enzymatic activities and to observe the 
localizations of enzymes. 

Peroxidase activities were observed in the endothecium and the middle 
layer in both types of fertility. The enzymatic activites of both types of 
anther showed an increase in intensities with the progress of anther develop­
ment while the enzymatic activities of sterile anthers showed a higher intensity 
than those of fertile anthers at late stages of development. 

Succinic dehydrogenase activities were observed mainly at the tapetum 
and pollen mother cells or tetrads, and the enzymatic activities of fertile 
anthers were generally more intense than those of sterile anthers. 

Acid phosphatase activities were observed in all anther tissues. The 
enzymatic activities of both types of fertility were not different from each 
other. 

4) Applying the tracer method for photosynthetic products using 14C02, 

incorporation of l4C into fresh anthers were measured. HC showed a higher 
incorporation into fertile anthers than in sterile anthers at the later develop­
mental stages of the anthers. With the microautoradiographic method, abun­
dant HC-compounds were observed in anther tissues of both types of fertility 
at the tetrad stage. At the microspore stage, hardly any HC-compounds 
were observed in the microspore of sterile plants, but on the other hand, 
abundant HC-compounds were found in those of fertile plants. The amount 
of HC-incorporation into normal tapetum, abnormal tapetum and pseudopo­
dium like incursion showed difference in paraffin sectioning. 

5) Applying the microautoradiographic method, incorporation of 3H_ 
thymidine into the anther was examined. 3H was incroporated into the 
floral axis, and mainly located in the cambial zone of vascular bundle. At 
floral parts, 3H was located at the peripheral zones of ovaries and the fila­
ments in both types of fertility. However, 3H was incorporated into the 
tapetal cells of fertile anthers, but they were not incorporated into those 
of sterile anthers. 

6) Anther tissues of cytoplasmic male sterile sugar beets and those of 
corresponding O-type sugar beets were observed under an electron microscope. 
In this case clear differences were observed between fertile and sterile anthers. 
At the tetrad stage, mitochondria of sterile tapetal cells became abnormal, 
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and the cristea of mitochondria were found to be degenerated. At the micro· 
spore stage, UBrscH bodies of fertile anthers were seen at the surface of inner 
tapetal cells, but they were not observed in sterile anthers. Other differences 
were also observed in the behavior of lipid-like materials. Numerous lipid· 
like materials were presented in the sterile tapetal cells at the micros pore 
stage. At the late microspore stage, many lipid·like-droplets were observed 
along the outer tapetal cell membranes in fertile anthers, but they were 
not observed in sterile anthers. As regards the microscpore itself, peculiar 
unknown substances were observed at the pores of pollen in fertile micro· 
spore, but they were not observed in sterile microspores. Exine was found 
in the sterile micros pore, but intine was not found in it. 

B) Maize 

7) Reducing sugars and starch grains III fresh maIze anthers were 
detected by the same methods as used in sugar beet experiments. The 
amount of reducing sugars increased gradually as the stage of anther devel­
oped, and significant differences were found between fertile and sterile plants 
during microsporogenesis. A large amount of starch grains was observed 
and were located in the endothecium and parenchyma as a result of histo· 
chemical experiments. As the stages of anther developed, a gradual increase 
was followed by a decrease, but a large amount of starch grains remained 
at anthesis in the fertile pollen grains. On the other hand, male sterile 
plants left no traces of starch in anther tissues at anthesis. 

As a result of examination of paper chromatography of free amino acids 
nearly all mature anthers showed proline, which could not be found in other 
parts of the flowers or leaves. In sterile plants, proline was not detected 
ever in anthers at anthesis. 

8) Three hybrids of maize, which have different cytoplasms responsible 
for male sterility, were used for the study of the enzyme. Esterase, acid 
phosphatase, glutamic dehydrogenase, malic dehydrogenase and peroxidase 
were tested with acrylamide gel disc electrophoresis method. In each zymo­
gram, some differences were found between the development stage of anthers 
and among cytoplasms. Peroxidase showed more intensity and number of 
bands in sterile anthers than in fertile anthers. Glutamic dehydrogenase 
showed only one band for all materials, but activities were highly intense in 
fertile anthers than in sterile anthers. With special regard to other enzymes, 
clear differences were not found, but activities and number of bands tended 
to be predominant in fertile anthers. 

9) The respiration activities in sterile anthers were lower than those 
III fertile anthers. Using l4e tracer methods, the following results were ob· 
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tained on the distributions of 14C-assimilates. At the microspore stage, the 
translocation of photosynthates into the anthers and spikelet was obstructed 
in sterile plants. In comparison with the fertile anthers, sterile anthers 
showed a low distribution ratio in the acidic fraction, but a high distribution 
ratio was seen in the neutral and the basic fractions. In the fertile anthers, 
one unidentified sugar sport was detected. A remarkable differnce between 
fertile and sterile plants was also detected in HC amino acid residues. 14C_ 
assimilates are incorporated into the lipid fraction in the fertile anthers, 
but not in the sterile anthers. 

C) Sorghum 

10) Reducing sugars and starch grains in fresh anthers were observed 
by the same methods as used in sugar beet and maize experiments. The 
amount of reducing sugars increased gradually as the stage of anther devel­
oped, and significant differences were found between fertile and sterile plants 
during microsporogenesis. A large amount of starch grains was observed 
and they were located in the endothecium and parenchyma as result of 
histochemical experiments. As the stage of anther developed, they gradually 
decreased in sterile anther, but they kept remained in fertile pollen grain. 
On the other hand, sterile plants left no trace of starch in auther tissues 
at anthesis. 

The results of the observations described above may pernit us to draw 
the following conclusions: 

The essential physiological cause of pollen abortion due to the cyto­
plasmic male sterility is the insufficient supply of the carbohydrates and other 
nutrients to developing microspores. This is based on the various abnormal­
ities observed in the behavior of the developing tapetum which is presumed 
to play an important role for the nutrient supply to the developing micro­
spores. In other words, the organelles such as mitochondrion and the 
UBISCH body could not be observed or showed an abnormal appearence in 
the tapetum of male sterilities, and some evidence of the inactivation or 
obstruction in some physiological synthetic and respiratory processes in the 
tapetum of male sterilities were found. 
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Explantion of Plate 

Plate I 

Starch reactionin anther tissues of fertile (left) and sterile (right) sugar 
beet. (X 150) 

a. pollen mother cell stage 
b. tetrad 
c. microspore 
d. pollen 

A large amount of starch grains (S) were observed in both fertile 
and sterile plants (a, b, c). Abnormal tapetum can be seen in the sterile 
anther (c-right). At mature pollen stage (d), starch grains completely 
disappeared in fertile plant. On the other hand, those of sterile anther 
(d-right) still remained in the endothecium. 
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Plate II 

Sundan III stain for demonstration of lipid. Fertile (left) and sterile 

(right) sugar beet. (x 300) 
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Plate III 

Triple stained microphotograph of anther tissues III fertile (left) and 

sterile (right) sugar beet. (x 400) 

a. pollen mother cell stage 

Tapetal cytoplasm showed yellow, indicating the existence of protein. 

Red colored particles were observed at the endothecium and the paren­

chyma, indicating the existence of polysaccharides. 

b. tetrad stage 

Tapetal cells were larger in size, and the tapetal cytoplasm showed 

deep yellew. Tapetal cell nuclei were slightly stained a greenish yellow 

responsible for contents of DNA. 

c. microspore stage 

The tetrads were released into the anther locules and grew as mlcro­

spore. Tapetal cell became disintegrated. 

d. pollen stage 

Reaction of polysaccharides in fertile anther (left) completely disap­

peared, but that in sterile anther was still in the endothecium. 
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Plate IV 

Peroxidase (a, b) and succinic dehydrogenase (c, d) activities of anther 

tissues in fertile (left) and sterile (right) sugar beet. (X 300) 

Peroxidase activities were observed in the endothecium and the 

middle layer in both fertile and sterile plants. The enzymatic activities 

of sterile anthers (b-right) were more intense than those of fertile anther 

(b-left) at the late stage of development. 

Succinic dehydrogenase activities were mainly observed in the tape­

tum and pollen mother cells or tetrads. The enzymatic activites of 

fertile anther were generally more intense than those of sterile anthers. 
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a 

b 



Plate V-I 

Autoradiograph of fertile anthers of sugar beet labeled with l4C by 
photosynthesis. (x 200) Forcal level of tissues (left) and forcal level of 

emulsion (right) 

Abundant 14C-compound were observed in the anther tissues at 

PMC (a), tetrad (b) and microspore (c) stages. At pollen stage (d), little 

14C were observed at pollen grains and anther walls. 
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Plate V-2 

Autoradiograph of sterile anthers of sugar beet labeled with 14C by 

photosynthesis. (x 200) 
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Plate VI 

Autoradiograph of anther tissues in sugar beet labeled with 3H-thymidine. 

a. 3H were labeled at cambium of both fertile (a) and sterile flower 

stalk. (x 300) 

b. 3H were labeled at filament of both fertile (b) and sterile plants. 

(X 300) 

c. 3H were only labeled at tapetal cell of fertile plants. (X 300) 
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Plate VII-l 

Electron microphotograph of anther tissues III fertile (left) and sterile 

(right) sugar beet. 

Abbreviation and symbols. The scale bars represent l,um. 

C: Callose, CW: Cell Wall, E: Exine, IN: Intine, M: Mitochon­

drion, ML: Middle Layer, N: Nucleus, Nu: Nucleolus, P: Plastid, 

PG: Pollen Grain, R: Ribosome, S: Starch, T: Tetrad, Ta: Tapetum, 

U: Ubisch Body, V: Vacuole, dm: dense material, Id: lipid like 

droplet, 1m: lipid like material, pU: pro Ubisch body, 0: peculia 

substance. 

1. Each tapetal cell has one nucleus (N) with prominent nucleolus 

(Nu), mitochondria (M) plastids (P), Ribosomes (R) and fairly large vacu­

oles (V). No clear difference can be found between fertile (left) and 

sterile (right) tapetal cells. 

2. Many pro Ubisch bodies (pU) are observed in the inner tapetal 

cell wall (CW) for both fertile (left) and sterile (right) anthers. 

3. The exine of microspore deposited sporopollenin. The thick 

tapetal cell walls have disappeared and pro Ubisch bodies develop into 

Ubisch bodies (U) coated with sporopollenin. (left) The tapetal cell 

walls and pro Ubisch bodies have disappeared. The mitochondria are 

not observed, but many lipid like materials are observed in the tapetal 

cytoplasm. 
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Plate VII-2 

1. The mitochondria (M) and the Ubisch bodies (U) are conspicuous 

III fertile tapetum (left). Since the cristae of mitochondria (M) have 

degenerated, typical mitochondria are not observed. (right) 

2. The tapetal cell membrance has deteriorated and mitochondria 

(M) are seen in the anther cavity. The peculiar substanlces (0) are 

observed at the pore of pollen grain (PG). (left) The tapetal cell has 

degenerated and remnants of tapetal cytoplasm exist in the anther cavity, 

but cell organelles are not readily recognizable. (right) 

3. The lipid like droplets (ld) are seen along the outer tapetal mem­

brane. (left) Organelles of sterile microspore begin to degenerate and 

exine (E) does not develop fully. (right) 
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Plate VIII 

Starch reaction in anther tissues of fertile (left) and sterile (right) maize. 

(X 150) 

At early stages of anther development (a, b, c), a large amount of 

starch grains was observed in the both fertile and sterile plants. They 

were found to be located in the endothecium and parenchyma. At 

pollen stage of anther development (d), starch grains were located in 

fertile pollen grains, but in sterile anther no trace of them were left in 
anther tissues. 
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Plate IX 

Electrophoreic banding patterns of isozymes of various enzymes in crude 

homogenates prepared from maize anther having different cytoplasm. 
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Plate X 

Autoradiograph of sugars extracted from maIze. 

W 375 B (fertile) and W 375 BT (sterile) 

FR: Fructose, GL: Glucose, SU: Sucrose 
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Plate XI 

Starch reaction in anther tissEes of fertile (left) and sterile (right) sor­

ghum. (x 150) 

At early stages of anther development (a, b), a large amount of starch 

grains was observed in both fertile and sterile plants. They were found 

to be located in the endothecium and parenchyma. In fertile anther, 

starch grains were located in pollen grain (d-Ieft). Sterile lines left no 

traces of them in anther tissues. (d-right) 
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