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Introduction 

In agricultural engineering, we usually deal with spatially distributed data in 
agricultural fields. The relation between spatial coordinate (x, y) and spatially 
distributed parameter obtained in the filed is recognized by a type of non linear 
mapping. Neural network model is getting popular as a non linear regression 
tool. The application of neural network modeling has been receiving increased 
attention in many engineering fields l

)-4). It is suggested that the neural network 
model can be applied to many types of non-linear maps, if the pertinent variables 
were adjusted properly. Spatial distribution of infiltration data can be recog­
nized as a kind of non-linear mapping between infiltration data and spatial 
coordinate. It is very profitable to obtain contour map of agricultural field 
parameter from limited discreate data5

)-7). In this study, neural network model 
was applied to spatially dependent final infiltration rate. The results showed 
that neural network modeling can be used to describe the spatial variability of 
infiltration data. It was also shown that the neural network model can easily be 
used for spatial interpolation and the contour map was clearly obtained. 

Water Infiltration Data 

The water infiltration data were collected using double ring infiltration tests 
conducted in a Yolo Loam soil near U. C. Davis campus to investigate the spatial 
variability of water infiltration data. The cumulative infiltration was represent· 
ed by integral of Hortion's equation : Q = Ao(1- e- C

') + AI t in all cases tested, 
where Q(mm) is cumulative infiltration; t is time (h) ; Ao, C, and Al are empirical 
coefficients. Sixty-three infiltration tests were conducted over a period of 21 
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days. Each infiltration datum was collected for a period of 24 hours. Unfortu­
nately, five of 63 data sets were not used, resulting in 58 good data sets which 
were used in this analysis. Sakai et. a1.B

) and Upadhyaya et. a1.9
) have described 

the double ring infiltration test procedure in more detai1. Sakai et. a1. IO
) found that 

neither the coefficient Ao nor C was spatially dependent. However, the final 
infiltration rate Al was found to be spatially variable. In this study, therefore 
the spatially dependant final infiltration rate Al was analyzed using neural 
network mode1. Spatial distribution of the data are shown in Figure l. 
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Fig. 1. Spatial distribution of infiltration coefficient Al 

Neural Network Model 

1. Neuron model 

21 

A neuron model consists of multilayered network as shown in Figure 2. The 

S I (t) --______ 
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Fig. 2. Neuron model 
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potential UI(t) of the neuron is given by the weighted summation of all former 
neuron units and offset. The output of a neuron Zl is a sigmoid function of its 
potential UI. 

2. Network structure 

Ul(t)= }2Wij(t)SjU)+ 8; 
Zi(t)=/({u;(t)} 

/(x)=l/ {I +exp( -x)} 

The field was divided into five blocks and neural network model was con­
structed for all the blocks. The neural network has three layers such as input 
layer, hidden layer and output layer (Figure 3.). The x and y coordinate data 
were normalized to the values from 0 to 1. The hidden layer has 7 neurons while 
the outer layer has one. This is a feed forward structure in one direction from 
the input layer to the output layer. Potential Sk and output Ok of unit k on the 

Field Co·ordinate 
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Fig. 3. A three-layer neural network model 
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output layer are expressed as follows; 
Sk=~ VkjHj + Yk 

Ok=!(Sk) 
where, Vkj : a weight value 
Hj : output of unit i on the hidden layer 
Yk : offset of unit k on the output layer 
Potential Uj and output Hj of unit j on the output layer are expressed as follows; 

Uj= ~ Wj]; + ej 

Hj=!(Uj) 
where, Ttj; : a weight value 
I j : output of unit i on the hidden layer 
()j : offset of unit k on the output layer 

3. Learning procedure 
The back propagation method was applied to adjust the weight and offset of 

all units in this neural network model. The total error function E to be minim­
ized was defined as follows: 

E= ~ ~(Tk-Ok)2 
Based on the steepest decent method, all weights and offsets were changed on 
each learning step as shown in the following equations: 

where, 

Vkj(t+1)= Vkj(t)+a8kH 

Yk(t + 1)= Yk(f)+ S8k 

Ttj;(t + 1) = Ttj;(t + 1) = Ttj;( f) + a()jI; 

EMf + 1)= Bj(t) + SOi 

8k=( Tk - Ok)Ok(l- Ok) 
()j=~ 8k VkjHj(l-Hj ) 

Regression and Interpolation on a 2D Space 

Using the back propagation method, connection weights and offsets of all 
units on the network were adjusted. Predicted and experimental data of Al are 
presented in Figure 4. The determined coefficient for the model was 0.913. It 
can be concluded that the predicted value by developed neural network model fits 
very well to the experimental data. Using the neural network model, it is easy 
to conduct the interpolation for spatially distributed AI' Contour map technique 
is shown in Figure 5. At every boundary, some discontinuity was observed. To 
eliminate this discontinuity, a neural network model must be constructed for the 
hole data (undivided). Clearly the neural network modeling can be a strong tool 
for creating non linear mapping of spatially distributed agricultural data. 
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Fig . 4. Variation of experimentally obta ined coefficient A, 
wi th coefficient A, predicted by the neural network 
model 
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Fig. 5. Contour ma p for A, illustrated by the neural network 
model 
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Conclusion 

Neural network modeling was applied to spatially distributed water infiltra­
tion data. The constructed neural network model has three layers-input, hidden 
and output layers. The input layer has two neurons corresponding to x and y 

coordinate. The hidden layer has seven neurons and the outer layer has a single 
neuron. 

The back propagation method was applied to adjust the weights and offsets 
of all units on the model. Predicted data showed good agreements with their 
experimental data with a very high coefficient of 0.913. Using the neural net­
work model, it is easy to conduct the interpolation and illustrate the contour map 
for spatially distributed AI' The neural network modeling is a strong tool for 
creating non linear mapping of spatially distributed agricultural data. 
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