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We study a synchronization of coupled oscillators in quenched random potential by nu-
merical simulations as a model of sliding charge density waves and flux line lattices. By
changing external driving force, we find a percolation transition of a cluster with a same
frequency in a finite time observation. Percolating cluster, however, becomes unstable in the
long time limit while finite size systems fall into limit cycle motion.

Collective translational motion of periodic systems in condensed matter such
as charge density waves (CDW)1) and flux line lattices (FLL)2) has rich physics
on an aspect of nonlinear dynamics with large degrees of freedom. The spatial
periodicities of these systems are destroyed by random pinning potential originated to
impurities or lattice defects. They also yield spatially inhomogeneous dynamics, so-
called “plastic flow”, under an external driving force, such as electric field for CDW.
It is argued that these systems show a solidification transition in nonequilibrium
steady state as driving force is increased.3),4) This ordered state is called “moving
solid”. In this article, we numerically investigate this transition as a synchronization
problem of coupled oscillators in quenched random potential.

At first, we introduce a model to describe the dynamics of periodic systems,
which is called driven random-field XY model.5)–8) Phase field θ(r, t) is employed
as a dynamical degree of freedom, with which a deformed density wave is expressed
as ρ0 cos

(
q · r + θ(r, t)

)
. Here q is a reciprocal lattice vector. The translational ve-

locity of periodic structure is proportional to phase velocity as θ̇/q||. We suppose an
existence of semi-macroscopic domains, in which phase is always uniform. The inter-
action energy between neighboring domains are supposed to be sinusoidal coupling,
1-cos(θi − θj), which has 2π translational symmetry for phase difference. The phase
variables are regularly put on the three dimensional (d = 3) simple cubic lattice in
periodic boundary condition. The overdamped equations of motion for the phases
of domains are as follows.

θ̇i = − J

2d

∑

j

sin(θi − θj) − sin(θi − βi) + f .

The first term on the right hand side indicates nearest neighbor coupling. In this
article, we show the results for J = 1.0. The second term is a random pinning force
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Fig. 1. (a) The fraction of connected bonds as a function of driving force. Uniform initial condition

is employed. The horizontal line indicates p(f, T ) = pc = 0.10. Dotted line shows p(f, T ) ∝
exp(f/0.025). (b) The relation between the fraction of connected bonds and driving force. Both

sweeping up and down cases are shown for several system sizes, L=32, 64 and 128.

which prevents from homogeneous oscillation. Here, βi’s are introduced as uniform
random variables between 0 and 2π. The last term f is an external driving force. By
integrating these equations numerically, we investigate f dependence of dynamics in
steady state.

Above depinning threshold force fT = 0.10, some of sites are depinned.7) For f
slightly larger than fT , moving and stopping sites coexist in a same system. Time
averaged local DC velocity, ωi

DC = 〈θ̇i〉time, is spatially non-uniform and the motion
of each site is intermittent. As the driving force becomes larger and the velocity
increases, the motion becomes spatially uniform and temporally periodic. The effect
of pinning force becomes less important because random potential, cos(θi(t)− βi) ≈
cos(ωi

DCt − βi) fluctuates so rapidly that the system cannot follow the change.
To argue the spatial correlation of dynamics quantitatively, we remark on the

phase slip process as mentioned below. When the velocities are different between
neighboring domains, the phase difference between them advances by ±2π at certain
instance. This is called phase slip, which does not leave a change in coupling energy
on the bond and is related to plastic deformation of the lattice.

We regard a bond between nearest neighbor sites (i, j), as connected one if phase
slip does not occur between i and j, i.e., ∆ωi,j

DC = |ωi
DC−ωj

DC| < 2π/T . Here T is an
observation time. We analyze percolation of clusters connected with such bonds, in
other word, percolation of oscillators with same frequency. Percolating phase, which
has macroscopic comoving cluster, is regarded as the moving solid phase.

In Fig. 1(a), the fraction of connected bond p(f, T ) for various T is plotted as
a function of f . p(f, T ) exponentially increases with f and decreases as a power
function of T as far as p(f, T ) is not too small and not too large. As mentioned
later, percolation transition occurs when p(f, T ) equals pc(= 0.10) independently of
T therefore a critical driving force fc depends on observation time.

In the vicinity of f = flc ∼ 0.88, p(f, T ) rapidly saturates to unity even for very
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Fig. 2. Time evolution of 〈cos(θi(t)〉i in steady state. Black and gray line indicates random and

uniform initial conditions, respectively. The mean oscillation periods, 2π/〈ωi
DC〉i, are 2.14 and

2.00.

large T . Then fc does not depend on T . For f > flc, the whole system shows periodic
motion then intermittent phase slip is suppressed. Of course, ωi

DC is homogeneous
in this regime. flc is dependent on history and system size as shown in Fig. 1(b).
Each sample, i.e., set of random variables {βi}, shows a discontinuous hysteresis
loop like a first order transition although it is smoothed by sample averaging due
to the distribution of flc. Upper branch is obtained when starting from an uniform
initial condition [ θi(0) = 0 for all i ] or driving force is gradually decreased by
a constant step while lower branch appears with random initial conditions or f
increasing simulations.

In Fig. 2, time evolution of 〈cos[θi(t)]〉i at a driving force in the bistable region is
shown. The amplitude of oscillation indicates a spatial coherence of θi itself. With an
uniform initial condition (gray line), limit cycle oscillation appears while a random
initial condition yields chaotic motion,6) which has similar period with that of limit
cycle but no long time correlation.

flc becomes larger with the system linear dimension L for both type of initial
conditions. Therefore the upper branch, limit cycle motion, is realized due to the
finite size effect and is expected to disappear in the large size limit.

In Fig. 3(a) percolation probability P (f, Lsub, T ) is plotted as a function of
p(f, T ). Here Lsub(< L) is a linear dimension of subsystems in real sample that
is introduced to perform finite size scaling.8) Percolation probability is given by a
fraction of the subsystems which has a large connected cluster which reaches the
both sides of subsystems. There are universal curves which only depend on Lsub

then P (f, Lsub, T ) = P (p(f, T ), Lsub). The fixed crossing point, p = pc = 0.10, which
does not depend on Lsub is a critical point of percolation transition. This critical
fraction is smaller than that of the ordinary stochastic bond percolation transition
in three dimensions, pc = 0.2488.9) This is due to the attractive spatial correlation
of connected bonds. The critical force, however, increases logarithmically with T ,
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Fig. 3. (a) Percolation probabilities for various system sizes and observation times are plotted as

a function of fraction of connected bonds. The true sample size is 64 here. (b) The relation

between crossover time and driving force. Dotted line shows τ = exp[(f −0.60)/0.025]. Uniform

initial condition is employed for both (a) and (b).

fc(T ) = f0 log(T/t0). Here f0 is a constant value and equals 0.025.
We can clearly define a crossover time τ(f) = t0 exp(f/f0) from fc(τ(f)) = f .

It is plotted in Fig. 3(b). In short observation time than this time scale the system
behaves like a moving solid and for longer time scale it shows fluid like behavior.
This exponential dependence of the relaxation time can be interpreted as thermal
activation, τ ∝ exp(Vbarrier/kBTsk), with an effective “shaking temperature” Tsk ∝
f−1 ≈ ωDC which is suggested by Koshelev and Vinokur.4)

In finite size systems, τ(f) diverges at f = flc(L), above which the system takes
spatially uniform and temporally periodic motion. flc(L) becomes larger with L and
ef/f0 behavior of τ(f) holds for larger f . In a infinite size system the relaxation time
is expected to be finite for finite driving force and diverges at f = ∞.
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