INHERITANCE STUDIES ON CYTOPLASMIC MALE STERILITY INDUCED BY NUCLEAR SUBSTITUTION

—Genetical studies on rice plant, LXX—

Toshiro KINOSHITA, Ko-ichi MORI
and Man-emon TAKAHASHI

Plant Breeding Institute, Faculty of Agriculture,
Hokkaido University Sapporo 060

Received May 20, 1980

Introduction

Since alloplasmic male sterility was induced in *Epilobium*\(^1\) and wheat\(^1\) by nuclear substitution, the source of male sterility was remarkably enlarged for the utilization of this character to produce hybrid seeds on a large scale. In rice plants, the effect of alien cytoplasm in the pollen and spikelet fertility in \(F_1\) hybrids was noticed by several workers\(^6,7\) and male sterile strains were produced by means of nuclear substitution\(^8,11,14,15\). In this study, the authors produced new male sterile lines by substitution of the cytoplasm and two kinds of pollen fertility restoration lines which are used for the boro-cytoplasm male sterile tester were found among the linkage testers. The genic analysis for the pollen restoration under the boro-cytoplasm was carried out by using crosses between the male sterile and the pollen restorer strains.

Materials and Methods

The strains used in this experiment are listed in Table 1. The breeding of male sterile strains started from the reciprocal crossings between Japanese and Indian varieties. After successive backcrossings, male sterility was bred true by the pollination of the Japanese varieties. Pollen fertility restorers were selected from 16 strains of linkage tester by the crossings with the boro-cytoplasm tester which were donated by SHINJO of Ryukyu Uni-

---

1) Contribution from the Plant Breeding Institute, Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
2) Hokuriku National Agriculture Experiment Station, Joetsu.

Table 1. List of the strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A- 5 Akamuro</td>
<td>C\textsuperscript{Br}, A, Pr, Rc, Rd</td>
<td>Linkage marker</td>
</tr>
<tr>
<td>A- 13 Chabo</td>
<td>C\textsuperscript{Br}, A\textsuperscript{+}, Pr</td>
<td>&quot;</td>
</tr>
<tr>
<td>A- 43 Hokkaimochi-1-go</td>
<td>C\textsuperscript{+}, A\textsuperscript{+}, wx</td>
<td>&quot;</td>
</tr>
<tr>
<td>A-133 Norin-9-go</td>
<td>rfrf\textsubscript{1}</td>
<td>Nuclear parent for K-11 and K-13</td>
</tr>
<tr>
<td>1- 44 Bhutmuri-36</td>
<td></td>
<td>Indian variety</td>
</tr>
<tr>
<td>1- 88 Assam III</td>
<td></td>
<td>&quot;</td>
</tr>
<tr>
<td>1- 34 Mushakdanti</td>
<td></td>
<td>&quot;</td>
</tr>
<tr>
<td>1- 45 Charnock</td>
<td></td>
<td>&quot;</td>
</tr>
<tr>
<td>1-127 SHINJO’s tester</td>
<td>(\textit{cms-boro}) rfrf\textsubscript{1}</td>
<td>Cytoplasmic male sterility</td>
</tr>
<tr>
<td>1-128 Taichung-65-go</td>
<td>rfrf\textsubscript{1}</td>
<td>Maintainer for 1-127</td>
</tr>
<tr>
<td>1-130 SHINJO’s tester</td>
<td>(\textit{cms-boro}) Rrf\textsubscript{1} Rrf\textsubscript{1}</td>
<td></td>
</tr>
<tr>
<td>K- 11 Nuclear substitution line</td>
<td></td>
<td>I-44×A-133 SB\textsubscript{T}</td>
</tr>
<tr>
<td>K- 13</td>
<td></td>
<td>I-88×A-133 SB\textsubscript{10}</td>
</tr>
</tbody>
</table>

versity. The mode of inheritance on pollen fertility restoration was studied using the hybrid populations derived from the crossings between the male sterile strain with \textit{boro}-cytoplasm and the pollen fertility restorers. Besides that, the genetical nature of the cytoplasm in the newly induced strains was identified with those of \textit{boro}-cytoplasm testers.

The effect of environmental condition was examined by growing the hybrid populations in a growth chamber under different temperature conditions. In order to protect against the effects of low temperatures during microsporogenesis, most of the materials were grown in geen or vinyl houses. For pollen counts, three out of five anthers were collected from the main panicles of each plant and pollens were macerated in a drop of 1-percent iodium potassium iodide. About 300-500 pollen grains per plant were counted. The discrimination between fertile and sterile pollens depended on the intensity of staining by the solution. Spikelet fertility was examined by using the early emerging panicles from each plant.

Results

1. Reciprocal differences of pollen and spikelet fertility in F\textsubscript{1} hybrids

Diallel crossings in reciprocal combinations were made between eight
kinds of Japanese and Indian varieties. As shown in Table 2, significant differences of both fertilities were recognized between the reciprocal hybrids of the crosses involving I-44 and I-88. It is reasonable that the effect of cytoplasm is responsible for the hybrid sterility as well as a nuclear gene or genes.

**Table 2.** Pollen (a) and spikelet (b) fertilities (%) in the F\(_1\) hybrids of the reciprocal crossings between Japanese and Indian varieties and the test of significance of the reciprocal difference

### a. Pollen fertility

<table>
<thead>
<tr>
<th>Japanese var.</th>
<th>Indian var.</th>
<th>I-44 Bhutmuri-36</th>
<th>I-88 Assam III</th>
<th>I-34 Mushakdanti</th>
<th>I-45 Charnock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>♀</td>
<td>♂</td>
<td>♀</td>
<td>♂</td>
<td>♀</td>
</tr>
<tr>
<td>A- 5 Akamuro</td>
<td>23</td>
<td>45</td>
<td>13</td>
<td>43</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>t=16.94**</td>
<td>t=5.99**</td>
<td>t=7.26**</td>
<td>t=0.42</td>
<td>t=2.72*</td>
</tr>
<tr>
<td>A- 13 Chabo</td>
<td>17</td>
<td>28</td>
<td>88</td>
<td>89</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>t=27.07**</td>
<td>t=7.26**</td>
<td>t=0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A- 43 Hokkaimochi-1-go</td>
<td>17</td>
<td>23</td>
<td>61</td>
<td>63</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>t=5.84**</td>
<td>t=3.78**</td>
<td>t=0.64</td>
<td>t=0.55</td>
<td></td>
</tr>
<tr>
<td>A-133 Norin-9-go</td>
<td>11</td>
<td>34</td>
<td>74</td>
<td>73</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>t=18.76**</td>
<td>t=9.22**</td>
<td>t=0.05</td>
<td>t=0</td>
<td></td>
</tr>
</tbody>
</table>

* Significance at 5% level.
** Significance at 1% level.

### b. Spikelet fertility

<table>
<thead>
<tr>
<th>Japanese var.</th>
<th>Indian var.</th>
<th>I-44 Bhutmuri-36</th>
<th>I-88 Assam III</th>
<th>I-34 Mushakdanti</th>
<th>I-45 Charnock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>♀</td>
<td>♂</td>
<td>♀</td>
<td>♂</td>
<td>♀</td>
</tr>
<tr>
<td>A- 5 Akamuro</td>
<td>14</td>
<td>26</td>
<td>4</td>
<td>32</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>t=5.81**</td>
<td>t=7.31**</td>
<td>t=0</td>
<td>t=2.37*</td>
<td></td>
</tr>
<tr>
<td>A- 13 Chabo</td>
<td>7</td>
<td>48</td>
<td>3</td>
<td>18</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>t=24.87**</td>
<td>t=11.07**</td>
<td>t=0.54</td>
<td>t=2.30*</td>
<td></td>
</tr>
<tr>
<td>A- 43 Hokkaimochi-1-go</td>
<td>11</td>
<td>27</td>
<td>8</td>
<td>23</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>t=6.96**</td>
<td>t=4.47**</td>
<td>t=0.29</td>
<td>t=0.44</td>
<td></td>
</tr>
<tr>
<td>A-133 Norin-9-go</td>
<td>11</td>
<td>42</td>
<td>23</td>
<td>36</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>t=16.82**</td>
<td>t=6.56**</td>
<td>t=0.29</td>
<td>t=1.80</td>
<td></td>
</tr>
</tbody>
</table>

* Significance at 5% level.
** Significance at 1% level.
2. Induction of male sterile strains

Successive backcrossings of the reciprocal hybrids between I-44 and A-133 and between I-88 and A-133 were carried out to produce the substitution and restoration lines. As shown in Table 3, pollen sterility was intensified at the later generations in the substitution type of crossing, while pollen fertility was steadily increased in the restoration type of crossing. The substitution of the genome was attained around the SB7 and SB9 in K-11 and K-13 strains. In order to confirm the function of the female organs, K-11 and K-13 were crossed with the pollens of the normal strains. The spikelet fertility of the crossed plants in K-11 and K-13 showed 85 and 77% respectively. The male sterile strains, K-11 and K-13 possessed the constitution of the cytoplasm from Indian varieties and genome of the Japanese variety, "Norin-9-go".

Table 3. Pollen fertility (%) at each generation in the two types of successive backcrossings

<table>
<thead>
<tr>
<th>Generation</th>
<th>I-44×A-133</th>
<th>I-88×A-133</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Substitution</td>
<td>Restoration</td>
</tr>
<tr>
<td>SB1</td>
<td>6.9 (0-19)</td>
<td>43.5 (29-72)</td>
</tr>
<tr>
<td>SB2</td>
<td>1.0 (0-3)</td>
<td>57.7 (34-79)</td>
</tr>
<tr>
<td>SB3</td>
<td>3.2 (0-16)</td>
<td>71.8 (51-79)</td>
</tr>
<tr>
<td>SB4</td>
<td>0.9 (0-8)</td>
<td>79.2 (70-89)</td>
</tr>
<tr>
<td>SB5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SB6</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1) Parenthesis means the range of variation.
2) Substitution and restoration crossings mean the crossings to A-133 and I-44 or I-88, respectively.

3. Selection of pollen fertility restorer

Test crossings were carried out to select the pollen fertility restorer from the 16 tester strains by the use of the boro-cytoplasm male sterile tester, I-127. Pollen fertilities of the F1 hybrids are shown in Table 4. Two linkage testers, H-103 and H-406 possessed the gene or genes for pollen restoration interacting with the boro-cytoplasm. Both strains had a relation with the foreign varieties and the marker genes, gl1 and Plw were introduced from the varieties. Namely, H-103 is a progeny selected from the cross, H-69×Garumbalay and H-406 is a inbred line derived from the cross, A-5×H-121 in which H-121 is a linkage marker bred true from the cross,
A-13×Pirurutong.

Pollen and spikelet fertilities were examined for three years in the F₁ hybrids which showed pollen fertility restoration as shown in Table 5. Though the fluctuation of the fertility was observed in different years, the cross, I-127×H-406 showed a higher fertility than the other cross, I-127×H-103 in both the pollen and spikelet fertilities. In the experiment of 1978, the ability of pollen fertility restoration indicated an order of I-127>H-406>H-103 when crossed with I-127.

Table 4. Pollen and spikelet fertilities (%) of F₁ plants from the crossings between I-127 and linkage testers

<table>
<thead>
<tr>
<th>Cross combination</th>
<th>Pollen fertility mean</th>
<th>Pollen fertility range</th>
<th>Spikelet fert.* mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-127×Taichung-65-go</td>
<td>0.79</td>
<td>0–3.9</td>
<td>0</td>
</tr>
<tr>
<td>× A-23 Daikoku</td>
<td>0.20</td>
<td>0–0.4</td>
<td>0</td>
</tr>
<tr>
<td>× A-58 Kokushokuto-2</td>
<td>0.15</td>
<td>0–0.4</td>
<td>12.0</td>
</tr>
<tr>
<td>× A-136 Shiokari</td>
<td>0.72</td>
<td>0–4.7</td>
<td>2.4</td>
</tr>
<tr>
<td>× N-65 Hosetsu-A</td>
<td>0.58</td>
<td>0–2.2</td>
<td>13.6</td>
</tr>
<tr>
<td>× H-9 Linkage tester</td>
<td>0.04</td>
<td>0–0.6</td>
<td>0</td>
</tr>
<tr>
<td>× H-21</td>
<td>0.37</td>
<td>0–8.1</td>
<td>1.4</td>
</tr>
<tr>
<td>× H-35</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>× H-61</td>
<td>0.11</td>
<td>0–0.7</td>
<td>0</td>
</tr>
<tr>
<td>× H-69</td>
<td>1.48</td>
<td>0–4.0</td>
<td>1.4</td>
</tr>
<tr>
<td>× H-75</td>
<td>0.36</td>
<td>0.2–0.7</td>
<td>7.7</td>
</tr>
<tr>
<td>× H-79</td>
<td>0.18</td>
<td>0–1.6</td>
<td>0</td>
</tr>
<tr>
<td>× H-103</td>
<td>42.78</td>
<td>30.3–48.8</td>
<td>66.1</td>
</tr>
<tr>
<td>× H-126</td>
<td>2.39</td>
<td>0–11.5</td>
<td>0</td>
</tr>
<tr>
<td>× H-150</td>
<td>0</td>
<td>0</td>
<td>10.0</td>
</tr>
<tr>
<td>× H-406</td>
<td>44.45</td>
<td>34.0–51.4</td>
<td>72.7</td>
</tr>
<tr>
<td>× H-477</td>
<td>0.14</td>
<td>0–1.4</td>
<td>0</td>
</tr>
<tr>
<td>H-69×Taichung-65-go</td>
<td>95.88</td>
<td>94.3–97.1</td>
<td>90.9</td>
</tr>
</tbody>
</table>

* Fertility under open pollination.
### Table 5. Pollen and spikelet fertilities (%) in the F\textsubscript{1} plants showing fertility restoration

#### a. Data in 1973 and 1974

<table>
<thead>
<tr>
<th>Fertility</th>
<th>Cross combination</th>
<th>1973</th>
<th>1974</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Number of plants</td>
<td>Mean±S. D.</td>
</tr>
<tr>
<td>Pollen fert.</td>
<td>I-127×H-103</td>
<td>42</td>
<td>42.8±3.76</td>
</tr>
<tr>
<td></td>
<td>I-127×H-406</td>
<td>22</td>
<td>44.4±8.41</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>-1.6 (t=1.097)</td>
<td></td>
</tr>
<tr>
<td>Seed fert.</td>
<td>I-127×H-103</td>
<td>22</td>
<td>9.3±4.72</td>
</tr>
<tr>
<td></td>
<td>I-127×H-406</td>
<td>10</td>
<td>14.5±9.31</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>-5.2* (t=2.096)</td>
<td></td>
</tr>
</tbody>
</table>

- **: Significant at 1% level.
- *: Significant at 5% level.

#### b. Data in 1978

<table>
<thead>
<tr>
<th>Cross combination</th>
<th>Pollen fertility</th>
<th>Spikelet fertility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of plants</td>
<td>Mean±S. D.</td>
</tr>
<tr>
<td>(1) I-127×H-103</td>
<td>19</td>
<td>36.60±9.49</td>
</tr>
<tr>
<td>(2) I-127×H-406</td>
<td>13</td>
<td>43.43±10.98</td>
</tr>
<tr>
<td>(3) 1-127×1-130</td>
<td>20</td>
<td>56.10±5.49</td>
</tr>
</tbody>
</table>

(1) — (2) -6.83 (t=1.879) -3.58 (t=0.656)
(1) — (3) -19.50** (t=7.908) -57.21** (t=13.265)
(2) — (3) -12.67** (t=4.404) -53.63** (t=20.882)

*,** Significant at 5% and 1% levels, respectively.

### 4. Mode of inheritance on pollen fertility restoration

#### a. Experiment in 1975

F\textsubscript{2} populations and progenies of the backcrossings and the various kind of three way crossings were grown in green houses in 1975. The weather condition was moderate for rice cultivation. However, the late flowering plants were affected slightly by low temperatures and resulted in the decrease of pollen fertility. As shown in Fig. 1a, the frequency distributions of pollen fertility of both populations, I-127×H-103 F\textsubscript{2} and I-127×H-406 F\textsubscript{2}, indicated...
a continuous variation. The average pollen fertility of the former cross was lower than that of the later cross. The frequency distributions of pollen fertility in the progenies of the crosses between two kinds of female plants, I-127×H-103 F₁ and I-127×H-406 F₁ and the four kinds of male parents, A-133, H-103, H-406 and I-130 are shown in Fig. 2. In most of the progenies of the crosses in which the I-127×H-406 F₁ was used as the female parents, the average fertility was always higher than those in the progenies of the female parent, I-127×H-103 F₁. It is highly probable that the ability of pollen fertility restoration is different between the genotypes.

Fig. 1. Histograms of pollen fertility in F₂ populations of the crosses, I-127×H-103, I-127×H-406 and I-127×I-130. Population size of each cross is around 300 and frequency is expressed as %.
of both strains, H-103 and H-406. In addition, low fertility plants appeared in the progenies of the crosses with the female plant, I-130 which possesses the homozygous genotype $Rf_1 Rf_1$ for pollen fertility restoration. Possibly, both strains, H-103 and H-406 may possess a gene or genes other than
Thus, there are different genotypes on the pollen fertility restoration under the boro-cytoplasm as represented by the three strains, H-103, H-406 and I-130. As to the gametophytic action of the gene or genes for pollen fertility restoration, two kinds of backcross populations, (I-127 × H-103) × H-103 and (I-127 × H-406) × H-406 were compared with F₂ populations of the respective crosses. Though the frequency distributions were not completely identical, the average fertilities did not differ significantly between B₁ and F₂ populations in the cross, I-127 × H-406. The bimodal distribution which is expected by a single gene like Rf₁ was rare or not seen among the ten kinds of populations both in Figs. 1a and 2. There is a possibility that the environmental conditions also affect the variation of pollen fertility even in the protected cultivation in a green house.

b. Experiment in 1978

In order to homogenize the effect by weather conditions, all populations at different generations up to F₅ were grown in a vinyl house protected from low temperatures. The weather condition in this year was suitable for cultivation. It is indicated that the average fertility of the two kinds

<table>
<thead>
<tr>
<th>Generation</th>
<th>Cross combination</th>
<th>Pollen fertility (%)</th>
<th>Total</th>
<th>Mean ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>I-127</td>
<td>16 4</td>
<td>20</td>
<td>0.40 ± 3.01</td>
</tr>
<tr>
<td></td>
<td>H-103</td>
<td></td>
<td>19</td>
<td>97.88 ± 1.27</td>
</tr>
<tr>
<td></td>
<td>H-406</td>
<td></td>
<td>20</td>
<td>97.55 ± 1.48</td>
</tr>
<tr>
<td></td>
<td>I-130</td>
<td></td>
<td>20</td>
<td>99.99 ± 0.04</td>
</tr>
<tr>
<td>F₁</td>
<td>I-127 × H-103</td>
<td>1 1 1</td>
<td>19</td>
<td>36.60 ± 9.49</td>
</tr>
<tr>
<td></td>
<td>× H-406</td>
<td>1 6 1</td>
<td>13</td>
<td>43.43 ± 10.98</td>
</tr>
<tr>
<td></td>
<td>× I-130</td>
<td>2 13 5</td>
<td>20</td>
<td>56.10 ± 5.49</td>
</tr>
<tr>
<td>F₂</td>
<td>I-127 × H-103</td>
<td>8 6 14 36 72 32 6 16</td>
<td>120</td>
<td>65.27 ± 28.69</td>
</tr>
<tr>
<td></td>
<td>× H-406</td>
<td>5 7 26 46 34 27 21 178</td>
<td>344</td>
<td>80.15 ± 21.52</td>
</tr>
<tr>
<td></td>
<td>× I-130</td>
<td>4 56 52 9 1 1 140</td>
<td>263</td>
<td>76.73 ± 24.81</td>
</tr>
</tbody>
</table>

Fitness for high (over 81%) vs. low fertility groups = 1:1

$\chi^2$ = 6.388, d. f. = 1, $P$ = 0.01-0.02.

$\chi^2$ = 8.477, d. f. = 1, $P$ = 0.001-0.1.

$\chi^2$ = 1.373, d. f. = 1, $P$ = 0.2-0.3.
of F₂ populations in 1978 were considerably higher than those in 1975 because
of the favourable weather conditions. As shown in Fig. 1b, the bimodal
distributions were evident both in the crosses, I-127×H-103 and I-127×
H-406 and differed from the continuous variation in the same populations
grown in 1975. Thus, the weather condition plays an important role for

Table 7. Frequency distributions of pollen fertility in
F₃ lines of the crosses, I-127×H-103 and
I-127×H-406 (data in 1978)

<table>
<thead>
<tr>
<th>F₂ plant*</th>
<th>Pollen fertility (%) in F₃ line</th>
<th>Total</th>
<th>Mean±S. D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Poll. fert. (%)</td>
<td>1-10</td>
<td>11-20</td>
</tr>
<tr>
<td>1</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Data in 1975.
b. $I-127 \times H-406$

<table>
<thead>
<tr>
<th>F$_2$ plant*</th>
<th>Pollen fertility (%) in F$_3$ line</th>
<th>Total</th>
<th>Mean±S. D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Poll. fert. (%)</td>
<td>1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>90</td>
<td>- - - - - - 1 3 16</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>- - - - - - 2 5 4 8</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>- 1 - 1 1 1 2 2 6</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>- 1 - - - - - 2 5 4 8</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>- 1 - 1 1 1 2 2 6</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>- - - 1 4 1 1 3 1 8</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>1 2 1 2 2 3 2 3 - 2</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>90</td>
<td>2 1 3 2 3 1 2 1 2</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>90</td>
<td>5 2 3 - 1 - 1 3 3 2</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>- - - - - 6 2 3 1 3 4</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>80</td>
<td>- - - - - 1 2 1 - - 7</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>- - - - - 1 2 1 - - 7</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>80</td>
<td>- - - 1 1 1 3 4 3 7</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>80</td>
<td>- - - 1 2 1 3 4 3 7</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>80</td>
<td>- - - 4 2 1 - - - 12</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>70</td>
<td>- - - - - - - - - 1 4 15</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>70</td>
<td>- - - - - 1 4 2 3 10</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>70</td>
<td>- 2 - - - 2 3 5 6 2</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>70</td>
<td>- - 1 1 4 2 2 3 2 5</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>70</td>
<td>1 - - 2 4 3 2 2 2 3</td>
<td>19</td>
</tr>
</tbody>
</table>

* Data in 1975.

the variation of pollen fertility which was caused by the interaction between the nuclear gene or genes and the *boro*-cytoplasm.

The variations of pollen fertility in P$_n$, F$_1$, and F$_2$ populations in the three kinds of crosses are shown in Table 6. The segregation of low and high fertilities is expected to fit in a ratio of 1 : 1 if a single gene by gametophytic action was responsible for the segregation. The hypothesis was satisfied well in the F$_2$ population of the cross, $I-127 \times I-130$ depending on $R_{f1}$. As the variation of pollen fertility was clearly different among the three
kinds of crosses, it is reasonable that the three strains possess different genotypes for the pollen fertility restoration. If a single gene was responsible for the pollen fertility restoration, it is expected that the progenies of the high fertile plants in F2 shall be bred true in F3 lines. The variations of pollen fertility in F2 lines which were selected from the high fertility group in the F3s of the both crosses, I-127×H-103 F3 and I-127×H-406 are shown in Table 7. About half of the lines were bred true in the high fertility in the cross, I-127×H-103, while most of the F3 lines indicated a considerable range of variation containing low fertile plants. From the results in F2 and F3 generations, at least more than one gene were responsible for the pollen

**Table 8.** Means and coefficients of variability of pollen fertility (%) in F4 and F5 lines in the selection experiments for high pollen fertility using the two crosses, I-127×H-103 and I-127×H-406 (data in 1978)

**a. I-127×H-103**

<table>
<thead>
<tr>
<th>No.</th>
<th>Mean</th>
<th>Mean±S. D.</th>
<th>C. V.</th>
<th>No.</th>
<th>Mean</th>
<th>Mean±S. D.</th>
<th>C. V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95.7</td>
<td>98.9±0.91</td>
<td>0.92</td>
<td>1</td>
<td>92.9</td>
<td>98.5±1.25</td>
<td>1.27</td>
</tr>
<tr>
<td>2</td>
<td>91.3</td>
<td>98.4±2.05</td>
<td>2.09</td>
<td>2</td>
<td>58.4</td>
<td>97.6±2.23</td>
<td>2.29</td>
</tr>
<tr>
<td>3</td>
<td>79.6</td>
<td>98.7±0.93</td>
<td>0.94</td>
<td>3</td>
<td>54.4</td>
<td>99.1±0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>4</td>
<td>75.8</td>
<td>96.3±2.50</td>
<td>2.60</td>
<td>4</td>
<td>54.4</td>
<td>96.4±2.89</td>
<td>3.00</td>
</tr>
<tr>
<td>5</td>
<td>42.8</td>
<td>98.1±1.01</td>
<td>1.02</td>
<td>5</td>
<td>34.8</td>
<td>91.9±17.43</td>
<td>18.97</td>
</tr>
<tr>
<td>6</td>
<td>37.6</td>
<td>97.2±1.45</td>
<td>1.49</td>
<td>6</td>
<td>32.8</td>
<td>98.4±0.71</td>
<td>0.72</td>
</tr>
<tr>
<td>7</td>
<td>35.5</td>
<td>81.3±27.81</td>
<td>34.18</td>
<td>7</td>
<td>27.7</td>
<td>98.8±0.64</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>24.1</td>
<td>98.9±1.00</td>
<td>1.01</td>
</tr>
</tbody>
</table>

**b. I-127×H-406**

<table>
<thead>
<tr>
<th>No.</th>
<th>Mean</th>
<th>Mean±S. D.</th>
<th>C. V.</th>
<th>No.</th>
<th>Mean</th>
<th>Mean±S. D.</th>
<th>C. V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90.7</td>
<td>97.5±1.86</td>
<td>1.90</td>
<td>1</td>
<td>85.1</td>
<td>98.3±1.31</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>90.0</td>
<td>84.0±13.63</td>
<td>16.21</td>
<td>2</td>
<td>84.8</td>
<td>95.5±11.30</td>
<td>11.83</td>
</tr>
<tr>
<td>3</td>
<td>80.8</td>
<td>97.3±1.70</td>
<td>1.75</td>
<td>3</td>
<td>80.9</td>
<td>98.4±1.22</td>
<td>1.24</td>
</tr>
<tr>
<td>4</td>
<td>79.9</td>
<td>89.9±13.57</td>
<td>15.09</td>
<td>4</td>
<td>80.5</td>
<td>98.4±1.11</td>
<td>1.13</td>
</tr>
<tr>
<td>5</td>
<td>76.0</td>
<td>96.1±3.32</td>
<td>3.46</td>
<td>5</td>
<td>79.9</td>
<td>98.3±1.73</td>
<td>1.76</td>
</tr>
<tr>
<td>6</td>
<td>75.6</td>
<td>98.0±1.52</td>
<td>1.55</td>
<td>6</td>
<td>77.7</td>
<td>98.0±1.68</td>
<td>1.72</td>
</tr>
<tr>
<td>7</td>
<td>70.9</td>
<td>89.1±14.74</td>
<td>16.54</td>
<td>7</td>
<td>75.1</td>
<td>98.5±1.03</td>
<td>1.04</td>
</tr>
<tr>
<td>8</td>
<td>70.0</td>
<td>85.9±15.23</td>
<td>17.73</td>
<td>8</td>
<td>71.2</td>
<td>98.5±0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>9</td>
<td>64.3</td>
<td>93.3±4.70</td>
<td>5.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Data in 1977.
fertility restoration in the both crosses, I-127×H-103 and I-127×H-406.

5. Selection experiments for high pollen fertility up to F₅ generation

The selection to the high pollen fertility was repeated in F₃ and F₄ generations. Outcomes in F₄ and F₅ generations are shown respectively in Table 8. Most of the lines indicated relatively low values of variation coefficient in F₄ of the cross, I-127×H-103 and in F₅ of the cross, I-127×H-406. Thus, it is probable that a more complicated genetic mechanism exists in both crosses, I-127×H-103 and I-127×H-406 than that in the cross, I-127×I-130 which is caused by the single gene R°F₇.

6. Relation between pollen and spikelet fertilities

The average spikelet fertility and the variation in Pᵢ, F₁ and F₂ populations are shown in Table 9. Generally, the spikelet fertility was lower than the pollen fertility. Correlation coefficients were calculated in the populations at each generation (Table 10). Significant correlations existed in H-406 and the F₁ plants of the cross, I-127×H-103. In addition, the F₂ populations of both crosses, I-127×H-103 and I-127×H-406 showed a highly significant correlation while no correlation existed in the cross, I-127×I-130.

<table>
<thead>
<tr>
<th>Generation</th>
<th>Cross combination</th>
<th>Spikelet fertility (%)</th>
<th>Total</th>
<th>Mean±S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>I-127</td>
<td>20</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>H-103</td>
<td>8</td>
<td>11</td>
<td>91.29±3.72</td>
</tr>
<tr>
<td></td>
<td>H-406</td>
<td>6</td>
<td>14</td>
<td>91.82±4.20</td>
</tr>
<tr>
<td></td>
<td>I-130</td>
<td>8</td>
<td>9</td>
<td>72.77±7.84</td>
</tr>
<tr>
<td>F₁</td>
<td>I-127×H-103</td>
<td>1</td>
<td>19</td>
<td>17.47±18.23</td>
</tr>
<tr>
<td></td>
<td>×H-406</td>
<td>1</td>
<td>13</td>
<td>21.05±8.61</td>
</tr>
<tr>
<td></td>
<td>×H-130</td>
<td>5</td>
<td>20</td>
<td>74.68±6.16</td>
</tr>
<tr>
<td>F₂</td>
<td>I-127×H-103</td>
<td>2</td>
<td>317</td>
<td>36.11±22.88</td>
</tr>
<tr>
<td></td>
<td>×H-406</td>
<td>2</td>
<td>344</td>
<td>51.47±24.28</td>
</tr>
<tr>
<td></td>
<td>×I-130</td>
<td>1</td>
<td>263</td>
<td>75.34±16.31</td>
</tr>
</tbody>
</table>

Table 10. Correlation coefficients between pollen and spikelet fertilities in P₁, F₁ and F₂ populations of the crosses, I-127×H-103 and I-127×H-406

<table>
<thead>
<tr>
<th>Generation</th>
<th>Population</th>
<th>Number of plants</th>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>H-103</td>
<td>19</td>
<td>-0.1080</td>
</tr>
<tr>
<td></td>
<td>H-406</td>
<td>20</td>
<td>0.5178*</td>
</tr>
<tr>
<td>F₁</td>
<td>I-127×H-103</td>
<td>19</td>
<td>0.6721**</td>
</tr>
<tr>
<td></td>
<td>×H-406</td>
<td>13</td>
<td>0.4595</td>
</tr>
<tr>
<td></td>
<td>×I-130</td>
<td>20</td>
<td>0.2838</td>
</tr>
<tr>
<td>F₂</td>
<td>I-127×H-103</td>
<td>317</td>
<td>0.5112**</td>
</tr>
<tr>
<td></td>
<td>×H-406</td>
<td>344</td>
<td>0.5263**</td>
</tr>
<tr>
<td></td>
<td>×I-130</td>
<td>263</td>
<td>-0.0062</td>
</tr>
</tbody>
</table>

* Significance at 5% level.
** Significance at 1% level.

Table 11. Frequency distributions of pollen fertility in F₁ plants between the three kinds of male sterile strains and the tester strains for the fertility restoration

<table>
<thead>
<tr>
<th>Cross combination</th>
<th>Pollen fertility (%)</th>
<th>Total</th>
<th>Mean±S. D.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1-10 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-127×I-130</td>
<td>— — — — — — 6 7 2 — — — —</td>
<td>15</td>
<td>52.81± 5.42</td>
</tr>
<tr>
<td>K- 11×</td>
<td>— — — — — — 13 12 1 — — — —</td>
<td>26</td>
<td>51.39± 4.61</td>
</tr>
<tr>
<td>K- 13×</td>
<td>— — — — — — 3 7 2 — — — —</td>
<td>12</td>
<td>52.45± 5.86</td>
</tr>
<tr>
<td>I-127×H-406</td>
<td>— — — — — — 6 6 — — — —</td>
<td>12</td>
<td>49.48± 6.19</td>
</tr>
<tr>
<td>K- 11×</td>
<td>— — — — — — 4 5 3 — — — —</td>
<td>12</td>
<td>54.83± 6.81</td>
</tr>
<tr>
<td>K- 13×</td>
<td>— — — — — — 5 8 — — — —</td>
<td>13</td>
<td>62.65± 5.48</td>
</tr>
<tr>
<td>I-127×H-103</td>
<td>— — — 3 2 8 4 1 — — — —</td>
<td>18</td>
<td>44.18±10.96</td>
</tr>
<tr>
<td>K- 11×</td>
<td>— — — — 4 7 3 — — — — —</td>
<td>14</td>
<td>32.63± 6.72</td>
</tr>
<tr>
<td>K- 13×</td>
<td>— — — — — 4 9 — — — — —</td>
<td>13</td>
<td>41.71± 4.45</td>
</tr>
<tr>
<td>I-127×I-128</td>
<td>16 4 — — — — — — — — — —</td>
<td>20</td>
<td>0.60± 1.27</td>
</tr>
<tr>
<td>K- 11×</td>
<td>7 5 — — — — — — — — — — —</td>
<td>12</td>
<td>0.71± 1.00</td>
</tr>
<tr>
<td>K- 13×</td>
<td>4 6 — — — — — — — — — — —</td>
<td>10</td>
<td>1.48± 2.18</td>
</tr>
</tbody>
</table>

* The genotypes of pollen fertility restoration are known as Rf₁Rf₁ for I-130 and rf₁rf₁ for I-128, respectively.
7. Identification of cytoplasms

As mentioned in the second section, two kinds of male sterile strains, K-11 and K-13 were induced by nuclear substitution. The two cytoplasmic donors, I-44 and I-88 belong to the so-called 'boro' type of Indian variety as well as the variety 'Chisurah boro-II' which was used as the cytoplasmic donor in the tester strain, I-127. The three kinds of male sterile strains were crossed with the three kinds of tester strains possessing the gene or genes for pollen fertility restoration and the maintainer, I-128 for the male sterile strain, I-127. As shown in Table 11, the maintainer and the fertility restorer for I-127 exhibited an identical action for the three male sterile strains. Therefore it is reasonable that the cytoplasm of K-11 and K-13 is identical with the boro-cytoplasm. However, there were a little discrepancy among the pollen fertilities of three kinds of F₁ plants when they were crossed with H-103 and H-406. It may be caused by the difference in the genetic nature of the male sterile cytoplasms.

![Histograms of pollen fertility in the populations chosen from the cross, (I-127×H-406)×A-133 under the high or low temperature conditions kept in a growth chamber (data in 1975).](image-url)
8. Effect of temperature conditions

As mentioned in the previous section, the weather conditions affect the variation of pollen fertility in the hybrid populations. Therefore, the effect of low or high temperatures was examined by growing the plants in a growth chamber conditioned by low or high temperatures. 67 plants chosen from the population of the cross, \((I-107 \times H-406) \text{ F}_1 \times A-133\) were propagated asexually for the experimental materials. The condition in the growth cabinet were kept at 30°C in day time and 25°C at night (high temperature) and 21°C in day time and 17°C in night (low temperature) after the initiation of young panicle. As shown in Fig. 3, the variation of pollen fertility under the high temperature condition was equivalent with that in the green house, while the plants grown under low temperature condition showed nearly complete sterility. Thus, the low temperature remarkably decreases the pollen fertility in the case of cytoplasmic male sterility.

Discussion

Practical use of hybrid rice became feasible with the development of a cytoplasmic male sterility and fertility restoration gene even though there are some problems to be solved\(^{1,2,3,4}\). The degree of heterosis was already examined in the \(\text{F}_1\) plants of the crosses between the cultivated varieties in the northern part of Japan\(^{10}\). Recently, two kinds of cytoplasmic male sterile strains were induced by a combination between the cytoplasm from Indian or Burmese varieties and the nucleus of the Japanese varieties\(^{11,10}\). Similar techniques of nuclear substitution was also applied for the induction of cytoplasmic male sterility in American\(^9\) or Chinese\(^8\) varieties and the variety of \textit{Oryza glaberrima}\(^{15}\). In this report, the authors recognized the cytoplasmic effect on the hybrid sterility in some crosses between \textit{Japanica} and \textit{Indica} varieties and have bred the male sterile strains by successive backcrossings using the nuclear parent, ‘Norin-9-go’ and the cytoplasmic donors, ‘Bhutmuri-36’ and ‘Assam III’. In the use of the cytoplasmic male sterility, the fertility restorer possessing a strong ability is necessary for the seed crops like rice. The authors made the experiment to select the fertility restorer among the linkage tester strains. Though the two strains, \(H-103\) and \(H-406\) were selected using the \textit{boro}-cytoplasm tester, the spikelet fertility of \(\text{F}_1\) plants decreased considerably than the pollen fertility. Therefore they belong to the weak restorer named by \textit{SHINO}\(^{12}\). The source of the pollen fertility restoration may possibly come from the Philippinese varieties, ‘Garumbalay’ and ‘Pirurutong’. The mechanism of inheritance was studied by the use of the fertility restorers. Though the gametophytic action of the
gene or genes was satisfied, the gene or genes other than $Rf_1^{19}$ was responsible for the pollen fertility restoration and took two or three generations for the true-breeding of the pollen fertility restoration. Detailed study on the number of genes and the genic interaction is being carried on. The effects of environmental factors for the variation of pollen fertility in hybrid populations also can not be neglected. Low temperatures during the microsporogenesis resulted in a remarkable decrease of pollen fertility. In the cytoplasm test using K-11, K-13 and the boro-cytoplasm tester, the three male sterile strains indicated an equivalent reaction when crossed with the testers, $(cns\text{-}boro) \, r_f \, r_f$ and $R_f \, R_f$. However, a minor discrepancy existed in the pollen fertility of $F_1$ hybrids when they were crossed with the weak restorers, H-103 and H-406. The problem of whether the diversity of the cytoplasm exists or not must be solved by examinations using the iso-plasmic lines on the respective cytoplasts.

In the northern part of Japan, the male sterile plants remain in nearly no seed setting under the open pollination. Therefore, it appears cross-pollination will be the limiting factor in the production of $F_1$ hybrid seeds as suggested by several workers $^{1,4,6}$. The floral device to make easy the cross pollination must be induced by the mutation or introduce from related species.

**Summary**

1. Reciprocal difference of pollen and spikelet fertilities was recognized in $F_1$ hybrids between Japanese and Indian varieties and the hybrid sterility was caused by the genetic interaction between the cytoplasm and the nucleus in these crosses.

2. Two kinds of male sterile strains, K-11 and K-13 were bred true by the successive backcrossings of the two kinds of Indica-Japonica crosses with the recurrent parent, ‘Norin-9-go’.

3. Two kinds of linkage testers, H-103 and H-406 possessed the ability of pollen fertility restoration under the boro-cytoplasm. However, the ability for pollen and spikelet fertility restoration showed an order of $I-127 > H-406 > H-103$. Therefore, both strains belong to the weak restorers in the group made by SHINJO.

4. Mode of inheritance was examined using the three kinds of fertility restoring strains. Variations of pollen fertility in $F_2$ populations, differed by the pollen parents and also the different years. It is highly probable that the gene or genes other than $Rf_1$ was responsible for the pollen fertility restoration in the crossings with the before mentioned weak restorers. The outcome of the selection experiments toward high fertility also sustained
the non-allelism with $R_f$. In addition, weather conditions affected remarkably the fluctuation of pollen fertility.

5. Identification test for the cytoplasm proved that the cytoplasms of K-11, K-13 and I-127 show an equivalent reaction to the boro-cytoplasm tester, (cms-boro) $R_f; R_f$. However, a minor discrepancy of the reaction may exist in the cytoplasms of K-11, K-13 and I-127 when crossed with the weak restorers, H-103 and H-406.

6. It was demonstrated that low temperature conditions during microsporogenesis cause a severe decrease of pollen fertility in the plants possessing the boro-cytoplasm. In addition, there is also a problem on the cross-pollination to obtain the F$_1$ hybrid seeds under natural conditions in the northern part of Japan.

Acknowledgements

This work was supported in part by a Grant-in-Aid (No. 236001) from the Ministry of Education, Japan. The authors wish to express their sincere thanks to Dr. C. SHINJO, Professor of Ryukyu University for supplying the seeds of his tester strains. Special thanks go to Mr. N. TAMARU and Mr. M. MAKAWA for their help in carrying out this study.

Literature Cited


