<table>
<thead>
<tr>
<th>項目</th>
<th>関数指導の一環としての高等学校数学「数列」の授業プラン【第三部 解説編】</th>
<th>[階差数列の研究を中軸に据えて]</th>
</tr>
</thead>
<tbody>
<tr>
<td>高橋</td>
<td>哲男</td>
<td>教授学の探究 [階差数列]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>階差数列の研究 [階差数列]</td>
</tr>
</tbody>
</table>
関数指導の一環としての
高等学校数学「数列」の授業プラン【第三部 解説編】

——階差数列の研究を中軸に据えて——

高 橋 哲 男
（神奈川学園大学情報メディア学部）

目次

1 数列 ................................................................. 110
  1.1 数列 ........................................................... 110
  1.2 規則性のない数列 ........................................... 111
  1.3 数列の項 ...................................................... 111
  1.4 数列の本質 .................................................... 111
2 階差数列 ............................................................ 111
  2.1 漸化式 ......................................................... 111
  2.2 階差数列の漸化式 .......................................... 112
  2.3 階差数列の公差 ............................................. 113
  2.4 階差数列の ................................. 113
3 階差数列 ............................................................ 115
  3.1 直線による平面の分割 ...................................... 115
  3.2 階差数列と ................................. 115
  3.3 階差数列の和 ............................................. 116
  3.4 平方数の和 ................................................ 118
4 等比数列 ............................................................ 118
  4.1 ハノイの塔 .................................................. 118
  4.2 等比数列の ................................. 119
  4.3 等比数列の和 ............................................. 120
  4.4 等比数列の階差数列 ...................................... 122
5 数列の箇有ベクトル .................................................. 122
  5.1 ハノイの塔と座標平面 ................................... 122
  5.2 漸化式と一次関数 ...................................... 123
  5.3 等有ベクトル ............................................... 125
  5.4 等有ベクトルと等数列 .................................... 126
6 数学的帰納法 .......................................................... 126
  6.1 (2^n) - 1 の問題 ............................................ 126
  6.2 (2^n) 変換ス盤問題 ....................................... 127
  6.3 変換ス盤問題の一般化 .................................... 127
  6.4 数学的帰納法 ............................................... 128
1 数列

数列を定義する。有限数列、無限数列の違いについても触れる。

問題1.
規則が簡単には表せない数列があることを知らせたい。そこで、\(\{d_n\}\)の規則を発見させる。
最初に\(\{d_n\}\)を出すと難しくて投げ出されるおそれはあるので、単純な規則をもつ\(\{a_n\}\),
\(\{b_n\}\),\(\{c_n\}\)をもってみ、\(\{d_n\}\)にも取り組んでみようと思わせる。
\(\{d_n\}\)は自然数のみを取る数列であり、偶数ならば半分にし奇数ならば3倍して1を加える操作を繰り返してできる。どんな自然数から始めてもこの数列はやがて1になる」という「角谷の問題」である。この問題をみせるのに、プログラミング教育の観点から「角谷の問題」はfor文（繰り返し文）とif文（条件判定文）の練習問題にもなる素材である。

\[
\{a_n\} : 20, 17, 14, 11, 8, [5], [2], [-1], [-4], [-7]
\]
規則：次々に3ずつ減らす。

\[
\{b_n\} : \frac{2}{27}, \frac{2}{9}, \frac{2}{3}, 2, 6, 18, 54, 162, 486, 1458
\]
規則：次々に3倍する。

\[
\{c_n\} : 1024, -512, 256, -128, 64, -32, 16, [-8], [-4], [-2], [1], \frac{1}{2}
\]
規則：次々に\(-\frac{1}{2}\)倍する。

\[
\{d_n\} : 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, [8], [4], [2], [1]
\]
規則：偶数ならば半分にし奇数ならば3倍して1を加える。

1. 足立恒雄「いわゆる「角谷の問題」について」（数学セミナー・リーディングス「代数学への招待」日本評論社、1979年参照。）
1.2 規則性のない数列
数列のほとんどは規則性がないことを伝える。このプリントで扱える数列の範囲がいかに狭いかを教える。今学習しているものがどんな学習内容の一部なのかを知らせることが、数列の授業に限らず重要であろう。
規則性のない数列の例が「西武ライオンズの順位」や「コイン投げ」である必然的理由はないが、まったく規則がなく各項が独立な場合（コイン投げ）と独立ではないと考えられる場合（西武ライオンズの順位）を並べることには意義があると思われる。

1.3 数列の項
第
\[ n \]
項という言い方は用いる。教科書にある「一般項」は必要ない。
「初項」も使わない。「初項」を第
\[ 0 \]
項にするか第
\[ 1 \]
項にするかであるが、第
\[ 0 \]
項にしてみる。
結局どちらでもいいのであるが、\( a_0 \)になることによって、等差数列、等比数列の \( a_n \) が、それぞれ
\[
\begin{align*}
    a_n &= a_0 + dn \\
    a_n &= a_0 r^n
\end{align*}
\]
になって、教科書のように \( n-1 \) が出てこないことのメリットがある。

問題2.
「数列は、規則と \( a_0 \) がわかれば決まる」ことを納得する問題である。

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>・ ・ ・</th>
</tr>
</thead>
<tbody>
<tr>
<td>( g_n )</td>
<td>9</td>
<td>28</td>
<td>14</td>
<td>7</td>
<td>22</td>
<td>11</td>
<td>34</td>
<td>17</td>
<td>52</td>
<td>26</td>
<td>・ ・ ・</td>
</tr>
<tr>
<td>( h_n )</td>
<td>12</td>
<td>6</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>・ ・ ・</td>
</tr>
</tbody>
</table>

1.4 数列の本質
集合と写像の概念を学んでいるれば、こういう説明もあってもいいのではないか。

2 等 差 数 列

2.1 減化式
規則性のない数列は扱えない。となると、数学で扱える数列では、(無規則な) 数の並びが先にあるのではなく規則の方が先にあり数列の本質を担っていると見るべきであろう。減化式はその規則を表現する。「本質的なもの、大切なものをまず教えよ」という教授的本原原則*2 に立ち、等差数列よりも前に減化式を教える。

*2 コメニウス『大教授学』などに述べられている。
問題3.
以前に書いた規則を定式化する。
\[ b_{n+1} = 3b_n \]
\[ c_{n+1} = \frac{1}{2} c_n \]

問題4.
\(a_0\)と漸化式から数列を決定する練習問題である。
(1). \(a_0 = 0\), \(a_{n+1} = a_n + 2\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>...</td>
</tr>
</tbody>
</table>

(2). \(a_0 = 1\), \(a_{n+1} = 2a_n\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>...</td>
</tr>
</tbody>
</table>

定理1. 「数列は、(漸化式と \(a_0\))がわければ決まる。」の下線部は空けており、生徒に埋めさせるようにしたい。

2.2 等差数列の漸化式
等差数列は、漸化式が \(a_{n+1} = a_n + d (a_{n+1} - a_n = d)\) という形で表される特殊な数列である。

問題5.
(1). \(a_0 = 4\), \(a_{n+1} = a_n + 3\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>28</td>
<td>31</td>
<td>...</td>
</tr>
</tbody>
</table>

(2). \(a_0 = -7\), \(a_{n+1} = a_n + 2\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>...</td>
</tr>
</tbody>
</table>

(3). \(a_0 = 5\), \(a_{n+1} = a_n - 4\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td>33</td>
<td>29</td>
<td>25</td>
<td>21</td>
<td>17</td>
<td>13</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>-3</td>
<td>...</td>
</tr>
</tbody>
</table>

問題6.
数列 \(\{d_n\}\)と同じ規則の数列の練習問題である。これは、等差数列との比較をさせるためである。あるもの（等差数列）の性質は、他のもの（等差数列でないもの）との相対性によって定まるものである。 \(\{d_n\}\) は、「任意の一項」で数列のすべての項を決めることができない。\(a_9 = 10\)は確定するが、\(a_2\)は20と3両方の可能性がありどちらかに確定しない。その事実を通じて、

—112—
等差数列の特性を浮かび上がりさせたい。

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_n</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>10</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>?</td>
<td>...</td>
</tr>
</tbody>
</table>

定理 2. ここでも下線部は空けておくようにする。

2.3 等差数列の公差
「等差数列の公差は、任意の（相異なる）二項がわかれば決まる」ことがわかる。公差が決まれば漸化式が決まり、したがって等差数列が決まる。

問題 7.
(1) \(a_5=6, \quad a_7=14 \quad \Rightarrow \quad d=4\)

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_n</td>
<td>-14</td>
<td>-10</td>
<td>-6</td>
<td>-2</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>...</td>
</tr>
</tbody>
</table>

(2) \(a_1=-3, \quad a_6=-7 \quad \Rightarrow \quad d=-2\)

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_n</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
<td>-7</td>
<td>-9</td>
<td>-11</td>
<td>-13</td>
<td>...</td>
</tr>
</tbody>
</table>

(3) \(a_4=-3, \quad a_9=-1 \quad \Rightarrow \quad d=2\)

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_n</td>
<td>-11</td>
<td>-9</td>
<td>-7</td>
<td>-5</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>...</td>
</tr>
</tbody>
</table>

(4) \(a_2=-4, \quad a_6=-4 \quad \Rightarrow \quad d=0\)

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_n</td>
<td>-4</td>
<td>...</td>
</tr>
</tbody>
</table>

定理 3. 等差数列 \(\{a_n\}\) は、任意の 2 項 \(a_i, a_j\)（\(i < j\)）がわかれば決まる。このとき、公差 \(d\) は、

\[
d = \frac{a_j - a_i}{j - i}
\]

2.4 等差数列の \(a_n\)

問題 8.
数列の \(a_n\) の式を求めるために、まず \(a_0\) を求める問題である。表向きは問題 5 と変わりがないが、問題 5 は等差数列の漸化式を意識しながら一項ごとに値を求めていったのに対し、ここで
教授学の探究、第22号

は、与えられた一項から直接 $a_0$ を導けるようにするのがねらいである。そのため、(3) の $a_{2005}$ のように項番号の大きい値を与えたり、(4) のように項番号を与えず $a_n$ を提示するようにしている。

(1). $a_1=23, \quad a_{n+1}=a_n+5$

$$a_0 = a_4 - 4 \times 5 = 3$$

(2). $a_6 = -3, \quad a_{n+1}=a_n-2$

$$a_0 = a_6 - 6 \times (-2) = 9$$

(3). $a_{2005}=50000, \quad d=4$

$$a_0 = a_{2005} - 2005 \times 4 = 41980$$

(4). $a_k=4, \quad d=3$

$$a_0 = a_k - k \times 3 = 4 - 3k$$

定理4. 公差 $d$ と任意の一項 $a_n$ がわかれば等差数列は決まるのだから、このとき当然 $a_0$ も決まっている。

$$a_0 = a_n - dn$$

となる。ここから、

$$a_n = a_0 + dn$$

という等差数列の $a_n$ が求められる。

問題9.

(1). $a_1=23, \quad a_{n+1}=a_n+5$

$$a_n = 3 + 5n$$

(2). $a_6 = -3, \quad a_{n+1}=a_n-2$

$$a_n = 15 - 2n$$

(3). $a_{2005}=50000, \quad d=4$

$$a_n = 41980 + 4n$$

(4). $a_k=4, \quad d=3$

$$a_n = a_0 + 3n$$
問題 10. 等差数列の $a_n$ が $n$ の一次式になることの逆を証明する問題である。

$$a_n = p + qn$$
$$a_{n+1} = p + q(n+1)$$

より辺々を引いて、

$$a_{n+1} - a_n = q$$

これは等差数列の定義そのものであるので、題意は証明された。

定理 5. (1) は問題 9 で、(2) は問題 10 で証明されている。

3 階 差 数 列

3.1 直線による平面の分割

問題 11. 平面を最大の数にわけようとするならば、
・ どの二直線も平行にならない。
・ どの三直線も一点で交わらない。

のようにすればよい。

(1) 4
(2) 7
(3) 11
(4) 16

後に示されるが、$n$ 本引いた場合の平面の分割数は、

$$\frac{n(n+1)}{2} + 1$$

となる。

(5) は、階差数列の規則性に気づいてもらうねらいがある。$(p_n)$ の階差数列が $1, 2, 3, 4, \cdots$ になっていることから、$p_0, p_1, p_2, p_3$ は求められるし、$p_{100}$ も、この場で計算する必要はないと時間がかければ求められることがわかるよ。

また、$p_0 = 1$ も忘れずに確認しておく。

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>$\cdots$</th>
<th>100</th>
<th>$\cdots$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_n$</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>16</td>
<td>22</td>
<td>29</td>
<td>37</td>
<td>46</td>
<td>$\cdots$</td>
<td>$\cdots$</td>
<td>$\cdots$</td>
</tr>
</tbody>
</table>

3.2 階差数列と $a_n$

階差数列を定義する。一般の数列と同じように、$b_0$ から始めることにする。

問題 12. 規則性がない (1) の例と、規則性がある場合を対比させる。ここでは、階差数列の規則性を求める必要はないが、(4) (5) (6) では階差数列が等差数列になっていることに触れておく。

また、$a_{\text{reel}}$ は求められるだろうかという問いは、階差数列の項を次々に足し合わせればいずれ
教授学の探究。第22号

求められるという答を期待している。次ページで、階差数列の和を用いた \(a_n\) の表し方をまとめることになる。

(1) 規則性はないが、もとの数列がわかる範囲で階差数列もわかる。
(2) 2,4,8,16,32,･･･(2^n)
(3) 6,12,20,30,42,･･･(この数列の階差数列が6,8,10,12,･･･の等差数列になる)
(4) 4,6,8,10,12,14,･･･(公差2の等差数列)
(5) 2,2,2,2,2,2,･･･(公差0の等差数列)
(6) 0,0,0,0,0,0,･･･(公差0の等差数列)

\[
\begin{align*}
&d_1-a_0=b_0 \\
&d_2-d_1=b_1 \\
&d_3-d_2=b_2 \\
&d_4-d_3=b_3 \\
&\vdots \\
&\therefore a_n-a_{n-1}=b_{n-1} \\
&a_n-a_0=b_0+b_1+b_2+\cdots+b_{n-1} \\
&a_n=a_0+(b_0+b_1+b_2+\cdots+b_{n-1})
\end{align*}
\]

定理6. 前ページで \(a_{2008}\) は求められるだろうかと問ったことの帰結である。
そして、数列の和を求める必要性について気づいてもらい、まず、等差数列の和の研究に入るのである。

3.3 等差数列の和

問題13. 等差数列の \(a_n\) の求め方を使って、最初に \(a_{100}\) を求める。そして、オーソドックスな行き方だが、

\[
\begin{align*}
S &= 2 + 5 + 8 + 11 + 14 + \cdots + 299 + 302 \\
S &= 302 + 299 + 296 + 293 + 290 + \cdots + 5 + 2
\end{align*}
\]

の片々を加えて

\[
\begin{align*}
2S &= 304 + 304 + 304 + 304 + 304 + \cdots + 304 + 304 \\
2S &= 304 \times 101 \\
S &= \frac{1}{2} \times 304 \times 101
\end{align*}
\]

問題14. 前の問題の一般化である。

定理7. 前ページの問題の結論を定理としてまとめておく。

\[
\frac{(2a_0+dn)(n+1)}{2}
\]

展開して \(n\) の二次式になることも確認しておきたい。

問題15. 定理7を使う練習問題である。

(1) \(a_0=7, d=6\) の等差数列の、\(a_0\) から \(a_{10}\) までの和。
関数指導の一環としての高等学校数学「数列」の授業プラン【第三部　解説編】

407

(2). \( a_0 = -10, d = 4 \) の等差数列の、\( a_0 \) から \( a_{20} \) までの和。

630

(3). \( a_0 = 5, d = 4 \) の等差数列の、\( a_0 \) から \( a_n \) までの和。

\[(5+2n)(n+1)\]

問題16. 自然数の和を求める問題である。

定理8. 自然数の和

\[0+1+2+3\cdots+n=\frac{n(n+1)}{2}\]

通常は1+2+3+……を思い浮かべるが、0+1+2+3+……としても、結果はよく知られている

\[\frac{n(n+1)}{2}\]

である。

問題17. 自然数の和の公式定理8.を使う練習問題である。

以下では、直線による平面の分割で得られる数列\(\{p_n\} \) が、階差数列が等差数列になることを確認しておく。

問題18. 階差数列が等差数列になる数列の \(a_n\) を求める練習問題である。

(1). 3, 4, 8, 15, 25, 38, 54, …

階差数列 \(\{b_n\}\) は、

\[1, 4, 7, 10, 13, 16, \cdots\]

\(b_0 \) から \(b_{n-1}\) までの和は、\(\frac{(3n-1)n}{2}\) で、

\[a_n=1+\frac{(3n-1)n}{2}\]

(2). -1, -7, -13, -17, -19, -19, -17, -13, -7, 1, 11, 23, 37, … 階差数列 \(\{b_n\}\) は、

\[-8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12, 14, \cdots\]

\(b_0 \) から \(b_{n-1}\) までの和は、\(\frac{(2n-18)n}{2}\) で、

\[a_n=1+\frac{(2n-18)n}{2}\]

いずれも \(n\) の二次式になることを確認する。

問題19. 上の問題の逆である。

\[a_n=pn^2+qn+r\]

\[a_{n+1}=p(n-1)^2+q(n+1)+r\]
教授学の探究，第22号

から辺々を取りて、

\[ a_{n+1} - a_n = (2p)n + (p + q) \]

となる。よって、階差数列 \( \{b_n\} \) は、\( b_0 = p + q \)、公差 \( 2p \) の等差数列である。

定理9. 問題18.と問題19.で証明済みの定理である。

3.4 平方数の和

問題20. 階差数列に平方数が出てくる数列である。

(1). \( \{b_n\} : 0, 1, 4, 9, 16, 25, 36, \ldots \)
(2). \( \{c_n\} : 1, 3, 5, 7, 9, 11, \ldots \)
(3). \[
\begin{align*}
  c_n &= 2n + 1 \\
  b_n &= n^2
\end{align*}
\]
(4). \[
\begin{align*}
  a_n &= \frac{1}{6} n(n-1)(2n-1)
\end{align*}
\]

定理10. 前ページの問題を解くなかでこの定理は導かれている。ただし、この問題の主眼は平方数の和の公式を求めることがよりはむしろ、階差数列の階差数列が等差数列になる数列は、\( n \) の三次式で表される（微分で言えば三次関数の二階微分が一次関数になる）ことを理解させる点にある。

問題21. 平方数の和の公式がわかったので、発展課題として立方数の和の公式も求めておく。

4 等比数列

4.1 ハノイの塡

ハノイの塡の問題を通して等比数列とその和を求めることを目指す。

問題22. 3枚くらいから初めて、2枚、4枚、5枚などに挑戦させる。

予想については、階差数列が等比数列になっていることを手がかりにするだろうと推定しているが、\( h_{n+1} = 2h_n + 1 \) の漸化式に気づく生徒もいるかもしれない。その漸化式が正しいことは後ほど確認するのだが、意見が出ればここで確かめてもよいく

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>( h_n )</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>15</td>
<td>31</td>
<td>63</td>
<td>127</td>
<td>\cdots</td>
</tr>
</tbody>
</table>
関数指導の一環としての高等学校数学「数列」の授業プラン【第三部 解説編】

(2).

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_n</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>...</td>
</tr>
</tbody>
</table>

4.2 等比数列の $a_n$

ハノイの塔の数列 $(h_n)$ の対等数列 $(i_n)$ を例として、等比数列を定義する。

問題23.

(1). $a_0=\frac{3}{16}$, $a_{n+1}=2a_n$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_n$</td>
<td>$\frac{3}{16}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{3}{2}$</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>48</td>
<td>96</td>
<td>...</td>
</tr>
</tbody>
</table>

(2). $a_0=2$, $a_{n+1}=\frac{1}{3}a_n$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_n$</td>
<td>486</td>
<td>162</td>
<td>54</td>
<td>18</td>
<td>6</td>
<td>2</td>
<td>$\frac{2}{3}$</td>
<td>$\frac{2}{9}$</td>
<td>$\frac{2}{27}$</td>
<td>$\frac{2}{81}$</td>
<td>...</td>
</tr>
</tbody>
</table>

(3). $a_0=5$, $a_{n+1}=-2a_n$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_n$</td>
<td>$-\frac{5}{2}$</td>
<td>$\frac{5}{8}$</td>
<td>$\frac{5}{32}$</td>
<td>$\frac{5}{16}$</td>
<td>$-\frac{5}{8}$</td>
<td>$-\frac{5}{4}$</td>
<td>$-\frac{5}{2}$</td>
<td>5</td>
<td>-10</td>
<td>20</td>
<td>...</td>
</tr>
</tbody>
</table>

定理11. 前ページの問題を通じて得られる定理である。ここでも下線部は空けておく。

問題24. 次ページでまとめられる定理を導く問題である。

(1). $a_0=6$, $a_n=12 \Rightarrow r=2$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_n$</td>
<td>$\frac{3}{16}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{3}{2}$</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>48</td>
<td>96</td>
<td>...</td>
</tr>
</tbody>
</table>

(2). $a_0=2$, $a_0=18 \Rightarrow r=3$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_n$</td>
<td>$\pm\frac{7}{243}$</td>
<td>$\frac{2}{81}$</td>
<td>$\pm\frac{7}{81}$</td>
<td>$\frac{7}{9}$</td>
<td>$\pm\frac{7}{3}$</td>
<td>2</td>
<td>$\pm6$</td>
<td>18</td>
<td>$\pm54$</td>
<td>162</td>
<td>...</td>
</tr>
</tbody>
</table>

(3). $a_0=2$, $a_0=-16 \Rightarrow r=-2$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_n$</td>
<td>$\frac{1}{8}$</td>
<td>$-\frac{1}{4}$</td>
<td>$\frac{1}{2}$</td>
<td>-1</td>
<td>2</td>
<td>-4</td>
<td>8</td>
<td>-16</td>
<td>32</td>
<td>-64</td>
<td>...</td>
</tr>
</tbody>
</table>
教授学の探究 第22号

(4). \(a_2 = -4, \quad a_7 = -4 \quad \Rightarrow \quad r = 1\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td>-4</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

定理12. 等比数列 \(\{a_n\}\) は、任意の2項 \(a_i, a_j (i < j)\) がわかれば決まる。

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>(\cdots)</th>
<th>(i)</th>
<th>(\cdots)</th>
<th>(j)</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n)</td>
<td>(a_0)</td>
<td>(\cdots)</td>
<td>(a_i)</td>
<td>(\cdots)</td>
<td>(a_j)</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

このとき、公比 \(r = \sqrt[\(i-j\)]{a_i}{a_0}\). \(\sqrt{x}\) が \(\sqrt[\(i-j\)]{x}\) の省略表記であることも触れたい。

定理13. 等比数列 \(\{a_n\}\) で、\(a_0\) と公比 \(r\) がわかっているとき、

\[a_n = a_0 r^n\]

4.3 等比数列の和
当面の課題は \(a_n\) を求めるための等比数列 \(i_n\) の和であるが、一般の等比数列の和を先に考えた方がよいだろう。そのために、公比2という特殊な等比数列 \(i_n\) ではなく公比3の数列の和を考える。

問題25. オーソドックスな方法で考える。

\[S = 1 + 3^1 + 3^2 + 3^3 + \cdots + 3^8 + 3^{10}\]

\[3S = 3^1 + 3^2 + 3^3 + 3^4 + \cdots + 3^{10} + 3^{11}\]

から辺々を引いて、

\[2S = 3^{11} - 1 \quad \text{より} \quad S = \frac{3^{11} - 1}{2}\]

問題26. 前の問題を一般化する。

\[S = a_0 r^0 + a_0 r^1 + a_0 r^2 + a_0 r^3 + \cdots + a_0 r^{n-1} + a_0 r^n\]

\[rS = a_0 r^1 + a_0 r^2 + a_0 r^3 + a_0 r^4 + \cdots + a_0 r^n + a_0 r^{n+1}\]

から辺々を引いて、

\[(1 - r)S = a_0 r^0 - a_0 r^{n+1} \quad \text{より} \quad S = \frac{a_0 (1 - r^{n+1})}{1 - r}\]

— 120 —
定理14. 前ページの問題の結果を定理としてまとめておく。公比1の等比数列では例外的に前ページの結果が使えないので、場合分けをしてまとめると、

\[
\begin{align*}
  a_0(1-r^{n+1})/1-r & \quad (r \neq 0) \\
  a_0(n+1) & \quad (r = 1)
\end{align*}
\]

問題27. 次の等比数列の和を求めよ。

(1). \(7(2^{11} - 1) = 14329\)
(2). \(2(1 - (-1)^{21}) = 4\)
(3). \(5(2^{m+1} - 1)\)

問題28. 次のページで定理としてまとめられるように、

\[
1 + 2 + 4 + 8 + 16 + \cdots + 2^n = 2^{n+1} - 1
\]

定理15. 

\[
1 + 2 + 4 + 8 + 16 + \cdots + 2^n = 2^{n+1} - 1
\]

ハノイの塔の問題の \(\{h_n\}\) は、階差数列 \(\{i_n\}\) が \(i_0 = 1, r = 2\) の等比数列だと予想できた。この予想が正しいと考えると、

\[
h_n = h_0 + (i_0 + i_1 + i_2 + \cdots + i_{n+1})
\]

\[
= h_0 + (1 + 2 + 4 + \cdots + 2^{n-1})
\]

\[
= h_0 + (2^n - 1)
\]

\[
= 2^n - 1
\]

問題29.

\[
h_{n+1} = 2h_n + 1
\]

\[
h_{n+2} = 2h_{n+1} + 1
\]

の辺々を引いて、

\[
h_{n+2} - h_{n+1} = (2h_{n+1} + 1) - (2h_n + 1)
\]

\[
h_{n+2} - h_{n+1} = 2(h_{n+1} - h_n)
\]

\[
i_{n+1} = 2i_n
\]

予想。ここになくてもよい問題ではあるが、等比数列の現象を理解するために、あってもよい問題であろう。

\[
h_6 = 2^{10} - 1 = (2^{10})^6 \times 2^4 - 1
\]

であるが、\(2^{10}\) を \(10^3\) で近似すると、\(h_6\) は \(10^{19}\) のオーダーになる。一方、一年は

\[
60 \times 24 \times 365 = 31536000 = 5.256 \times 10^6
\]

- 121 -
4.4 等比数列の階差数列

問題30.
(1) 1, 2, 4, 8, 16, 32, 64, ⋯
(2) 3, 6, 12, 24, 48, 96, ⋯
(3) 36, 18, 9, \(\frac{9}{2}, \frac{9}{4}, \frac{9}{8}\), ⋯

問題31.

\[ a_n = a_0 r^n \]
\[ a_{n+1} = a_0 r^{n+1} \]

より辺々引いて、

\[ a_{n+1} - a_n = a_0 (r - 1) r^n \]

となるので、\(\{a_n\}\) の階差数列 \(\{b_n\}\) は \(b_0 = a_0 (r - 1)\)、公比 \(r\) の等比数列である。

定理16.
前ページの問題が証明になっている。

5 数列の固有ベクトル

5.1 ハノイの塔と座標平面

問題32.

この点はすべて、直線 \(y = 2x + 1\) 上にある
5.2 漸化式と一次関数

問題 33.

(1).

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_n$</td>
<td>2</td>
<td>5</td>
<td>11</td>
<td>23</td>
<td>47</td>
<td>95</td>
<td>191</td>
<td>383</td>
<td>...</td>
</tr>
</tbody>
</table>

(2).

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_n$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{3}{2}$</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td>39</td>
<td>79</td>
<td>159</td>
<td>...</td>
</tr>
</tbody>
</table>
(3).

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_n$</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>...</td>
</tr>
</tbody>
</table>

Diagram as shown in the image.
5.3 固有ベクトル

問題 34.

\[ a_0 = \frac{3}{5} a_0 + 3 \]

となるような \( a_0 \) を求めればよい。この方程式を解いて、

\[ a_0 = \frac{15}{2} \]

を得る。

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>⋮</th>
</tr>
</thead>
<tbody>
<tr>
<td>( a_n )</td>
<td>( \frac{15}{2} )</td>
<td>⋮</td>
</tr>
</tbody>
</table>

問題 35.

\[ a_0 = p a_0 + q \]

となる \( a_0 \) を求めればよい。この方程式を解いて、

\[ a_0 = \frac{q}{1 - p} \]
5.4 固有ベクトルと等比数列
問題36.

\[ h_{n+1} = 2h_n + 1, \quad h_0 = 0 \]

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>( h_n )</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>15</td>
<td>31</td>
<td>63</td>
<td>127</td>
<td>\cdots</td>
</tr>
<tr>
<td>( h_n + 1 )</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

\( \{h_n+1\} \) は公比 2 の等比数列なので、

\[ h_n + 1 = 1 \times 2^n \]

ここから、

\[ h_n = 2^n - 1 \]

となる。

6 数学的帰納法

6.1 \((2^n)^2 - 1 \) の問題
問題37.

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>( a_n )</td>
<td>0</td>
<td>3</td>
<td>15</td>
<td>63</td>
<td>255</td>
<td>1023</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

\( a_n \) がいずれも 3 で割り切れる場合は、ここでは割り算によって確かめられればよい。後に数学的帰納法を用いて証明される。
6.2 $(2^3)^2$欠損チェス盤問題
問題38．基本パーツを以下のように置くことで埋め尽くすことが可能である。

6.3 欠損チェス盤問題の一般化
2×2の欠損チェス盤が基本パーツ一つで埋め尽くせるのは明らかである。

8×8の欠損チェス盤についても手分けして作業をさせると、欠損箇所がどこであろうとも埋め尽くし可能であることが実証できる。
いま、16×16のチェス盤を、8×8のチェス盤4つと考える。そして、左上のどこかに欠けている部分があるとする。ここで、基本パーツを、チェス盤の中央付近に図のように置いてみる。
すると、右上、右下、左下のいずれも、8×8の欠損チェス盤になる。8×8の欠損チェス盤は、基本パーツ埋め尽くすことができるのだった。

だから、この16×16の欠損チェス盤は基本パーツで埋め尽くすことができる。

チェス盤の対称性により、16×16の欠損チェス盤は欠けた部分がどこにあっても基本パーツで埋め尽くすことができる。

同じ論理によって、(2^n)×(2^n)の欠損チェス盤は、欠けた部分がどこにあっても基本パーツで埋め尽くすことができる。このことから、(2^n)^2−1が3で割り切れることが証明された。

### 6.4 数学的帰納法

ところで、2×2の欠損チェス盤が基本パーツで埋め尽くされること、そして、a_t=(2^n)^2−1=2^{2t}−1=3が3で割り切れることは明らかである。

このように、

(1). a_1が3で割り切れる。

(2). a_kが3で割り切れるときa_{k+1}も3で割り切れる。

の二つが成り立てば、n≥1のすべてのa_nが3で割り切れることが証明される。

これを一般化して、nについてのある命題p_n（例えば4^n−1は3で割り切れる）について、

(1). p_1が成り立つ。

(2). p_kが成り立つときp_{k+1}が成り立つ。

の二つが成り立つとき、n≥1であるすべてのnについてp_nは成り立つ。このような証明を数
学的帰納法による証明という。
数学的帰納法による証明の書き方を説明する。

問題 39. 数学的帰納法により、\( n \geq 1 \) とき \( n^2 + 2n \) は 3 の倍数であることを証明しよう。
(i) \( 1^2 + 2 \times 1 = 3 \) が 3 の倍数であることは明らかである。
(ii) \( k \geq 1 \) に対して \( k^2 + 2k \) が 3 の倍数であると仮定する。

\[
(k + 1)^2 + 2(k + 1) = k^2 + 3k + 3k + 1 + 2k + 2 = (k^2 + 2k) + 3(k^2 + k + 1)
\]
であるが、仮定により \( k^2 + 2k \) は 3 の倍数である。また、\( 3(k^2 + k + 1) \) も 3 の倍数であるから、
\( (k + 1)^2 + 2(k + 1) \) は 3 の倍数である。
(i) と (ii) により、題意は証明された。

7 フィボナッチ数列と黄金比 \( \tau \)

7.1 フィボナッチ数列

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f_n )</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>( n )</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f_n )</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>...</td>
</tr>
</tbody>
</table>

\( g_n = f_{n-1} + f_n \) である。

以上から、\( g_n \) は \( n \) を大きくするとき \( \frac{g_n}{f_n} \) が大きくなる。フィボナッチ数列を行列で表すと

\[
\begin{pmatrix}
    a_{n+2} \\
    a_{n+1}
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{n+1} \\
    a_n
\end{pmatrix} (n \geq 0)
\]

となる。行列

\[
A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
\]

の固有値を求める限り、

\[
\begin{vmatrix}
    1 - \lambda & 1 \\
    1 & -\lambda
\end{vmatrix} = -(1-\lambda)\lambda - 1 = 0
\]
より、

\[
\lambda = \frac{1 \pm \sqrt{5}}{2}
\]
を得る。このうち
教授学の探究、第22号

\[ \lambda = \frac{1 + \sqrt{5}}{2} \]

が、1.61に近い。

7.2 黄金比

\[ DF = 1 - x \text{ である。長方形 ABCD と長方形 DFEC が相似であることから } AB : BC = DE : FC \text{ が成り立つ。これより} \]

\[ 1 : x = (1 - x) : 1 \]

\[ x(1-x) = 1 \]

\[ x^2 - x + 1 = 0 \]

\[ x = \frac{1 \pm \sqrt{5}}{2} \]

を得るが \( x > 0 \) より

\[ x = \frac{1 + \sqrt{5}}{2} \]

\( \sqrt{5} = 2.236 \cdots \) なので、\( x \) は小数ではだいたい 1.618 くらいだ。
7.3 正五角形の対角線

\[ BF=y \text{ とおく。}\triangle ABF \text{ と } \triangle ECD \text{ が相似であることより,} \]

\[ AB:BF=EC:CD \]
\[ 1:y=x:1 \]
\[ y=\frac{1}{x} \]

\[ \triangle AFG \text{ と } \triangle ACD \text{ が相似であることより,} \]

\[ AF:FG=AC:CD \]
\[ y:(x-2y)=x:1 \]
\[ x(x-2y)=y \]
\[ x^3-2x-1=0 \]
\[ (x+1)(x^2-x-1)=0 \]
\[ x=-1, \frac{1\pm\sqrt{5}}{2} \]

\[ x>0 \text{ より} \]
\[ x=\frac{1+\sqrt{5}}{2} \]
7.4 黄金比 $\tau$

$\pi, e$ と並ぶ特別な実数 $\tau$（タウ）に触れておく。

$$\tau = 1.618033989 \cdots$$