<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>題目</td>
<td>テンサイの根重と糖分の間の負の相関関係に関する育種学的研究 Ⅹ 交雑と進抜に伴う葉部形質の変化について。</td>
</tr>
<tr>
<td>著者</td>
<td>津田 周彌</td>
</tr>
<tr>
<td>論文</td>
<td>北海道大学農学部農場研究報告 20: 53-63</td>
</tr>
<tr>
<td>発行年</td>
<td>1977-02-25</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2115/13340</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY
テノサツの根重と糖分の間の負の相関
関係に関する育種学的研究

X. 交雑と進抜に伴う葉部形質の変化について。

津田重彌
（農学部，工芸作物学教室）

緒言

著者らはさきにテノサツの品種、あるいは近親
交配系統から、根重または糖分について集団選抜
を行い、それに伴う葉の形質面の遺伝的変化を
調査した結果を報告した（津田・八戸 1973）。それ
によれば根重が増加した系統では 1 枚あたりの葉
面積の増加と、発生葉数の減少が認められ、一方
糖分の増加した系統では一般に上と逆の現象が認
められた。また、たまたまこれら選抜系統のなか
で根重と糖分の間の負の相関が認められなかったと
見做される系統では、上記葉部の 2 形質の間の負
の相関が生じていないことを見出した。

一方前報（津田・八戸 1975）においては、根重型品
種である KWS-E と高糖性の近親交配系統である
S-26 のそれぞれ任意の 1 個体の間で交雑した
F₂世代で、根重と糖分について選抜した F₂系統
のなかに両親選抜のいずれよりも根重が高く、糖
分が両親平均値に等しいか、それよりも高い値を
示す系統が見出されたことを報告した。

この報告ではこれら種後の根重・糖分の変
化と葉部形質の変化との関連性を検討した結
果を報告する。

材料と方法

使用した材料、交雑と選抜、それらの採種法、
ならびに形質調査のための栽培法は前報に記載し
た通りである。生育期間は 1971 年度は 4 月 30 日
播種、10 月 20 日収穫の 173 日間であり、1972 年
度は 5 月 9 日播種、10 月 7 日収穫の 150 日間で
あった。

葉部形質の調査方法は結果の項において、個別
に記載する。また分散分析をはじめとする統計処
理は主として北大大型計算機センターを利用して
行った。

結果

根重・ブリックス、両者の積で推定した糖量に
ついての結果を示すものとその論議は前報（津田、1975）に
記述したが、便宜上それらの詳細を Table 1 に再
掲する。この表から交雑と選抜によって、KWS-E
より根重が増加し、糖分（ブリックス）が同一か
より高い値を示す系統（F 24、HH20、HH51、
HH103、HH68、LH110 など）が生じることも判る。

平均 1 葉身重： 収穫時に調査個体（1 プロット
最高 15 個体）のそれぞれについて、最大の葉から
内方へ 1 枚の葉をとり、葉柄を切って、葉身の
新鮮重を測り、平均 1 葉身重を算出した。これは
1 葉身あたりの平均葉面積を代表する値である。
（津田・八戸 1973）。Table 2、第 2、3 列目に年
次ごとの各系統の平均値と群平均値（括弧で囲む
である）、第 4 列目には群平均値の 2 年間の平均を
示した。また Table 3、第 4、5 列に年次別に分
散分析の結果を示した。

年次間の比較をすると、親の 2 集団は根重の値
が著しく高い 1972 年度の方が大きな値を示した
が、交雑後代のほとんどの系統は 1971 年度の値が
大きい。これら親集団のなかでは S-26 の方が大
きい葉身重を示した。雑種後代について検討を
すると、F₂世代よりも根重について進抜が行われ
Table 1. Results of performance tests for two years

<table>
<thead>
<tr>
<th>Population or Line</th>
<th>Root weight(^a) (gr.)</th>
<th>Brix (%)</th>
<th>Suger Yield(^b) (gr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Population</td>
<td>(457)</td>
<td>(672)</td>
<td>(554)</td>
</tr>
<tr>
<td>KWS-E</td>
<td>462</td>
<td>684</td>
<td>562</td>
</tr>
<tr>
<td>S-26 (^c)</td>
<td>452</td>
<td>684</td>
<td>546</td>
</tr>
<tr>
<td>F(_2)</td>
<td>(534)</td>
<td>(735)</td>
<td>(626)</td>
</tr>
<tr>
<td>F03</td>
<td>729</td>
<td></td>
<td>19.4*</td>
</tr>
<tr>
<td>F05</td>
<td>522</td>
<td></td>
<td>19.6*</td>
</tr>
<tr>
<td>F06</td>
<td>534</td>
<td></td>
<td>19.6*</td>
</tr>
<tr>
<td>F11</td>
<td>699</td>
<td></td>
<td>19.6*</td>
</tr>
<tr>
<td>F20</td>
<td>777</td>
<td></td>
<td>19.0</td>
</tr>
<tr>
<td>F23</td>
<td>488</td>
<td></td>
<td>19.4*</td>
</tr>
<tr>
<td>F24</td>
<td>608*</td>
<td>710</td>
<td>657*</td>
</tr>
<tr>
<td>F27</td>
<td>526</td>
<td>797</td>
<td>647</td>
</tr>
<tr>
<td>F(_3) HH Group</td>
<td>(607)</td>
<td>(743)</td>
<td>(672)</td>
</tr>
<tr>
<td>HH20</td>
<td>717*</td>
<td>845</td>
<td>779*</td>
</tr>
<tr>
<td>HH24</td>
<td>655</td>
<td></td>
<td>19.8*</td>
</tr>
<tr>
<td>HH51</td>
<td>592*</td>
<td>737</td>
<td>665*</td>
</tr>
<tr>
<td>HH66</td>
<td>628*</td>
<td>678</td>
<td>653</td>
</tr>
<tr>
<td>HH68</td>
<td>738*</td>
<td>821</td>
<td>778*</td>
</tr>
<tr>
<td>HH103</td>
<td>683*</td>
<td></td>
<td>19.1*</td>
</tr>
<tr>
<td>LH Group</td>
<td>(562)</td>
<td>(762)</td>
<td>(655)</td>
</tr>
<tr>
<td>LH22</td>
<td>572*</td>
<td>722</td>
<td>647</td>
</tr>
<tr>
<td>LH27</td>
<td>645*</td>
<td>709</td>
<td>677*</td>
</tr>
<tr>
<td>LH29</td>
<td>472</td>
<td></td>
<td>19.7*</td>
</tr>
<tr>
<td>LH59</td>
<td>908*</td>
<td></td>
<td>18.9</td>
</tr>
<tr>
<td>LH82</td>
<td>561*</td>
<td>666</td>
<td>612</td>
</tr>
<tr>
<td>LH110</td>
<td>573*</td>
<td></td>
<td>20.0*</td>
</tr>
<tr>
<td>LH112</td>
<td>833</td>
<td></td>
<td>19.4*</td>
</tr>
<tr>
<td>LL</td>
<td>548</td>
<td>649</td>
<td>596</td>
</tr>
<tr>
<td>Mass selected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-RR</td>
<td>848</td>
<td></td>
<td>16.7#</td>
</tr>
<tr>
<td>K-SS</td>
<td>551</td>
<td></td>
<td>19.6*</td>
</tr>
</tbody>
</table>

\(^a\) Retransformed from mean of log x. \(^b\) Estimated from product between root weight (gr.) and Brix (%). \(^c\) S-26 could not be tested in 1972 because of shortage of seeds, and 2 progenies which were mass-selected for root weight and sugar contents respectively, were grown as the original population.
Table 2. Variation in some foliar traits caused by hybridization and/or selection.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Weight of a lamina (g)</th>
<th>Number of leaves developed in a season</th>
<th>Plant height (cm)</th>
<th>Lamina length (cm)</th>
<th>Lamina width (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original Population</td>
<td>(11.2)</td>
<td>(12.3)</td>
<td>(11.8)</td>
<td>(59.1)</td>
<td>(53.9)</td>
</tr>
<tr>
<td>KWS-E</td>
<td>(9.6)</td>
<td>11.8</td>
<td>10.7</td>
<td>56.8</td>
<td>51.2</td>
</tr>
<tr>
<td>S-96</td>
<td>12.8%</td>
<td>13.1%</td>
<td>62.4%</td>
<td>56.6%</td>
<td>46.0</td>
</tr>
<tr>
<td>F2</td>
<td>(10.6)</td>
<td>(9.9)</td>
<td>(10.2)</td>
<td>(66.6)</td>
<td>(58.8)</td>
</tr>
<tr>
<td>F00</td>
<td>10.1</td>
<td>10.1</td>
<td>9.0</td>
<td>48.6</td>
<td>21.6</td>
</tr>
<tr>
<td>F05</td>
<td>9.2</td>
<td>7.4</td>
<td>9.0</td>
<td>48.6</td>
<td>21.6</td>
</tr>
<tr>
<td>F06</td>
<td>10.8</td>
<td>10.8</td>
<td>9.5%</td>
<td>54.5</td>
<td>21.3</td>
</tr>
<tr>
<td>F11</td>
<td>9.5%</td>
<td>9.5%</td>
<td>9.5%</td>
<td>51.7</td>
<td>21.1</td>
</tr>
<tr>
<td>F20</td>
<td>10.6</td>
<td>67.2</td>
<td>50.7</td>
<td>22.4</td>
<td>9.8</td>
</tr>
<tr>
<td>F21</td>
<td>11.3%</td>
<td>10.3</td>
<td>65.3%</td>
<td>56.5%</td>
<td>50.4</td>
</tr>
<tr>
<td>F22</td>
<td>11.6%</td>
<td>11.6%</td>
<td>65.3%</td>
<td>59.8%</td>
<td>50.3%</td>
</tr>
<tr>
<td>F24</td>
<td>12.6%</td>
<td>12.6%</td>
<td>64.7%</td>
<td>59.5%</td>
<td>54.3%</td>
</tr>
<tr>
<td>F25</td>
<td>14.1%</td>
<td>14.1%</td>
<td>60.3%</td>
<td>53.3%</td>
<td>54.9%</td>
</tr>
<tr>
<td>F26</td>
<td>14.4%</td>
<td>14.4%</td>
<td>61.0%</td>
<td>52.6%</td>
<td>51.3%</td>
</tr>
<tr>
<td>F27</td>
<td>14.6%</td>
<td>14.6%</td>
<td>59.5%</td>
<td>49.5%</td>
<td>23.8</td>
</tr>
<tr>
<td>LH Group</td>
<td>(11.5)</td>
<td>(10.6)</td>
<td>(11.2)</td>
<td>(66.3)</td>
<td>(58.1)</td>
</tr>
<tr>
<td>LH22</td>
<td>11.3</td>
<td>8.7%</td>
<td>89.0%</td>
<td>56.3%</td>
<td>51.2%</td>
</tr>
<tr>
<td>LH27</td>
<td>10.6</td>
<td>10.7</td>
<td>67.3%</td>
<td>57.7%</td>
<td>56.2%</td>
</tr>
<tr>
<td>LH29</td>
<td>11.0</td>
<td>63.4%</td>
<td>51.7%</td>
<td>22.9</td>
<td>13.0</td>
</tr>
<tr>
<td>LH59</td>
<td>10.5</td>
<td>10.5</td>
<td>57.5%</td>
<td>48.5</td>
<td>23.3</td>
</tr>
<tr>
<td>LH62</td>
<td>10.9</td>
<td>10.9%</td>
<td>69.2%</td>
<td>58.2%</td>
<td>49.7%</td>
</tr>
<tr>
<td>LH110</td>
<td>14.0%</td>
<td>12.4</td>
<td>49.5%</td>
<td>47.3</td>
<td>23.4</td>
</tr>
<tr>
<td>LH112</td>
<td>14.0%</td>
<td>12.4</td>
<td>56.7%</td>
<td>49.7</td>
<td>23.4</td>
</tr>
<tr>
<td>LL Group</td>
<td>(11.5)</td>
<td>(10.6)</td>
<td>(11.2)</td>
<td>(66.3)</td>
<td>(58.1)</td>
</tr>
<tr>
<td>KWS-E-RR</td>
<td>12.1</td>
<td>46.2%</td>
<td>49.7</td>
<td>19.9</td>
<td>14.5</td>
</tr>
<tr>
<td>KWS-E-SS</td>
<td>8.4%</td>
<td>60.0%</td>
<td>45.7%</td>
<td>19.0%</td>
<td>12.1%</td>
</tr>
</tbody>
</table>

* * significantly larger value than that of KWS-E at 0.05 level. # * significantly smaller value than that of KWS-E at 0.05 level.

Table 3. Anova for foliar traits

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>3</td>
<td>2</td>
<td>19.1</td>
<td>8.8</td>
<td>33.4</td>
<td>46.1</td>
<td>61.7</td>
<td>36.9</td>
<td>2.3</td>
<td>6.9</td>
<td>5.7</td>
</tr>
<tr>
<td>Line</td>
<td>17</td>
<td>20</td>
<td>11.8</td>
<td>5.4</td>
<td>90.9</td>
<td>53.2</td>
<td>39.2</td>
<td>8.8</td>
<td>15.7</td>
<td>6.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Original vs. Hybrids</td>
<td>1</td>
<td>4.0</td>
<td>19.9%</td>
<td>135.6%</td>
<td>29.8</td>
<td>372.3%</td>
<td>0.5</td>
<td>145.6%</td>
<td>3.4</td>
<td>4.9%</td>
<td>0.9</td>
</tr>
<tr>
<td>F2 vs. F0</td>
<td>1</td>
<td>57.1%</td>
<td>10.6</td>
<td>200.8%</td>
<td>117.1</td>
<td>2.6</td>
<td>0.0</td>
<td>13.2</td>
<td>6.6</td>
<td>6.1%</td>
<td>1.3</td>
</tr>
<tr>
<td>Among F2 Groups</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>H vs. LL</td>
<td>1</td>
<td>4.8</td>
<td>0.0</td>
<td>4.3</td>
<td>61.5</td>
<td>41.8</td>
<td>15.2</td>
<td>0.8</td>
<td>0.5</td>
<td>0.0</td>
<td>3.0</td>
</tr>
<tr>
<td>HH vs. LH</td>
<td>1</td>
<td>53.4%</td>
<td>1.8</td>
<td>469.1%</td>
<td>183.9%</td>
<td>1.3</td>
<td>9.4</td>
<td>17.3</td>
<td>3.3</td>
<td>17.2%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Within group</td>
<td>12</td>
<td>5.1%</td>
<td>2.9</td>
<td>56.0%</td>
<td>18.2%</td>
<td>19.3%</td>
<td>5.9</td>
<td>5.2%</td>
<td>2.8%</td>
<td>2.5%</td>
<td>2.2%</td>
</tr>
<tr>
<td>F2</td>
<td>4</td>
<td>4.4%</td>
<td>0.4</td>
<td>65.8%</td>
<td>12.0</td>
<td>14.6</td>
<td>6.1</td>
<td>5.8%</td>
<td>2.3</td>
<td>3.7%</td>
<td>1.2</td>
</tr>
<tr>
<td>HH</td>
<td>4</td>
<td>2.9</td>
<td>5.1%</td>
<td>61.9%</td>
<td>42.6%</td>
<td>38.3%</td>
<td>7.9</td>
<td>6.7%</td>
<td>2.7</td>
<td>2.0%</td>
<td>2.3%</td>
</tr>
<tr>
<td>LH</td>
<td>4</td>
<td>8.0%</td>
<td>3.2%</td>
<td>40.2%</td>
<td>3.8</td>
<td>4.9</td>
<td>3.9</td>
<td>3.2%</td>
<td>2.9</td>
<td>1.5%</td>
<td>3.2%</td>
</tr>
<tr>
<td>KWS-E vs. S26</td>
<td>1</td>
<td>20.1%</td>
<td>2.6</td>
<td>63.5%</td>
<td>42.0%</td>
<td>16.9</td>
<td>1.0</td>
<td>27.1%</td>
<td>8.5%</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>K-RR vs. K-SS</td>
<td>1</td>
<td>20.4%</td>
<td></td>
<td>285.8%</td>
<td></td>
<td>24.3%</td>
<td></td>
<td>1.3</td>
<td>4.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-26 vs. S-26S</td>
<td>1</td>
<td>0.0</td>
<td>62.2%</td>
<td></td>
<td>0.1</td>
<td>2.2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>51</td>
<td>40</td>
<td>1.3</td>
<td>1.1</td>
<td>4.6</td>
<td>8.6</td>
<td>5.7</td>
<td>3.5</td>
<td>1.1</td>
<td>1.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Table 4. Correlation coefficients for weight of a lamina versus root weight or Brix.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Computed on the basis of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All strains</td>
<td>16</td>
<td>19</td>
<td>+.632**</td>
<td>+.129</td>
<td>−.052</td>
<td>−.066</td>
<td></td>
</tr>
<tr>
<td>Hybrid progenies</td>
<td>14</td>
<td>14</td>
<td>+.698**</td>
<td>+.228</td>
<td>−.383</td>
<td>−.173</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Correlation coefficients for number of leaves developed in a season versus root weight or Brix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Computed on the basis of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All strains</td>
<td>16</td>
<td>19</td>
<td>−.325</td>
<td>−.038</td>
<td>+.618**</td>
<td>+.562**</td>
<td></td>
</tr>
<tr>
<td>Hybrid progenies</td>
<td>14</td>
<td>14</td>
<td>−.580*</td>
<td>+.129</td>
<td>+.650**</td>
<td>+.419</td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Correlation coefficients for number of leaves developed during each successive growing period versus root weight, or Brix.

<table>
<thead>
<tr>
<th>Number of leaves developed during period of</th>
<th>Root weight</th>
<th>Brix</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Emergence to July 10</td>
<td>-.026</td>
<td>+.575**</td>
</tr>
<tr>
<td>4. July 11 to July 30</td>
<td>-.097</td>
<td>+.112</td>
</tr>
<tr>
<td>5. July 31 to Aug. 20</td>
<td>-.373</td>
<td>-.432</td>
</tr>
<tr>
<td>6. Aug. 21 to Sept. 10</td>
<td>-.594**</td>
<td>-.370</td>
</tr>
<tr>
<td>7. Sept. 11 to Harvest</td>
<td>-.423</td>
<td>-.085</td>
</tr>
</tbody>
</table>

2. Computed on the basis of hybrid progenies (df=14)

<table>
<thead>
<tr>
<th>Number of leaves developed during period of</th>
<th>Root weight</th>
<th>Brix</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Emergence to July 10</td>
<td>-.465</td>
<td>+.595*</td>
</tr>
<tr>
<td>4. July 11 to July 30</td>
<td>-.477</td>
<td>+.060</td>
</tr>
<tr>
<td>5. July 31 to Aug. 20</td>
<td>-.444</td>
<td>-.178</td>
</tr>
<tr>
<td>6. Aug. 21 to Sept. 10</td>
<td>-.688**</td>
<td>-.147</td>
</tr>
<tr>
<td>7. Sept. 11 to Harvest</td>
<td>-.607*</td>
<td>+.074</td>
</tr>
</tbody>
</table>
Fig. 1. Rapidity of leaf differentiation in each successive growing stage.

(Growing stage I; From emergence to July 10, II; From July 11 to July 31, III; From Aug. 1 to Aug. 20, IV; From Aug. 21 to Sept. 10, V; From Sept. 11 to harvest)

Table 7. Correlation coefficients for some foliar traits versus root weight, or Brix.

1. Computed on the basis of all strains.

<table>
<thead>
<tr>
<th>Between</th>
<th>Root weight</th>
<th>Brix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant height</td>
<td>+.416</td>
<td>+.377</td>
</tr>
<tr>
<td>Lamina Leng.</td>
<td>+.673**</td>
<td>+.333</td>
</tr>
<tr>
<td>Lamina Width</td>
<td>+.510*</td>
<td>+.190</td>
</tr>
</tbody>
</table>

2. Computed on the basis of hybrid progenies

<table>
<thead>
<tr>
<th></th>
<th>Root weight</th>
<th>Brix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant height</td>
<td>+.098</td>
<td>+.338</td>
</tr>
<tr>
<td>Lamina Leng.</td>
<td>+.596*</td>
<td>+.425</td>
</tr>
<tr>
<td>Lamina Width</td>
<td>+.450</td>
<td>+.279</td>
</tr>
</tbody>
</table>
Table 8. Correlation matrix for foliar traits in 1971.

<table>
<thead>
<tr>
<th>Trait</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>- .593**</td>
<td>-.543</td>
<td>-.451</td>
<td>-.604**</td>
<td>-.580**</td>
<td>-.453</td>
<td>.265</td>
<td>.604**</td>
<td>.719**</td>
</tr>
<tr>
<td>2</td>
<td>-.789**</td>
<td></td>
<td>.823**</td>
<td>.978**</td>
<td>.989**</td>
<td>.898**</td>
<td>-.002</td>
<td>.088</td>
<td>-.604**</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-.778**</td>
<td>.903**</td>
<td></td>
<td>.770**</td>
<td>.580**</td>
<td>.531</td>
<td>.535*</td>
<td>.296</td>
<td>.123</td>
<td>-.359</td>
</tr>
<tr>
<td>4</td>
<td>-.719**</td>
<td>.882**</td>
<td>.726**</td>
<td></td>
<td>.740**</td>
<td>.689**</td>
<td>.763**</td>
<td>.062</td>
<td>.044</td>
<td>-.390</td>
</tr>
<tr>
<td>5</td>
<td>-.760**</td>
<td>.927**</td>
<td>.791**</td>
<td>.853**</td>
<td></td>
<td>.869**</td>
<td>.856**</td>
<td>-.214</td>
<td>-.282</td>
<td>-.762**</td>
</tr>
<tr>
<td>6</td>
<td>-.783**</td>
<td>.967**</td>
<td>.826**</td>
<td>.846**</td>
<td>.823**</td>
<td></td>
<td>.928**</td>
<td>-.214</td>
<td>-.280</td>
<td>-.643**</td>
</tr>
<tr>
<td>7</td>
<td>-.742**</td>
<td>.942**</td>
<td>.765**</td>
<td>.862**</td>
<td>.934**</td>
<td>-.150</td>
<td></td>
<td>-.134</td>
<td>-.559**</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>-.393</td>
<td>-.194</td>
<td>-.578**</td>
<td>-.400</td>
<td>-.357</td>
<td>-.494</td>
<td></td>
<td>.790**</td>
<td>.450</td>
</tr>
<tr>
<td>12</td>
<td>.693**</td>
<td>.625**</td>
<td>.520**</td>
<td>.713**</td>
<td>.621**</td>
<td>.605**</td>
<td>.646**</td>
<td>.538*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>.741**</td>
<td>.757**</td>
<td>.669**</td>
<td>.657**</td>
<td>.833**</td>
<td>.712**</td>
<td>.716**</td>
<td>.382</td>
<td>.512</td>
<td></td>
</tr>
</tbody>
</table>

Trait; 1: Weight of a lamina. 2: Total number of leaves developed in a season. 3-7: Number of leaves developed in each successive growing period. 11: Plant height. 12: Lamina length. 13: Lamina width. *, **: Significant at 0.05 and 0.01 level respectively.

Below diagonal; Computed on hybrid progenies.
Above diagonal; Computed based on all lines tested.

Table 9. Correlation matrix for foliar traits in 1972

<table>
<thead>
<tr>
<th>Trait</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>-.493*</td>
<td>-.313</td>
<td>-.600**</td>
<td>-.442**</td>
<td>-.224</td>
<td>-.336</td>
<td>.338</td>
<td>.404</td>
<td>.785**</td>
</tr>
<tr>
<td>2</td>
<td>-.525*</td>
<td></td>
<td>.507**</td>
<td>.875**</td>
<td>.772**</td>
<td>.840**</td>
<td>.866**</td>
<td>-.279</td>
<td>-.118</td>
<td>-.573**</td>
</tr>
<tr>
<td>3</td>
<td>-.227</td>
<td>.595*</td>
<td></td>
<td>.553**</td>
<td>.036</td>
<td>.182</td>
<td>.380</td>
<td>-.178</td>
<td>-.161</td>
<td>-.438*</td>
</tr>
<tr>
<td>4</td>
<td>-.601*</td>
<td>.912**</td>
<td>.519*</td>
<td></td>
<td>.533</td>
<td>.565**</td>
<td>.737**</td>
<td>-.102</td>
<td>-.131</td>
<td>-.582**</td>
</tr>
<tr>
<td>5</td>
<td>-.705**</td>
<td>.789**</td>
<td>.144</td>
<td>.774**</td>
<td></td>
<td>.863**</td>
<td>.699**</td>
<td>-.393</td>
<td>-.331</td>
<td>-.601**</td>
</tr>
<tr>
<td>6</td>
<td>-.491</td>
<td>.901**</td>
<td>.416</td>
<td>.804**</td>
<td>.780**</td>
<td></td>
<td>.849**</td>
<td>-.128</td>
<td>.099</td>
<td>-.330</td>
</tr>
<tr>
<td>7</td>
<td>-.483</td>
<td>.815**</td>
<td>.524*</td>
<td>.760**</td>
<td>.725**</td>
<td>.842**</td>
<td></td>
<td>-.040</td>
<td>.183</td>
<td>-.410</td>
</tr>
<tr>
<td>11</td>
<td>.054</td>
<td>-.378</td>
<td>-.295</td>
<td>-.221</td>
<td>-.276</td>
<td>-.100</td>
<td>-.224</td>
<td></td>
<td>.574**</td>
<td>.448*</td>
</tr>
<tr>
<td>12</td>
<td>.664**</td>
<td>-.648**</td>
<td>-.434</td>
<td>-.732**</td>
<td>-.613*</td>
<td>-.377</td>
<td>-.483</td>
<td>.506*</td>
<td></td>
<td>.578**</td>
</tr>
<tr>
<td>13</td>
<td>.804**</td>
<td>-.620*</td>
<td>-.428</td>
<td>-.617*</td>
<td>-.763**</td>
<td>-.498**</td>
<td>-.599**</td>
<td>.315</td>
<td>.755**</td>
<td></td>
</tr>
</tbody>
</table>

The number of trait represents the said trait as in Table 8.

Below diagonal; Computed based on hybrid progenies.
Above diagonal; Computed based on all lines tested.
*, **: significant at 0.05 and 0.01 level respectively.

全発生葉数と各生育時期の出葉速度との相関は当然高い正の値を示したが、生育前期の出葉速度との関係は相対的に低い。また両年とも7月、8月の間の出葉速度は葉身長、葉幅に対して最も高い負の相関を示した。

論 議

供試した雑種集団の親のそれぞれが属するKWS-EとS-26が示す葉部形質の特性はこれまでの報告（津田・八戸1973）によく一致している。すなわちS-26の1葉身重はKWS-Eに比べてやや大きな値を示す一方、出葉数も多い。ただし生育初期の出葉速度はむしろKWS-Eの方が高い傾向を有している。

雑種後代の1葉身重はS-26に比べて小さいがKWS-Eに匹敵し、生育初期の出葉速度は両親のいずれよりも高い（Table 2, Fig. 1）。従ってこの時期の葉面積の展開は少なくともKWS-Eに比べて相当効率的であることが推定される。なかでも両年を通じて根数・ブリックスともKWS-Eより
Table 10. Multiple regression analysis

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Year</th>
<th>No. of lines</th>
<th>Standard regression coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weight of Lamina</td>
</tr>
<tr>
<td>Root</td>
<td>'71</td>
<td>18</td>
<td>+0.685**</td>
</tr>
<tr>
<td></td>
<td>'72</td>
<td>20</td>
<td>+0.500**</td>
</tr>
<tr>
<td></td>
<td>'71</td>
<td>16(1)</td>
<td>+0.725**</td>
</tr>
<tr>
<td></td>
<td>'72</td>
<td>16(1)</td>
<td>+0.542</td>
</tr>
<tr>
<td>Weight</td>
<td>'71</td>
<td>18</td>
<td>+0.500</td>
</tr>
<tr>
<td></td>
<td>'72</td>
<td>20</td>
<td>+0.500</td>
</tr>
<tr>
<td></td>
<td>'71</td>
<td>16(1)</td>
<td>+0.542</td>
</tr>
<tr>
<td></td>
<td>'72</td>
<td>16(1)</td>
<td>+0.542</td>
</tr>
</tbody>
</table>

\(R^* \) - Coefficient of determination corrected by degree of freedom
1) Computed on the hybrid progenies
2) I: From emergence to July 9, II: July 10 to July 30, III: July 31 to Aug. 20, IV: Aug. 21 to Sept. 10, V: Sept. 11 to harvest.
* *, **: significant at 0.05 and 0.01 level respectively.

Table 11. Multiple regression analysis (Continued) (Stepwise procedure)

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Year</th>
<th>No. of lines</th>
<th>Standard regression coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weight of Lamina</td>
</tr>
<tr>
<td>Root</td>
<td>'71</td>
<td>18</td>
<td>+0.757**</td>
</tr>
<tr>
<td></td>
<td>'72</td>
<td>20</td>
<td>+0.749**</td>
</tr>
<tr>
<td></td>
<td>'71</td>
<td>16(1)</td>
<td>+0.635</td>
</tr>
<tr>
<td></td>
<td>'72</td>
<td>16(1)</td>
<td>+0.635</td>
</tr>
<tr>
<td>Weight</td>
<td>'71</td>
<td>18</td>
<td>+0.757**</td>
</tr>
<tr>
<td></td>
<td>'72</td>
<td>20</td>
<td>+0.749**</td>
</tr>
<tr>
<td></td>
<td>'71</td>
<td>16(1)</td>
<td>+0.635</td>
</tr>
<tr>
<td></td>
<td>'72</td>
<td>16(1)</td>
<td>+0.635</td>
</tr>
</tbody>
</table>

\(R^* \) - Coefficient of determination corrected by degree of freedom
1) Computed on the hybrid progenies
2) Pooled data of growing period
* *, **: significant at 0.05 and 0.01 level respectively

高い値を示した系統（F 24, HH51, HH68, LH27など）は先に述べた結果と同様に高年齢時における葉の面積が大きく、大きい葉数と高く8月以前の出葉速度が高い値を示した。一方、KWS-Eに比べて根重は差が認められなかったが、ブリックスが有意に高い値を示した系統（F 27, HH66, LH22, LH82など）の大部分は著しく高い葉数と、比較的低い1葉身面積を示した。さらにKWS-Eに比べて、根重が有意に高く、ブリックスにおいては差を示さなかったHH20は1葉身面積が大となり、発生葉数はむしろ減少した。

以上のように種々の系統、あるいはそれから選抜を行った場合においても、前報（津田・八戸1973）において認められたのは、同様な葉の形状の相
関反応が認められた。つまり根重の遺伝的変化は葉身あたりの面積を示す形質に正の相関反応、出葉数など葉の分化機能を示す形質に負の相関反応をもたらした。一方ブリックスの遺伝的変化はこれ葉部形質に対して逆の相関反応をもたらした。そしてさらに根重と糖分の負の相関が破れた場合には、葉部形質のこれら両者の正の方向への変化が認められたことになる。

これら地上部の葉部形質の遺伝的変化は光合成その他の生理的機能の変化を通じて地下部の発育に影響することになる。その影響の程度を検討するためのような重複分析を行った。計算は全て北大学型計算機センター提供のSPSS (Statistical Package for the Social Science) 第5版記載の方法によった。

従属変数として根重とブリックスをそれぞれとり、独立変数としては葉身重と出葉速度を用いた。これは測定の簡便さ、自由度の大きさ、葉部形質相互間及びそれらの従属変数に対する相関の大きさを考えたためである。

Table 10 に6つの独立変数を同時に考慮した場合の標準重回帰を次に示し、また供試系統を全てについて計算した場合と、種族集団のみに限定した場合について示した。自由度調整済みの寄与率（奥野その他、1971）R^2の値は1971年度の方が高いが、全集団の根重の変異の60〜70％がこれら葉部形質の変動によって説明でき、種族集団のみについては50％前後であった。一方ブリックスの変異は全集団については50〜60％、種族集団のみについては40％前後の変動が、これら葉部形質の変動により説明可能であった。

ここで各独立変数の標準偏回帰係数を検討すると、第Ⅱ，Ⅴ期の出葉速度の値が小さい。そこでⅠ期とⅡ期，Ⅳ期とⅤ期の出葉速度をそれぞれ合算して、計算変数として、新たに逐次選択法によって重回帰を求めた。その結果がTable 10 に示してある。ここに示したのは残差分散が最少になった時点での結果である。R^2の値は1972年度の根重についての値が表9の値より減少しているが、その他の場合はむしろ増加した。いずれにしても根重の系統間変異の40〜80％、ブリックスのそれの20〜70％は1葉重・生育各期の出葉速度など測定の比較的容易な葉の形質の変化によって説明できることが示唆された。

各独立変数の標準偏回帰係数を検討すると根重についての回帰式では、生育初期の出葉速度が正の有意な値を示すことが多く、その値は1葉身重の値と匹敵していること、またこの形質のブリックスに対する標準偏回帰係数は負の値であるが極めて小さいことが示された。また一方1葉身重の偏回帰係数は、根重・ブリックスの両方の回帰式において正の値を示すことが多いとは興味がある。これら2つの葉部形質は相互間の負の相関も比較的低い（Table 8，9）。従って第3期以降の出葉数が一定に保たれるならば、これと形質の増加は根重・ブリックスの増加に寄与することになる。これは同一品種を用いる一般栽培において、初期の生育期間における葉面積の展開を促進する自然乃至人工的環境条件が、根重・糖分の向上に有利に作用するという事実と照応するものと言えるかもしれない。しかしこれが進歩の場合の具体的指標として役立つか否かはさらに検討を要するところで、今後の研究課題として残される。

摘 要

所謂「根重型品種」KWS-Eと高糖型系統S-26のそれぞれ1個体間の交雑F₃及びそれより根重と糖分のいずれか、または両者について進抜したF₄系統の葉部の形質の変化を根重・ブリックスの変化に関連づけて検討し以下の結果を得た。

1）1枚あたりの葉面積を表す1葉身重は根重の変化とは正、ブリックスの変化とは負の相関を示すのが一般であった。

2）葉身長、葉幅など1枚あたり葉面積に関連する形質も上と同じような関係を示したが、その程度は低かった。

3）生育期間全般に亘る出葉数は根重の変化とは負、ブリックスのそれとは正の相関を示した。生育期間を5期に分けた各期の出葉速度（出葉数/10日）は根重・糖分に対してほぼ同じような関連性を示していたが、生育期が進むに従い関連の度
Genetic studies on the negative correlation between root weight and sugar content in sugar beets

(X. correlated response of some foliar characters accompanied with hybridization and selection)

Chikahiro TSUDA

(Lab. of Industrial Crops)

(Faculty of Agriculture, Hokkaido University)

Summary

The author has indicated that the mass selections for root weight or sugar content of sugar beets caused the characteristic variation in some foliar traits (Tsuda and Hachinohe 1973). This report intended to inquire whether such correlated responses occurred in the maternal progenies selected from a hybrid population between the yield type variety KWS-E and a sibmated line with high sugar content. The hybridization and selections were made to seek out the efficient method for the simultaneous improvement in root weight and sugar content, and the detailed results have been reported in elsewhere (Tsuda 1975). As shown in Table 1, some maternal lines derived from selected F2 plants were superior in both root weight and Brix percentage to those of the variety KWS-E.

The results of the present investigation can be summarised as follows:

1) The increase in root weight by selection accompanied the increase in weight per lamina, lamina length, lamina width, and the decrease in number of leaves developed in a season, rapidity of leaf differentiation in the later growing period (Table 2.7 and Fig. 1).

2) As Brix percentage was increased by selection, the weight per lamina, lamina length, and lamina width decreased, on the other hand, the number of leaves developed in a season, rapidity of leaf differentiation increased (Table 2.7 and Fig. 1).

3) The relationship of the rapidity of leaf differentiation with root weight and Brix percentage became closer as the growing stage advanced (Table 6).

4) Generally speaking, the progenies showing the superiority in both root weight and Brix percentage in comparison with those of the variety KWS-E showed higher values in the weight of a leaf and rapidity of leaf differentiation in the earlier growing stage.

These results mentioned above are quite similar to those observed in mass selections.
5) The multiple regression analyses clarified that 40 to 60 percent of the genetic variation in the root weight, and 30 to 50 percent of that in the Brix percentage could be explained by the variation in these foliar traits operating jointly (Table 10 and 11).

6) The analyses also showed that the partial regression coefficients on the weight of a lamina and the rapidity of leaf differentiation during emergence to July 31 had the positive or very small negative values in two multiple regression equations of which dependent variables are the root weight and Brix percentage respectively.

These results suggest that the selection for the increase in these two foliar traits may be useful for the simultaneous improvement of both root weight and sugar content, provided that the rapidity of leaf differentiation in the later growing stage is held constant.