

HOKKAIDO UNIVERSITY

Title	Inheritance and Linkage Relationship on Zebra Chlorosis and Zebra Necrosis in Rice : Genetical studies on rice plant, L
Author(s)	KINOSHHITA, Toshiro; TAKAMURE, Itsuro
Citation	Journal of the Faculty of Agriculture, Hokkaido University, 61(4), 445-455
Issue Date	1984-03
Doc URL	http://hdl.handle.net/2115/13005
Туре	bulletin (article)
File Information	61(4)_p445-455.pdf

INHERITANCE AND LINKAGE RELATIONSHIP ON ZEBRA CHLOROSIS AND ZEBRA NECROSIS IN RICE

—Genetical studies on rice plant, LXXXVIII^{1,29}—

Toshiro KINOSHITA and Itsuro TAKAMURE

(Plant Breeding Institute, Faculty of Agriculture, Hokkaido Univesity, Sapporo, Japan) (Received November 19, 1983)

Introduction

It is well known that the chlorophyll aberrations are governed by a single recessive gene or duplicate genes except in cases due to cytoplasmic inheritance. As to the zebra characters, at least five gene locus were known in the VIIIth, XIth and *su* linkage groups⁹.

In this paper, the authors dealt with the inheritance of two kinds of zebra characters which show chlorosis and necrosis, respectively.

Materials and Methods

The nature of the mutants is explained as follows:

zebra chlorosis.... The mutant was first found in the population of a cultivar 'Do-hoku 21 go' after treatment with ethylene imine (EI) by Dr. Shinbashi in the Kamikawa branch, Hokkaido Prefectaral Agricultural Experiment Station. In the mutant character (Plate I), a heavy chlorosis occurs at the seeding stage and turns to the zebra bands around the fourth leaf stage. Though the green color recovers at the progressing stage, spikelets and anthers turn to whitish in the heading stage. The mutant strain, M-51 also behaves as a tillering dwarf together with the zebra character. Therefore it is estimated that both mutant characters were induced simultaneously by the chemical.

zebra necrosis.... The mutant was induced by gamma irradiation in the

[[]J. Fac. Agr. Hokkaido Univ., Vol. 61, Pt. 4, 1984]

¹⁾ Contribution from the Plant Breeding Institute, Faculty of Agriculture, Hokkaido University, Sapporo, Japan.

²⁾ This study was partly defrayed by Grant-in-Aid for Co-operative Research (A) 56360001 from the Ministry of Education, Scientific and Culture, Japan.

diploid strain, AC 581-3 which was raised by anther culture from F_1 plant of the cross, A-5 Akamuro × H-69. The mutant was chracterized by a kind of necrosis which appears as zebra bands of yellow or reddish color on the leaf blade with spacing of 3 or 4 mm in distance (Plate I). In zebra necrosis, the plant vigour was slightly reduced in comparison with normal plants.

The strains used in the expreiments are listed in Table 1. F_1 plants and F_2 populations were grown in the experimental paddy field or greenhouse in 1981 and 1982. Progeny tests using F_3 lines were carried out in the greenhouse during the winter. The recombination values were calculated by Immer's productive ratio or maximum likelihood methods.

TABLE 1.	List	of	strains	used	in	the	experiments
----------	------	----	---------	------	----	-----	-------------

Strain	Source	Mutant character
M-51	induced by EI treatment from 'Dohoku 21 go'	zebra chlorosis, tillering dwarf
M-52	induced by gamma irradiation from AC-581: 3^* (C^{Br} , A, nl -1)	zebra necrosis

* derived from F_1 hybrid, A-5×H-69 by anther culture.

b) lesters	b)	Testers		
------------	----	---------	--	--

a) mutants

Strain	Marker genes	Strain	Marker genes
A -5	C^{Br} , A, Pr, I-Bf ⁺ , Rc, Rd	H-839	d-2, lg, bc-1
H- 21	bl-1, Rc, Sh	H-840	lax
H- 79	d-2, bc-1, lg, la	H-841	lg, tri, dl
H-606	C ^B , A, Pl ^w , I-Pl, Hg, lg	N-105	st-1, lg
H-836	bc-1, g-1	N-110	st-1, wx, lg
H-837	C ^B , A, lg, g-1, la	A C - 7	C^{Br} , A, Pr, I-Bf+, Rc, Rd
H-838	d–2, la		

Results

1. Zebra chlorosis

In the cross combinations involving M-51, F_1 plants show a normal phenotype and the segregations for normal and zebra occur in all F_2 populations. As shown in Table 2, the segregation ratios of the crosses indicated a significant deviation from 3:1 or 15:1 ratios due to a single recessive or duplicate genes on the whole. Frequencies of zebra plants varied from 3.5% to 15.1% showing a considerable fluctuation.

446

Cross combination	Pheno- type	Normal	Zebra chlo- rosis	Total	χ ² (3:1)	χ ² (15:1)	Freq. of zebra chlorosis (%)
H-836 × M-51	Obs.	309	21	330	61.13***	0.01	6.4
H-837 × "	"	186	10	196	41.39***	0.44	5.1
H-838 × "	,,	248	44	292	15.36***	38.75***	· 15.1
H-839 × "	**	225	21	246	35.56***	2.20	8.5
H−840 × "	"	221	8	229	56.49***	2.97	3,5
H~841 × »	**	256	13	269	58.35***	0.92	4.8
N~105 × "	,,	270	27	297	40.09***	4.09*	9.1
AC-7× "	,,	298	28	326	46.83***	3.04	8.6
M-51 ×H-79	,,	250	37	287	22.44***	21.61***	12.9
Total	**	2263	209	2472	360.91***	20.51***	8.5

TABLE 2. Segregations of zebra chlorosis in F_2 populations

*, *** Significant at the 5% and 0.1% level.

It is known that anomalous segregation of the crosses involving distantly related strains is caused by a linkage relation with the gene or genes for F_1 hydrid sterility¹²⁾. Therefore, the possibility of the linkage with the sterility gene was first examined in this experiment. Although the average seed fertility of F_1 plants indicated 94.2% in the cross combination, M-51 × H-79, the frequency of zebra chlorosis resulted in 8.5%, showing a typical distorted ratio.

Thus, it is highly possible that a new gemetophyte gene is responsible for the occurrence of distortion interacting with marker genes. Assuming a new single recessive gene (z-5) for the zebra chlorosis, it was estimated that the distorted segregation of z-5 is caused by a linkage relation between z-5 and ga-10 (t) (tentatively designated) as well as in the cases of waxy endosperm⁶, brittleness¹⁰ and liguleless¹⁰. As to the other genes involved in the crossings, it was found that lg (liguleless) and d(t) (tentatively designated for tillering dwarf) also showed significant deviation from the monogenic ratio (Table 3). The frequencies of these recessive classes resulted in an excess of lg or shortage of d(t). In addition, a close genetic association was found between z-5 and lg as well as between z-5 and d-(t) (Table Therefore, it is probable that three genes, z-5, lg and d(t) belong 4 and 5). to the second linkage group. Because of the excess of liguleless and shortage of zebra and tillering dwarf, it is probable that the mutant strain, M-51 possesses a recessive gametophyte gene ga-10(t) which belongs to the second linkage group. The linkage phase between ga-10(t) and z-5 was a coupling

Cross	Mar	ker gene					χ2	Freq
combination	A	Linkage group		A	а	Total	(3:1)	of <i>a</i> (%)
H-836 ×M-51	g-1	IV	Obs.	254	76	330	0.68	23.0
	bc–1	XI	"	251	79	330	0.20	23.9
	d(t)		,,	308	22	330	59.16***	6.7
H-837 × "	lg	п	"	134	62	196	4.60*	31.6
	g-1	IV	,,	150	46	196	0.24	23.5
	la	VIII	**	150	46	196	0.24	23.5
	d(t)		"	186	10	196	41.39***	5.1
H-838 × "	<i>d</i> -2	п	"	214	78	292	0.46	26.7
	la	VIII	"	215	77	292	0.29	26.4
	d(t)		"	241	51	292	8.84**	17.5
H-839 \times "	d-2	п	"	184	62	246	0.01	25.2
	lg	п	"	167	79	246	6.64**	32.1
	bc-1	XI	"	177	69	246	1.22	28.0
	d(t)		"	219	27	246	25.80***	11.0
H-840 × "	lax	Ш	"	164	65	229	1.40	2 8 .4
	d(t)		"	223	6	229	61.17***	2.6
H-841 × M-51	lg	Π	"	160	109	269	34.56***	40.5
	tri	X	"	216	53	269	4.03*	19.7
	dl	X1	"	202	67	269	0.00	24.9
	d(t)		"	254	15	269	54.13***	5.6
N-105 \times "	st-1	I	"	223	74	297	0.00	24.9
	lg	п	"	171	126	297	48.09***	42.4
	d(t)		"	274	23	297	47.17***	7.7
$AC-7 \times "$	d(t)		"	296	30	326	43.39***	9.2
M-51 ×H-79	d-2	Π	"	214	73	287	0.03	25.4
	lg	π	"	204	83	2 87	2.35	28.9
	la	VIII	"	213	74	287	0.09	25.8
	bc–1	XI	"	223	64	287	1.12	22.3
	d(t)		"	248	39	287	19.93***	13.6

TABLE 3. Segregations of marker genes in F_2 populations of the crosses between M-51 and testers

*, **, *** Significant at the 5%, 1% and 0.1% levels, respectively.

Cross combination	On	+	z-5	Total	Indepencence X ²
H-836×M-51	d(t)	308 1	0 21	308 22	313.98***
H-837× "	$d^+_{(t)}$	186 0	0 10	186 10	196.00***
H-838× "	d(t)	$241 \\ 7$	0 44	241 51	244.81***
H-839× "	d(t)	219 6	0 21	219 27	186.23***
H-840× "	$d^+_{(t)}$	221 0	2 6	223 6	170.21***
H-841× "	d(t)	254	0 13	254 15	231.31***
N-105× "	d(t)	269 1	5 22	$\begin{array}{c} 274\\23\end{array}$	226.03***
A C−7× »	$d^+(t)$	295 3	$1 \\ 27$	296 30	278.92***
M-51 ×H-79	$d^+(t)$	248 2	0 37	248 39	270.10***
Total	d^+	$\begin{array}{c} 2241 \\ 22 \end{array}$	8 201	2249 223	2112.81***

TABLE 4. Relationship between the segregations of zebra chlorosis, z-5, and tillering dwarf, d(t)

*** Significant at the 0.1% level.

TABLE 5. Relationship between the segregations of zebrachlorosis, z-5, and liguleless, lg

Cross combination	n	+	z-5	Total	Independence X ²
H-837×M-51	+ lg	124 62	10 0	134 62	4.87*
H-839× "	$_{lg}^+$	146 79	21 0	167 79	10.86***
H-841× "	$_{lg}^+$	147 109	$13 \\ 0$	160 109	9.31**
N-105× "	$_{lg}^+$	144 126	27 0	171 126	21.88***
M-51 ×H-79	$_{lg}^+$	167 83	37 0	204 83	17.28***
Total	$_{lg}^+$	728 459	108 0	836 459	64.69***

*, **, *** Significant at the 5%, 1% and 0.1% levels, respectively.

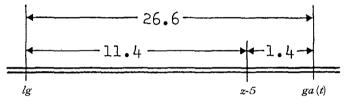
phase while the linkage between ga-10(t) and lg was a repulsion phase. Applying the formula advocated by IWATA *et al.*⁵⁰ recombination values between z-5 and ga-10(t) and between lg and ga-10(t) were calculated as 1.4%and 26.6% respectively by using the data due to F₃ progeny test as shown in Tables 6 and 7. A fertilizing ability, K was calcuated by the formulas, K=(p-2f)/(2f+p-1) in the coupling phase and K=(1-p+2f)/(2f-p) in the repulsion phase. Inserting the average frequencies (f) of z-5 or lg $(f_{z-s}=0.136, f_{lg}=0.289)$, K was calculated as 0.3161 for the former and 0.500 for the latter. The discrepancy of K values might be caused from the fact that a small part of the zebra chlorosis died at seedling stage.

A linkage relation between lg and z-5 was re-examined by using F_3 lines. From the segregations of lg and z-5 within F_3 lines normal phenotypic

TABLE 6. Lnikage relationship between the gene for zebra and the gametophyte gene depending on the segregation mode in F_3 lines of the cross, M-51×H-79

Phenotype	<i>z</i> -5-shortage <22%	Normal 22-28%	z-5-excess >28%			
		<u>z-5 ga</u>		Te4-1	Goodne	ss of fit
Genotype	<u>z-5 ga</u>	+ ga	<u>z-5 +</u>	Total	χ2	р
	+ +	<u>z-5 +</u> + +	+ ga			
		·····				
Obs. no. of lines	136	2	1	139		
Expected freq.	(1-p) ²	2p (1-p)	\mathbf{p}^2			
Cal. (p=1.4%)	135.135	3.838	0.027		35.95	< 0.001

TABLE 7. Linkage relationship between lg and the gametophyte gene depending on the segregation mode in F₃ lines of the cross, M-51×H-79


lg-shortage <22%	Normal 22–28%	lg-excess >28%			
	lg ga		T-4-1	Goodne	ss of fit
lg ga	+ ga	<u>lg</u> +	Total	χ2	р
+ +	lg +	+ ga			
	+ +				
14	49	8 2	145		
$\mathbf{p^2}$	2p (1-p)	(1-p) ²			
10.26	56.62	78.12		2.58	0.3-0.2
	$\frac{lg ga}{+ +}$ 14 p^{2}	$\frac{lg}{lg} \frac{ga}{ga} + \frac{lg}{ga} \frac{ga}{lg} + \frac{lg}{ga} \frac{ga}{lg} + \frac{lg}{ga} \frac{lg}{lg} + $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{lg}{lg} \frac{ga}{ga} \xrightarrow{lg} \frac{lg}{lg} \frac{ga}{f} \frac{lg}{f} \frac{ga}{f} \frac{lg}{f} \frac{ga}{f} \frac{lg}{f} \frac{f}{f} \frac{ga}{f} \frac{ga}{f} \frac{lg}{f} \frac{f}{f} \frac{f}{f} \frac{ga}{f} \frac{f}{f} \frac{ga}{f} \frac{f}{f} \frac{f}{$	$\frac{lg}{lg} \frac{ga}{ga} + \frac{lg}{lg} \frac{ga}{a} + \frac{lg}{ga} + \frac{lg}{a} + \frac{lg}{ga} + \frac{lg}{a} + \frac{lg}{ga} +$

450

Genotyse -	++++	+++lg	+z-5++	+z-5+lg	Total	Goodnes X ²	ss of fit
Obs.	0	20	14	125	159		
Cal. (1:2:2:4)	17.67	35.33	35.33	70.67		78.968	< 0.001
Cal. (R.C.V.=11.4%) 1.027	15.956	15.956	126.061		2.301	0.6-0.5

TABLE 8. Linkage relationship between z-5 and lg

plants in F_2 were classified as shown in Table 8. The recombination value between lg and z-5 was estimated as 11.4% in the repulsion phase. The order of the three gene locus, lg, z-5 and ga-10(t) were estimated as follows:

Thus, it is probable that the both genes, z-5 and d(t) which were located in the second linkage group were induced simultaneously by the chemical mutagen and that the gamtophyte gene, ga-10(t) was involved in the mutant strain M-51.

2. Zebra necrosis

There are various kinds of necrosis and discoloration of leaf blade and sheath. These genes are denoted as bl or spl series and the specific symbols such as sl (sekiguchi lesion) and ysl (yellow leaf spot). The mutant character resembled the zebra necrosis in maize^{1,2}. Therefore the authors adopted the gene symbol, zn. In the cross combination ivolving the mutant strain M-52, F_1 plants showed a normal phenotype and F_2 segregations indicated a monogenic ratio, 3:1 for normal vs. zebra necrosis (Table 9). In two

Cross combination	Phenotype Genotype	Normal +	Zebra necrosis <i>zn</i>	Total	Goodnes X ² (3:1)	s of fit p
H-21 ×M-52	Obs.	188	64	252	0.02	0.90-0.80
H-606× "	Obs.	226	73	299	0.05	0.900.80
Total	Obs.	414	137	551	0.01	0.950.90

TABLE 9. Segregations of zebra necrosis in F_2 populations of the crosses between M-52 and testers

Homogenity: $\chi^2 = 0.07$, d. f. = 1, p = 0.8-0.7.

Gene pair A B	Linkage phase	R. C. V.		F_2 segregation				T. 1	Goodness of fit			
		(%)		AB	Ab	aB	ab	Total	Ratio	χ2	p	
C ^{Br} 2	zn			Obs.	122	61	66	3	252	9:3:3:1	24.51	>0.00
		Rep.	20.2	Cal.	128.58	60.43	60.43	2.57	252.01		0.92	0.90-0.80
bl-1	"	Rep.	52.9	Obs.	140	45	48	19	25 2	9:3:3:1	0.81	0.90-0.80
nl-1	"	Coup.	49.2	Obs.	143	48	45	16	252	9:3:3:1	0.13	0.99-0.98
H-606	5×M-	52				_						
Plw	zn	Coup.	55.7	Obs.	159	57	67	16	299	9:3:3:1	3.04	0.40-0.30
lg	"	Rep.	59.4	Obs.	179	48	47	2 5	299	9:3:3:1	5.45	0.20-0.10
nl-1	"	Coup.	43.8	Obs.	172	49	54	24	2 99	9:3:3:1	2.56	0.50-0.40
Hg	"	Coup.	52.8	Obs.	165	56	61	17	2 99	9:3:3:1	0.65	0.90-0.80

TABLE 10. Combined segregations between zn (zebra necrosis) and marker genes in F_2 populations

 $H-21 \times M-52$

H

kinds of cross combinations, combined segregation ratios were examined to detect the linkage relations. As shown in Table 10, it is evident that the gene, zn has a linkage relation with the gene C^{Br} (Chromogen fo anthocyanin color) having a recombination value of 20.2% in the repulsion phase.

Discussion

As to the genes for zebra characters, two genes (z-1 and z-2) are alloted to the eighth linkage group and z-3 belongs to the eleventh linkage group^{3,4,6,7,13)}. In addition, it was found that z-4 is located on chromosome 12 by trisomic analyses.⁸⁾ Since it was indicated that z-5 belongs to the second linkage group, a new gene loci was alloted for the zebra chlorosis. However, the plants possessing a genotype of z-5 indicates a heavy chlorosis at the seedling stage. There are two possibilities that these chlorophyll aberrations are caused by the pleiotropic action of z-5 and the complete or close linkage with the gene of different kinds of chlorophyll aberration such as virescence. Further experiment is needed to discriminate the pleiotropic action and the linkage relation. It is already known that ga-6 and d-3 belong to the second linkage group (TAKAHASHI 1982). Since ga-10 (t) and d(t) inserts their actions similar to ga-6 and d-3, respectively, genic identification is now being conducted to elucidate the allelism.

It was shown that both zebra chlorosis and tillering dwarf were induced simultaneously by EI. It is an interesting fact that the different gene mutations occurred in the same linkage group.

It was found that the gene for zebra necrosis, zn belongs to the first linkage group. Some necrosis characters are caused by the gene or genes from *bl*- or *spl*-series. Though *spl-4* belongs to the first linkage group, relatively large reddish brown spots were different from those caused by zn. From the above finding, both characters can be used as markers for linkage analyses.

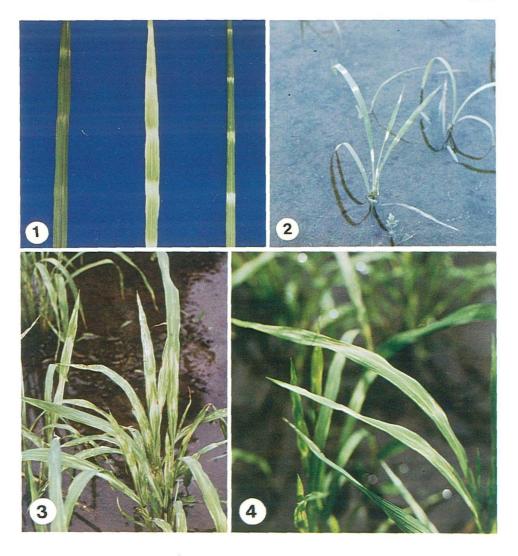
Summary

Two mutant characters, zebra chlorosis and zebra necrosis were induced by artifical mutations. Though the anomalous segregation ratios were obtained from the crosses involving the mutant strain of zebra chlorosis, it was estimated that the single recessive gene, z-5 was linked with the gametophyte gene, ga-10(t) in the coupling phase. In addition, z-5 linked with lg for liguleless and d(t) for tillering dwarf and belonged to the second linkage group. The order of gene locus was estimated as lg-z-5-ga-10(t) in the second linkage group. Zebra necrosis was governed by a single recessive gene, zn which belongs to the first linkage group. Both of z-5 and zn can be used as marker genes for linkage study.

Acknowledgement

The authors wish to express the sincere thanks to Dr. N. SHINBASHI and Dr. M. MAEKAWA for their cooperation during the study.

Literature Cited


- 1. GIESHRECHT, J.: A second zebra-necrotic gene in maize. J. Hered. 56: 183-185. 1965
- 2. HOROVITZ, S.: Zebra necrosis. Maize Genet. Co-op. Newsletter 22: 42-43. 1948
- IWATA, N. and T. OMURA.: Studies on the trisomics in rice plants (Oryza stiva L.) III Relation between trisomic and genetic linkage groups. Japan J. Breed. 25 (6): 363-368. 1975
- IWATA, N. and T. OMURA.: Linkage studies in rice (Oryza sativa L.). On some mutants derived from chronic gamma irradiation. J. Fac. Agr., Kyushu Univ. 21: 117-127. 1977
- 5. IWATA, N. NAGAMATSU, T. and T. OMURA: Abnormal segregation of waxy and apiculus coloration by a gametophyte gene belonging to the first linkage group in rice. Japan. J. Breed. 14 (1): 33-39, 1964 (in Japanese with English summary)
- IWATA, N. OMURA, T. and H. SATOH.: Linkage studies in rice. The sequence of genes at the eighth and eleventh linkage groups. Jap. J. Breed. 28 (Suppl. 1): 170-171. 1978 (in Japanese)
- IWATA, N., H. SATOH and T. OMURA.: Linkage studies in rice. New genes belonging to the 11th linkage group. Jap. J. Breed. 29 (Suppl. 2): 182-183. 1979 (in Japanese)
- IWATA, N., H. SATOH and T. OMURA.: Linkage studies in rice. On some marker genes locating on chromosome 12. Jap. J. Breed. 33 (Suppl. 1): 114-115. 1983 (in Japanese)
- 9. KINOSHITA, T.: In Present Stutus of Genic Analyses in rice. Ed. T. OMURA, Fukuoka: 11-28. 1982 (in Japanese)
- MAEKAWA, M., T. KINOSHITA and M. TAKAHASHI: A new gamethophyte gene in the second linkage group of rice. Genetical studies on rice plant, LXXVI. J. Fac. Agr. Hokkaido Univ. 60 (2): 107-114. 1981
- NAKAGAHRA, M.: Genic mechanism on the distorted segregation of marker genes belonging to the eleventh linkage group in cultivated rice. Japan J. Breed. 22: 232-238. 1972
- OKA, H.: Analysis of genes controlling F₁ sterility in rice by the use of isogenic lines. Genetics 77: 521-534. 1974

- 13. OMURA, T. and N. IWATA.: Linkage studies in rice. On the linkage groups 8, 10 and 11. Jap. J. Breed. 22 (Suppl. 1): 43-44. 1972 (in Japanese)
- 14. TAKAHASHI, M.: Gene analyses and its related problems. Genetic studies on rice plant, LXXX. J. Fac. Agr., Hokkaido Univ. 61 (1): 91-142. 1982

Legend for Plate 1

- 1. Zebra chlorosis (leaf blade of adult plant)
- 2. Zebra chlorosis (young plant in paddy field)
- 3. Zebra necrosis (plant in paddy field.)
- 4. Zebra necaosis (leaf blade of adult plant)

T. KINOSHITA and I. TAKAMURE

