Title: EFFECT OF ETHEPHON ON GROWTH AND YIELD IN CAPSICUM ANNUUM L

Author(s): Bharadwaj, Gopal; Singh, K.P.; Chauhan, S.V.S.; KINOSHITA, Toshiro

Citation: Journal of the Faculty of Agriculture, Hokkaido University, 63(4), 383-385

Issue Date: 1988-10

Doc URL: http://hdl.handle.net/2115/13076

Type: bulletin (article)

File Information: 63(4)_p383-385.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
EFFECT OF ETHEPHON ON GROWTH AND
YIELD IN CAPSICUM ANNUUM L.

Gopal BHARADWAJ*, K. P. SINGH*, S. V. S. CHAUHAN*
and Toshiro KINOSHITA

Plant Breeding Institute, Faculty of Agriculture,
Hokkaido University, Sapporo 060, Japan

Received June 8, 1987

Introduction

Ethephon (2-chloroethyl phosphonic acid) is a well known plant growth
regulator used for increasing yield, promoting fruit maturity, improving colour
and advancing harvest timings4. This compound is known by several trade
names such as Acp 68–64, Amchem 66–329, CEPA and ethrel. Ethephon
is also known to induce flowering in quantitative short day plants9.

The present investigation has been undertaken to study the effect of
ethephon on growth and yield in Capsicum annuum L.

Materials and Methods

Capsicum annuum L. var. Pant C–1 were obtained from G. B. Pant
University of Agriculture and Technology, Pantnagar (Nainital). The seeds
are sown in earthen pots containing autoclaved soil. Foliar sprays of aqueous
solution of ethephon at 100, 200 and 300 ppm were made. For control
distilled water containing 0.1 Triton-X-114 was sprayed. Six sprays of
each concentration were made in the morning hours on plants at 4–5 leaf
stage once a week for six weeks. The first four treatments were made up
to run off level using 2.5 ml solution on each plant. The remaining two
treatments were made on the same plants up to run off level with 5 ml of
each concentration. Thus the total quantity of the chemical received by
each plant was 2.00, 4.00 and 6.00 mg in 100, 200 and 300 ppm ethephon
treated plants respectively. Pollen viability was tested at regular intervals
with Alexander’s staining method10. Data on the vegetative characters (plant
height, leaf size and number of lateral branches per plant) and reproductive
characters (days taken to first flower, number of flowers, pollen viability and
fruits per plant) were obtained from treated and untreated plants. Data thus

* Department of Botany, R. B. S. College, Agra-282 002, India.
Results and Discussion

The effect of ethephon on growth and yield on *Capsicum annuum* is given in Table 1.

It is clear from Table 1 that the plants treated with all three concentrations of ethephon exhibited a significant inhibition in height. Maximum inhibition in height (15.25 cm) was recorded in plants treated with 300 ppm ethephon solution (Fig. 1) as compared to untreated plants (Fig. 4) with 21.86 cm height. The leaf size of the treated plants was also reduced significantly. The minimum reduction in leaf size was shown by plants treated with 300 ppm ethrel. These findings are supported by the results of earlier workers\(^5,6\). The number of lateral branches in ethrel treated plants increased and the plants became much more bushy in appearance (Figs. 2, 3 and 4).

It is also evident from Table 1 that all three concentrations of ethephon induced early flowering. However, the number of flowers per plant and fruits per plant increased with the increase in the concentration. These findings

Table 1. Effect of ethephon on growth and yield of *Capsicum annuum* L.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Plant height (cm)</th>
<th>Leaf size (cm)</th>
<th>Number of branches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length</td>
<td>Width</td>
</tr>
<tr>
<td>Control</td>
<td>21.86 ±0.70</td>
<td>6.15 ±0.14</td>
<td>2.54 ±0.20</td>
</tr>
<tr>
<td>100 ppm</td>
<td>17.74**±0.73</td>
<td>5.75 ±0.15</td>
<td>2.18**±0.18</td>
</tr>
<tr>
<td>200 ppm</td>
<td>16.10**±0.59</td>
<td>5.27 ±0.33</td>
<td>2.03**±0.05</td>
</tr>
<tr>
<td>300 ppm</td>
<td>15.25**±0.52</td>
<td>4.93**±0.07</td>
<td>1.85**±0.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Days taken to first flower</th>
<th>Number of flowers</th>
<th>Pollen viability (%)</th>
<th>Fruits/plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>118.20 ±5.63</td>
<td>15.40 ±1.01</td>
<td>92.50 ±1.50</td>
<td>7.00 ±1.09</td>
</tr>
<tr>
<td>100 ppm</td>
<td>103.80*±3.37</td>
<td>25.60**±3.00</td>
<td>79.04**±1.50</td>
<td>10.60 ±1.01</td>
</tr>
<tr>
<td>200 ppm</td>
<td>97.20*±3.81</td>
<td>28.80**±1.30</td>
<td>73.37**±1.44</td>
<td>12.60**±1.04</td>
</tr>
<tr>
<td>300 ppm</td>
<td>93.40*±6.08</td>
<td>36.80**±0.74</td>
<td>68.92**±0.46</td>
<td>18.60**±1.02</td>
</tr>
</tbody>
</table>

± Standard deviation.
* Significant from control at 5% level.
** Significant from control at 1% level.
are supported by those of YADAV in *Abelmoschus esculentus*.

The viability of pollen in treated plants decreased with the increase in the concentration of ethephon. The percentage of pollen viability was 92.50, 79.04, 73.37 and 68.92 in control, 100, 200 and 300 ppm ethephon treated plants respectively. These findings are also supported by earlier findings of YADAV and SAXENA. The number of fruits per plant increased with the increase in the concentration of ethephon. Maximum number of fruits per plant was shown by plants treated with 300 ppm ethephon.

Summary

The effect of ethephon (100, 200 and 300 ppm) on growth and yield in *Capsicum annuum* was studied. All the treatments caused inhibition in plant height and leaf size. However, the number of lateral branches in treated plants increased to make plants bushy. Ethephon treatments induced early flowering and increased the number of fruits per plant. There was a slight reduction in pollen viability of treated plants.

Acknowledgements

Our grateful thanks are due to Dr. J. S. DIHAKARE, Head, Dr. S. N. CHATURVEDI, Emeritus Scientist, Department of Botany and Dr. M. SINGH, Principal, R. B. S. College, Agra for encouragement and facilities.

Literature Cited

Explanation of plates

Figs. 1–4. Effect of ethrel on *Capsicum annuum* L.

Fig. 1. Untreated plant.

Fig. 2. 100 ppm ethrel treated plant.

Fig. 3. 200 ppm ethrel treated plant.

Fig. 4. 300 ppm ethrel treated plant.