Noninvertible Bogoliubov transformations and instability of embedded eigenvalues

Asao Arai
Department of Mathematics, Hokkaido University, Sapporo 060, Japan

(Received 28 August 1990; accepted for publication 23 January 1991)

A class of noninvertible Bogoliubov transformations in an abstract Boson Fock space is used to construct in the Fock space a family of self-adjoint operators H which are quadratic in the annihilation and the creation operators and are of the form $H = H_0 + H_I$ with the property that the unperturbed part H_0 may have embedded-eigenvalues unstable under the perturbation H_I. Scattering theory associated with the pair (H_0,H_I) is also discussed. In application to quantum field theory, the family of the operators H gives a unified description for the Hamiltonians of models of a quantum harmonic oscillator coupled to a quantized scalar or radiation field.

I. INTRODUCTION

A Bogoliubov transformation in a Fock space is a transformation of the annihilation and the creation operators which is expressed linearly in terms of them and preserves the (anti-) canonical commutation relations (CCR). There have been a number of studies on proper Bogoliubov transformations so far (e.g., Refs. 1-3 and references therein). In this paper we are concerned with another type of Bogoliubov transformations that may be called noninvertible Bogoliubov transformations: A Bogoliubov transformation is said to be noninvertible if there exist no invertible bounded linear operators that implement it on the Fock space under consideration. It seems that attention has not been paid so much to noninvertible Bogoliubov transformations or at least they have not been fully exploited. In the present paper we consider a class of noninvertible Bogoliubov transformations in connection with a type of singular perturbation of self-adjoint operators acting in Fock space (see below). The class of Bogoliubov transformations under study is defined in the Boson (symmetric) Fock space $\mathcal{F}_s(\mathcal{H})$ over $\mathcal{H} = \mathcal{H} \oplus \mathcal{H}$ (the direct sum of two Hilbert spaces \mathcal{H} and \mathcal{H}), which is identified with $\mathcal{F}_s(\mathcal{H}) \oplus \mathcal{F}_s(\mathcal{H})$. We shall show that the noninvertible Bogoliubov transformations can be used to construct in $\mathcal{F}_s(\mathcal{H})$ a family of self-adjoint operators H which are quadratic in the annihilation and the creation operators and are of the form $H = H_0 + H_I$ with the following properties.

(i) The “unperturbed” part H_0 is of the form

$$H_0 = d\Gamma(h) \otimes I + I \otimes d\Gamma(l),$$

(1.1)

where h and l are non-negative self-adjoint operators in \mathcal{H} and \mathcal{H}, respectively, and $d\Gamma(A)$ (resp. I) denotes the second quantization of A (resp. identity).

(ii) For a real constant E, $H - E$ is unitarily equivalent to $d\Gamma(h)$ acting in $\mathcal{F}_s(\mathcal{H})$.

To see what the above result implies, consider, e.g., the case where $\sigma(h)$, the spectrum of h, is purely continuous with $\sigma(h) = \{\omega_0,\infty\}$ ($\omega_0 > 0$: a constant) and $\sigma(l)$ is purely discrete. Then we have

$$\sigma(d\Gamma(h)) = \{0\} \cup [\omega_0, \infty), \quad \sigma_p(d\Gamma(h)) = \{0\},$$

$$\sigma(d\Gamma(l)) = \sigma_p(d\Gamma(l)) = \{E_n\}_{n=0}^{\infty},$$

with $E_n > 0$ ($E_0 = 0$), where $\sigma_p(\cdot)$ denotes point spectrum. Hence,

$$\sigma(H_0) = \{E_n\}_{n=0}^{\infty} \cup [\omega_0, \infty), \quad \sigma_p(H_0) = \{E_n\}_{n=0}^{\infty},$$

which mean that each E_n is also an eigenvalue of H_0 and the eigenvalues $E_n > \omega_0$ are embedded in the continuous spectrum of H_0 (we call such eigenvalues embedded eigenvalues). On the other hand, (ii) implies that

$$\sigma(H) = \{E\} \cup [E + \omega_0, \infty), \quad \sigma_p(H) = \{E\}.$$

Thus all the embedded eigenvalues $E_n > \omega_0$ turn out to disappear under the perturbation H_I, i.e., they are unstable under the perturbation (we may regard $E_n < \omega_0$ as eigenvalues changing to E under the perturbation H_I). In this sense the perturbation H_I is singular relative to H_0. In this way each of the noninvertible Bogoliubov transformations under consideration can have a connection with instability, under a perturbation, of embedded eigenvalues of a self-adjoint operator in the Fock space $\mathcal{F}_s(\mathcal{H})$. The present abstract theory has application to quantum field theory (QFT). In fact, in concrete realizations of $\{\mathcal{H},\mathcal{H}\}$, the class of H gives a unified description for the Hamiltonians of models of a quantum harmonic oscillator coupled to a quantized scalar or radiation field, where the unperturbed part of each of those Hamiltonians is of the form (1.1). The abstract theory developed in this paper clarifies the mathematical structure of those models, giving us a satisfactory understanding of them.

We should mention that the idea of the present work is already implicit in a previous paper (Ref. 8) where an abstract and unified formulation is given for models of a one-dimensional quantum harmonic oscillator coupled to a quantized scalar field. The present paper gives, with a generality, an extension and a refinement of results in Ref. 8. In applications of the present formulation to models mentioned above, the harmonic oscillator is not necessarily one dimensional.

The outline of the present paper is as follows. Section II is a preliminary section and is of review nature. We define basic objects in an abstract Boson Fock space and summarize some fundamental facts. After introducing in Sec. III the class of noninvertible Bogoliubov transformations to be considered and discussing some of their properties, we con-
struct in Sec. IV a family of self-adjoint operators H with the properties described above. Section V is devoted to scattering theory associated with the pair (H_0, H). In the last section we mention some examples in QFT.

Some general symbols used in the present paper are (\cdot, \cdot): inner product (linear in \cdot); $\| \cdot \|$: norm of Hilbert space; $\| A \|$: operator norm of the operator A; $D(A)$: domain of the operator A; $B(\mathcal{H}_1, \mathcal{H}_2)$: the space of all bounded linear operators from a Hilbert space \mathcal{H}_1 to a Hilbert space \mathcal{H}_2; and $\mathcal{B}(\mathcal{H}_1) := \mathcal{B}(\mathcal{H}_1, \mathcal{H}_1)$.

II. FUNDAMENTAL FACTS IN AN ABSTRACT BOSON Fock space

We first recall the definition of some objects in an abstract Boson Fock space (e.g., Refs. 1; Ref. 9, Sec. 11.4; Ref. 10, Sec. X.7). Let \mathcal{H} be a separable complex Hilbert space and $S^n(\mathcal{H}) = \otimes^n \mathcal{H}$ be the n-fold symmetric tensor product of \mathcal{H} with $S^0(\mathcal{H}) = \mathbb{C}$. The Boson (symmetric) Fock space $\mathcal{F}_\infty(\mathcal{H})$ over \mathcal{H} is defined by the completed infinite direct sum of $S^n(\mathcal{H})$:

$$\mathcal{F}_\infty(\mathcal{H}) = \bigoplus_{n=0}^{\infty} S^n(\mathcal{H}).$$

We denote by $A(\mathcal{F}_\infty, \mathcal{H})$, the annihilation operator in $\mathcal{F}_\infty(\mathcal{H})$ (antilinear in \mathcal{F}). Let $R = \{ 1, 0, 0, \ldots, 1 \}$ be the Fock vacuum and let

$$s = A(\mathcal{F}_\infty, \mathcal{H}) = \sum_{n=1}^\infty A(\mathcal{F}_n) \phi_n \phi_n^*,$$

where $\mathcal{F}_n(\mathcal{H})$ denotes the subspace algebraically spanned by vectors in \cdots. We denote by $A(\mathcal{F}_\infty, \mathcal{H})$ any $A(\mathcal{F})$ or $A(\mathcal{F})^*$. The operators $A(\mathcal{F})$ leave $\mathcal{F}_\infty(\mathcal{H})$ invariant satisfying the CCR

$$[A(F), A(G)^*] = (F, G), \quad [A(F), A(G)] = 0, \quad F, G \in \mathcal{H},$$

We next define operators quadratic in $A^\#$. Let J be a conjugation on \mathcal{H}, i.e., J is an antilinear isometry on \mathcal{H} with $J^2 = 1$. For $F \in \mathcal{H}$ and $T \in B(\mathcal{H})$, we define $JF \in \mathcal{H}$ and JTJ. We define by $\mathcal{F}_2(\mathcal{H}) = \mathcal{F}_2(\mathcal{H})$ the space of Hilbert-Schmidt operators from a Hilbert space \mathcal{H} to a Hilbert space \mathcal{H}. For every $K \in \mathcal{F}_2(\mathcal{H})$, there exist (not necessarily complete) orthonormal sets $\{ \psi_n \}_{n=1}^M$ and $\{ \phi_n \}_{n=1}^M$ in \mathcal{H} (M may be finite or infinite) and positive real numbers $\{ \lambda_n \}_{n=1}^M$ such that

$$\sum_{n=1}^M \lambda_n^2 < \infty,$$

$$K = \sum_{n=1}^M \lambda_n \psi_n \phi_n^*,$$

where, in the case $M = \infty$, the sum in (2.6) converges in operator norm (e.g., Ref. 9, Theorems VI.17 and VI.22). We then define for finite positive integers N

$$\langle A^* | K_N | A \rangle = \sum_{n=1}^N \lambda_n A(\psi_n) A(\phi_n)^*$$

and

$$\langle A | K_N | A \rangle = \sum_{n=1}^N \lambda_n A(\psi_n^*) A(\phi_n).$$

The following lemma is easily proved.

Lemma 2.1: For all $\Psi \in \mathcal{F}_\infty(\mathcal{H})$, the strong limits

$$s - \lim_{N \to \infty} \langle A^* | K_N | A \rangle \Psi \equiv \langle A^* | K | A \rangle \Psi$$

and

$$s - \lim_{N \to \infty} \langle A | K_N | A \rangle \Psi \equiv \langle A | K | A \rangle \Psi$$

exist. Moreover, the operator $\langle A^* | K | A \rangle$ defined on $\mathcal{F}_\infty(\mathcal{H})$ is closable and

$$\langle A^* | K | A \rangle = \langle A^* | K^\# | A \rangle$$

on $\mathcal{F}_\infty(\mathcal{H})$. We denote the closure of $\langle A^* | K | A \rangle$ by the same symbol.

It easily follows from the definition of $\langle A^* | K | A \rangle$ that

$$\langle A^* | K | A \rangle = \langle A^* | K^\# | A \rangle.$$
Let \(\{e_n\}_n \) be a complete orthonormal system (CONS) of \(H \) with \(e_n \in D(S^*) \) for all \(n \). Then, for all \(\Psi \in \mathcal{D}_S \),

\[
S - \lim_{n \to \infty} \sum_{n=1}^{\infty} A(e_n)^* A(S^* e_n) \Psi = d \Gamma(S) \Psi.
\]

Proof: An easy exercise. \(\blacksquare \)

In the same way as in the proof of Lemma 2.4, we can prove the following fact.

Lemma 2.5: Let \(H \) be a Hilbert space and \(S, T \in \mathcal{C}(H, H) \) such that \(D(S) \cap D(T) \) is dense and \(ST^* \in \mathcal{C}(H) \). Let \(\{e_n\}_n \) be a CONS of \(H \) with \(e_n \in D(S) \cap D(T) \) for all \(n \). Then, for all \(\phi \in \mathcal{D}_S \),

\[
\sum_{n=1}^{\infty} \phi \left(\sum_{n=1}^{\infty} e_n \right) A(S e_n)^* A(T e_n) \Psi = d \Gamma(ST^*) \Psi.
\]

Lemma 2.6: Let \(K \in \mathcal{B}(H) \) and \(\phi \in \mathcal{F}_\infty \) satisfying the following conditions:

\(\phi \) is in \(\mathcal{F}_\infty \) if \(\|K\| < 1 \) and \(K = \phi \phi^* \).

Then, for each \(f \in \mathcal{F}_\infty \),

\[
B(f)^* \phi \in \mathcal{D}_S \cap \mathcal{D}_T.
\]

Proposition 3.1: Suppose that \(\dim \mathcal{F}_\infty \cdot \ker B(f) < \infty \). Then there exist no invertible bounded linear operators \(T, U, \mathcal{F}_\infty \to \mathcal{F}_\infty \) such that

\[
T(b(f)) \otimes U = B(f), \quad f \in \mathcal{F}_\infty.
\]

In this section we consider the case where the Hilbert space \(H \) is given by the direct sum of two Hilbert spaces \(H \) and \(\mathcal{M} \):

\[
H = H \oplus \mathcal{M},
\]

so that we have

\[
\mathcal{F}_\infty (H) = \mathcal{F}_\infty (H) \otimes \mathcal{F}_\infty (\mathcal{M}).
\]

To avoid notational confusion, we denote by \(b(f) \) for \(f \in \mathcal{F}_\infty \) \([\text{resp. } a(u), \mathcal{M}] \) the annihilation operator in \(\mathcal{F}_\infty (H) \) \([\text{resp. } \mathcal{F}_\infty (\mathcal{M})] \). We shall write vectors in \(H \) as \(f \otimes u, f \in \mathcal{F}_\infty, u \in \mathcal{M} \). Under the identification (3.2), we have

\[
b(f) \otimes I = A(f \otimes 0), \quad f \in \mathcal{F}_\infty,
\]

\[
I \otimes a(u) = A(0 \otimes u), \quad u \in \mathcal{M}.
\]

Lemma 2.7: We say that \(K \in \mathcal{B}(H) \) is in the set \(\mathcal{H}_S \) if \(\|K\| < 1 \) and \(K = \phi \phi^* \).

Let \(g = \int \mathcal{F}_\infty \). \((2.10) \)

Lemma 2.8: Let \(\phi \in \mathcal{H}_S \) and \(\psi \in \mathcal{F}_\infty \). Then

\[
\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} \left(\frac{(A^* K A^*)^n}{2^n} \right) \psi = \phi \exp \left\{ - \frac{(A^* K A^*)}{2} \right\} \psi.
\]

exists and belongs to \(\mathcal{S}_\infty \).

Proposition 3.1: Suppose that \(\dim \mathcal{F}_\infty \cdot \ker B(f) < \infty \). Then there exist no invertible bounded linear operators \(T, U, \mathcal{F}_\infty \to \mathcal{F}_\infty \) such that

\[
T(b(f)) \otimes U = B(f), \quad f \in \mathcal{F}_\infty.
\]

Proof: Suppose that (3.9) holds with \(T \) invertible and let

\[
\psi(u_1, \ldots, u_n) = U^{-1} \otimes a(u_1) \cdots \otimes a(u_n) \Omega,
\]

where \(u_j \in \mathcal{M}, j = 1, \ldots, n \), \(n > 1 \).

Then, by (2.7) and the fact \(K = \phi \), we have

\[
A(F) \Omega_n(K) = - A(KF^*) \Omega_{n-1}(K).
\]

Taking the limit \(n \to \infty \) of the both sides, we obtain (2.12). \(\blacksquare \)

Asao Arai

1840
and hence
\[B(f)\Psi(u_1, \ldots, u_n) = 0, \]
which, however, contradicts (3.8).

In what follows, we shall show that under an additional condition, (3.8) is true and hence the Bogoliubov transformation (3.6) is really noninvertible.

For \(A \in \mathcal{B}(\mathcal{H}) \) and \(B \in \mathcal{B}(\mathcal{H}_x, \mathcal{H}) \), we define \(S(A, B)_{\mathcal{B}(\mathcal{H}_x, \mathcal{H})} \) by
\[S(A, B)f = Af \oplus Bf, \quad f \in \mathcal{H}. \]
(3.10)

For notational simplicity, we set
\[S(A, B) = JS(A, B)J. \]
(3.11)

It is straightforward to see that \((C.1)-(C.7) \) are equivalent to the following conditions:
\[S(W,Q)*S(W,Q) - S(V,P)*S(V,P) = I, \]
(3.12)
\[S(W,Q)*S(V,P)*S(W,Q) = 0, \]
(3.13)
\[S(W,Q)*S(V,P)*S(W,Q)* = S(I,R), \]
(3.14)
\[S(V,P)*S(W,Q)* - S(W,Q)*S(V,P)* = 0. \]
(3.15)

Lemma 3.2: The operator \(S(W,Q) \) is bijective.

Proof: Throughout the proof, we set \(S(W,Q) = Y \).

We see from (3.12) that
\[Y^*Y > 1 \]
(3.16)
and that \(Y^*Y \) is bijective, which implies that \(\text{Ran } Y^* \) (the range of \(Y^* \)) equals \(\mathcal{H} \) and that \(Y \) is one to one. It is well known\(^{12}\) that for all densely defined closed linear operators \(S \) from a Hilbert space to a Hilbert space,
\[\sigma(S*S) < \sigma(SS*) \subset [1, \infty). \]
Thus we need only to show that \(\text{Ker } Y^* = \{0\} \). Let \(F \in \text{Ker } Y^* \) so that \(Y^*F = 0 \). Then (3.15) and the injectivity of \(Y \) give \(S(V,P)*F = 0 \). Putting this into (3.14), we get
\[S(V,P)*F = 0, \]
which, together with (C.8), implies that \(F = 0 \).\(\square \)

The proof of Lemma 3.2 shows also that
\[\sigma(S(W,Q)*S(W,Q)) = \sigma(S(W,Q)S(W,Q)*) \subset [1, \infty). \]
(3.17)

Lemma 3.2 allows us to define
\[X = S(V,P)*S(W,Q) = \in \mathcal{B}(\mathcal{H}). \]
(3.18)

Lemma 3.3: The operator \(X \) satisfies
\[\overline{X} = X^*, \]
(3.19)
and
\[\|X\| < 1. \]
(3.20)

Proof: Formula (3.19) follows from (3.13) and Lemma 3.2.\(\square \)

We have by (3.12)
\[X*X = I - (\overline{Y}Y^*)^{-1}, \]
where we put \(Y = S(W,Q) \), and hence
\[\|XF\|^2 = \|F\|^2 - \|YY^*\|^{-1}\|F\|^2, \quad F \in \mathcal{H}. \]
On the other hand, we have
\[\|YY^*\|^{-1}\|F\|^2 = c\|F\|, \quad F \in \mathcal{H}, \]
with \(0 < c = \|(YY^*)^{-1}\|^{-1} < 1 \) [cf. (3.17)]. Therefore,
\[\|XF\|^2 < (1 - c^2)\|F\|^2, \]
which implies that \(|X| < \sqrt{1 - c^2} < 1 \). Thus (3.20) follows.\(\square \)

We now state the main result in this section.

Theorem 3.4: Suppose that \(X \in \mathcal{F}_2(\mathcal{H}) \). Then:
(i) \(X \) belongs to \(\mathcal{H}_x(\mathcal{H}) \).
(ii) Let \(\Omega(X) \) be given by (2.11) with \(K = X \). Then \(\Omega(X) \) is a unique (up to constant multiples) vector \(\Psi \) in \(\mathcal{D}(B(f)) \) such that for all \(f \in \mathcal{H} \),
\[b(f)\Psi = 0, \]
(3.21)

and the subspace
\[\mathcal{F}_n^B = \{B(f_1) \cdots B(f_n)\Omega(X) \}
\]
(3.22)
defined in \(\mathcal{F}_x(\mathcal{H}) \).

Proof: Part (i) follows from the assumption and Lemma 3.2. Note that \(B(f) \) can be written as
\[B(f) = A(S(W,Q)f) + A(S(V,P)*f)* \]
(3.23)
on \(\mathcal{D}(N^{1/2}) \). Hence, by Lemma 3.2, for \(\Psi \in \mathcal{D}_\infty \), the equations \(B(f)\Psi = 0, f \in \mathcal{H} \), are equivalent to
\[\{A(F) + A(XF)*\} \Psi = 0. \]
Hence, (2.12) gives (3.21) with \(\Psi = \Omega(X) \).

We next prove the uniqueness of \(\Omega(X) \) and that \(\mathcal{F}_n^B \) is dense in \(\mathcal{F}_X(\mathcal{H}) \). We denote by \(\Omega_x \) the Fock vacuum in \(\mathcal{F}_X(\mathcal{H}) \). Let \(\mathcal{F}_n^B \) be the closure of \(\mathcal{F}_n \). Define \(U: \mathcal{F}_n^B \rightarrow \mathcal{F}_n^B \) by
\[U\Omega(X) = \Omega_x, \]
\[UB(f_1) \cdots B(f_n)\Omega(X) = b(f_1) \cdots b(f_n)\Omega_x, \quad f_j \in \mathcal{H}, j = 1, \ldots, n, n \geq 1 \]
and extending it by linearity to \(\mathcal{F}_n^B \). The operator \(U \) is well defined and extends uniquely to a unitary operator from \(\mathcal{F}_n \) to \(\mathcal{F}_x(\mathcal{H}) \). By Lemma 2.8 and (2.9), we have \(\mathcal{F}_n \subset \mathcal{F}_n^B \).

Moreover, using the unitary correspondence between \(\mathcal{F}_n^B \) and \(\mathcal{F}_n(\mathcal{H}) \), we can show that every vector in \(\mathcal{F}_n^B \) is an analytic vector for the symmetric operator
\[\Phi_B(f) = \frac{1}{\sqrt{2}}\{B(f) + B(f)*\}. \]
Let \(\Phi(F) \) be the Segal field operator in \(\mathcal{F}_x(\mathcal{H}) \):
\[\Phi(F) = \frac{1}{\sqrt{2}}\{A(F) + A(F)*\}, \]
which is essentially self-adjoint on \(\mathcal{F}_n^B \); we denote the closure by the same symbol. Using (C.3)-(C.7), we have
\[b(f) \in \mathcal{H}, \]
\[\Phi_u(a) = D(Q*R - u) - D(P*R - u)*, \quad u \in \mathcal{H}, \]
(3.24)
(3.25)
on \(\mathcal{D}(N^{1/2}) \). Hence, \(\Phi(F) \) is written as
\[\Phi(F) = \Phi_B(T_1F - JT_2F), \quad F \in \mathcal{H}, \]
where \(T_j \in \mathcal{B}(\mathcal{H}_x, \mathcal{H}), j = 1, 2, \) are defined by
\[T_1(f \oplus u) = W*f + Q*R - u, \]
(3.24)
\[T_2(f \oplus u) = \overline{V}f + \overline{P}R - u. \]
(3.25)
Thus, for all $F \in \mathcal{F}_n$, every vector in \mathcal{F}^n_∞ is an analytic vector for $\Phi(F)$. It turns out that for all $F \in \mathcal{F}_n$, $\exp i\Phi(F)$ leaves \mathcal{F}^n_∞ invariant. Since $\exp i\Phi(F)|\mathcal{F}^n_\infty$ is irreducible (e.g., Ref. 10, Appendix to X.7, Lemma 1), it follows that \mathcal{F}^n_∞ is dense in \mathcal{F}_n for all $F \in \mathcal{F}$. Using this result, one can easily prove the uniqueness of $\Omega(X)$.

Theorem 3.4 and Proposition 3.1 imply that, if $X \in \mathcal{F}_n$, then the Bogoliubov transformation (3.6) is noninvertible.

In concluding this section, let us represent the operator X explicitly in terms of (P, Q, V, W).

Lemma 3.5: For all $f \in \mathcal{F}_n$ and $u \in \mathcal{H}$,

$$S(W, Q)^{-1}(f \otimes u) = (1 + V * V + P * P)^{-1}(W * f + Q * u).$$

Proof: Let $T \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ be the operator defined by the right-hand side of (3.26). Since we already know that $S(W, Q)$ is invertible, we need only to show that $TS(W, Q) = I$.

But this easily follows from (C.1).

We can represent $f \otimes u \in \mathcal{F}_n$ as a column vector:

$$f \otimes u = \begin{pmatrix} f \\ u \end{pmatrix}.$$

In this representation, every $T \in \mathcal{B}(\mathcal{H})$ can be uniquely written as

$$T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix},$$

with $T_{11} \in \mathcal{B}(\mathcal{H})$, $T_{12} \in \mathcal{B}(\mathcal{H}, \mathcal{H})$, $T_{21} \in \mathcal{B}(\mathcal{H}, \mathcal{H})$, $T_{22} \in \mathcal{B}(\mathcal{H})$. It is easy to see that $T \in \mathcal{F}_n$ if and only if each T_{ij} is Hilbert–Schmidt.

Lemma 3.6: Let X be given by (3.18) and put

$$Z = (1 + V * V + P * P)^{-1}.$$

Then

$$\tilde{X} = \begin{pmatrix} VZW^* & VZQ^* \\ PWZ^* & PQZ^* \end{pmatrix}.$$

Proof: By Lemma 3.5, we have for all $f \in \mathcal{F}_n$ and $u \in \mathcal{H}$

$$S(f \otimes u) = S(V, P)(ZW * f + ZQ * u) = (VZ * f + VZQ * u) \otimes (PWZ * f + PQZ * u),$$

which gives (3.29).

As a corollary of Lemma 3.6, we have the following.

Corollary 3.7: The operator X is Hilbert–Schmidt if and only if VZW^*, VZQ^*, PWZ^*, and PQZ^* are Hilbert–Schmidt.

IV. A FAMILY OF SELF-ADJOINT OPERATORS

The purpose of this section is to show that the (noninvertible) Bogoliubov transformation (3.6) can be used to construct a family of self-adjoint operators H, acting in \mathcal{F}_n, with the properties described in Introduction. The idea underlying our method is to find H as an operator "diagonalized" by the Bogoliubov transformation.

Let $K \in \mathcal{F}_n$, so that it can be expressed as

$$K = \sum_n \lambda_n (\psi_n \otimes \phi_n)$$

(the canonical form), where $\{\psi_n\}$ (resp. $\{\phi_n\}$) is an orthonormal set in \mathcal{M} (resp. \mathcal{N}). As in Sec. II, we can define

$$\langle b * | K | a \rangle = \sum_n \lambda_n b(\phi_n) \otimes I \otimes a(\psi_n),$$

$$\langle b | K | a \rangle = \sum_n \lambda_n b(\phi_n) \otimes I \otimes a(\psi_n).$$

Similarly, for $M \in \mathcal{F}_n$, we can define the operator $\langle a | M | b \rangle$ on \mathcal{F}_n. We have

$$\langle b | K | a \rangle = \langle a * | K | b \rangle$$

on \mathcal{F}_n. The following fact is easily proved.

Lemma 4.1: Let $K \in \mathcal{F}_n$ and $K = \{K_c\}$ be the matrix representation of K as in (3.27). Then

$$\langle A = | K | A = \rangle$$

$$\langle a * | L | b \rangle = \langle b | L | a \rangle = 0$$

on \mathcal{F}_n. For a densely defined closable linear operator $L : \mathcal{H} \to \mathcal{N}$ and $L' : \mathcal{N} \to \mathcal{M}$ (we denote their closure by the same symbol, respectively), we define $\langle b * | L | a \rangle$ and $\langle a * | L' | b \rangle$ by

$$\langle b * | L | a \rangle = \delta(0, L),$$

$$\langle a * | L' | b \rangle = \delta(0, L).$$

In what follows, we assume also

$$(C.9) \quad X \in \mathcal{F}_n.$$

Let h be a non-negative self-adjoint operator in \mathcal{H} such that

$$Ker h = \{0\}, \quad hJ = h,$$

and the following (C.10)–(C.12) are satisfied.

(C.10) The following operators are all Hilbert–Schmidt:

$$VhW^*, VhQ^*, WhV^*, WhQ^*, WhP^*, QhP^*$$

$\in \mathcal{F}_n$.

(C.11) The operators $WhW^* + \overline{VhV^*}$ and $QhQ^* + \overline{P hP^*}$ are self-adjoint.

(C.12) The operators $WhQ^* + \overline{VhP^*}$ and $QhW^* + \overline{P hV^*}$ are densely defined and closable.

Conditions (C.10)–(C.12) allow us to define

$$H = d \Gamma(WhW^* + \overline{VhV^*}) \otimes I + I \otimes d \Gamma(WhQ^* + \overline{VhP^*}) + \langle b * | WhW^* | b \rangle \otimes I + I \otimes \langle a * | WhQ^* | a \rangle + \langle b * | WhQ^* | a \rangle + \langle a * | WhP^* | b \rangle + \langle b * | WhP^* | b \rangle \otimes I$$

$$+ I \otimes \langle a | WhQ^* | a \rangle + \langle b | WhV^* | a \rangle + \langle a | \overline{VhQ^*} | b \rangle.$$
Condition (C.12) implies that \(D(hV^*) \cap D(hW^*) \) and \(D(hP^*) \cap D(hQ^*) \) are dense in \(\mathcal{F} \) and \(\mathcal{M} \), respectively. Hence, the subspace

\[
D_0(H) = \mathcal{L} \{ A(f_j \oplus u_j)^* \cdots A(f_0 \oplus u_0)^* \Omega | f_j \in D(hV^*) \cap D(hW^*) , u_j \in D(hP^*) \cap D(hQ^*) \}
\]

(4.8)
is dense in \(\mathcal{F} \). It is easy to see that \(D_0(H) \subset C \mathcal{M} \). The main result in this section is the following theorem.

Theorem 4.2: The operator \(H \) is essentially self-adjoint on \(D_0(H) \) and

\[
H \geq E,
\]

with

\[
E = \frac{1}{2} \| Vh^{1/2} \|_{HS}^2 - \| Ph^{1/2} \|_{HS}^2,
\]

(4.10)

where \(\| \cdot \|_{HS} \) denotes Hilbert–Schmidt norm. Moreover, the closure of the operator

\[
\hat{H} = H - E
\]

(4.11)
is unitarily equivalent to \(d \Gamma(h) \) acting in \(\mathcal{F} \).

To prove this theorem, we prepare some lemmas. The following lemma explains the origin of \(H \).

Lemma 4.3: Let \(e_n \subset D(h)^{1/2} \) be a CONS of \(\mathcal{H} \) and define

\[
H_N = \sum_{n=1}^{N} B(h^{1/2} e_n)^* B(h^{1/2} e_n).
\]

(4.12)

Then, for all \(\Phi, \Psi \in D_0(H) \),

\[
\lim_{N \to \infty} (\Phi, H_N \Psi) = (\Phi, \hat{H} \Psi).
\]

(4.15)

Proof: We set \(T = S(V, P) \) and \(Y = S(W, Q) \). Using (3.23) and (2.3), we have

\[
(a(X), B(f_0) \cdots B(f_j) \cdots B(f_N))^T = j \sum_{n=1}^{N} \| \Phi^{1/2} e_n \|^2.
\]

(4.14)

On the other hand, it is straightforward to see that

\[
\{ d \Gamma(Y h Y^*) + d \Gamma(\overline{Y} h \overline{Y}^*) \} = \{ A * | Y h \overline{Y}^* | A \} + \{ A * | Y h \overline{Y}^* | A \} \psi = H \psi.
\]

(4.14)

Thus (4.13) follows.

Lemma 4.4: The operator \(\hat{H} \) is symmetric and non-negative. Moreover, the commutation relations

\[
[\hat{T}, B(f)] = - B(h f), \quad f \in D(h),
\]

(4.15)
hold on \(D_0(H) \).

Proof: The non-negativity (hence symmetry) of \(\hat{H} \) follows from that of \(H_N \) and Lemma 4.3. We have for all \(\Phi, \Psi \in D_0(H) \)

\[
(\Phi, [H_N, B(f) \Psi]) = - \left(\Phi, \sum_{n=1}^{N} (f \cdot h^{1/2} e_n) B(h^{1/2} e_n) \Psi \right)
\]

\[
= - (\Phi, B(h \cdot f) \Psi)
\]

as \(N \to \infty \), which, together with Lemma 4.3, implies (4.15).

Lemma 4.5: Let \(\Omega(X) \) be as in Theorem 3.4. Then, \(\Omega(X) \in D(H) \) and

\[
\hat{H} \Omega(X) = 0.
\]

(4.16)

Proof: Set \(T = S(V, P) \) and \(Y = S(W, Q) \). Using Lemmas 2.3, 2.6, and (4.14), we have

\[
\hat{H} \Omega(X) = \{ A * | Y h \overline{Y}^* | X \} + \{ A * | Y h \overline{Y}^* | X \} = 0.
\]

(4.16)

Note that

\[
Tr(Y h \overline{T} X) = Tr(Y h \overline{T} X) = \| T h^{1/2} \|_{HS}^2,
\]

\[
X h \overline{Y} X = Y h \overline{T} X = h \overline{T} X,
\]

and

\[
\{ A * | Y h \overline{Y} | X \} = \{ A * | X h \overline{T} | X \}
\]

since \(\overline{X} = X^* \). Thus (4.16) follows.

Proof of Theorem 4.2: We have already proved (4.9) (Lemma 4.4). Let \(\mathcal{F} \), \(\mathcal{F}^n \), \(\mathcal{F}^n \), and \(U \) be as in the proof of Theorem 3.4. Define

\[
L = \hat{H} \uparrow D_0(H).
\]

Let \(\psi \in D_0(H) \) and \(f_j \in D(h) \), \(j = 1, \ldots, n \). Then, by (4.16) and (4.15), we have

\[
0 = (\hat{H} \Omega(X), B(f_1) \cdots B(f_n) \Psi)
\]

\[
= \left(\Omega(X), \sum_{j=1}^{n} B(f_1) \cdots B(h f_j) \cdots B(f_n) \Psi \right)
\]

\[
+ \left(\Omega(X), \sum_{j=1}^{n} B(f_1) \cdots B(h f_j) \cdots B(f_n) \Omega(X) \right)
\]

\[
- \sum_{j=1}^{n} (B(f_1) \cdots B(f_j) \cdots B(f_n) \Omega(X)).
\]

(4.17)
on the subspace $D_D(h) = L^2 \{ b(f_1) \cdots b(f_N) \Omega_{N,},$
$\Omega_{N,} \mid f_j \in D(h), j = 1, \ldots, n, n \geq 1 \}.$

Since $D_D(h)$ is a core of $D(h)$ and L^* is closed, it follows that L^* is self-adjoint. By a general theorem, L^{**} equals \overline{L}, the closure of L. Thus L is self-adjoint, i.e., L is essentially self-adjoint. The unitary equivalence of \overline{L} to $D(h)$ follows from (4.17).

It is obvious that H can be rewritten as $H = H_{\text{tr}}(h) + H_{\text{fr}}(h)$.

V. SCATTERING THEORY

In this section we discuss scattering theory associated with the pair (H, H), where $H_{\text{tr}}(h)$ is given by (1.11). Thus we have accomplished the main purpose of the present paper.

Lemma 5.1: For all $f \in D(h^{-1/2})$ and $\Psi \in D(\hat{H}^{1/2})$,

$\| B(f) \Psi \| < \| h^{-1/2} f \| \| \hat{H}^{1/2} \Psi \|,$ \hspace{1cm} (5.1)

$\| B(f) \Psi \| < \| h^{-1/2} f \| \| \hat{H}^{1/2} \Psi \| + \| f \| \| \Psi \|.$ \hspace{1cm} (5.2)

Proof: Since $B(f) B(f) \geq 0$, $H_{\text{tr}}(h)$ is monotone increasing in h. Hence, it follows from (4.13) that for all n,

$\| B(h^{-1/2} f) \Psi \| < \| \hat{H}^{1/2} \Psi \|,$ \hspace{1cm} (5.3)

$\Psi \in D_0(h).$

Taking $e_n = h^{-1/2} f / \| h^{-1/2} f \|$, we obtain (5.1) with $\Psi \in D_0(h)$. Since $D_0(h)$ is also a core of $\hat{H}^{1/2}$, this result extends to all $\Psi \in D(\hat{H}^{1/2})$. Inequality (5.2) follows from (3.7), (5.1), and a limiting argument.

Lemma 5.2: For all $f \in D(h^{-1/2})$ and $\Psi \in D_0(h)$,

$(H f, B(f) \Psi) - (B(f) \Psi, H \Psi) = -(H, B(h f) \Psi).$ \hspace{1cm} (5.4)

Proof: For all $\Psi \in D_0(h)$, (5.3) follows from (4.15). Using (5.1) and the fact that $D_D(h)$ is a core of $H_{\text{tr}}(h)$, (5.3) follows from (3.7), (5.1), and a limiting argument.

Lemma 5.3: For all $f \in D(h^{-1/2})$ and $\Psi \in D(\hat{H}^{1/2})$,

$e^{itH} B(f) e^{-itH} \Psi = B(e^{itH} f) \Psi.$ \hspace{1cm} (5.5)

Proof: Let $\{e(\lambda)\}$ be the spectral family of h and $\mathcal{S} = \bigcup_{n=1}^{\infty} \text{Ran} e [1/n, n].$

For $\Psi \in \mathcal{S}$ and $f \in \mathcal{S}$, we define

$F(t) = (e^{-itH} \Phi, B(f) e^{-itH} \Psi).$

Then, using Lemma 5.2, we can show that F is infinitely many times differentiable in t and

$\frac{d^n F(t)}{dt^n} = (e^{-itH} \Phi, B((ih)^n f) e^{-itH} \Psi), \hspace{1cm} n \geq 1.$

Noting that

$\sum_{n=0}^{\infty} \| h^{n-1/2} f \| \| t \| < \infty$

and using (5.1), we see that

$F(t) = \lim_{N, \to \infty} \sum_{n=0}^{N} \frac{(\Phi, B((ih)^n f) \Psi)}{n!} t^n$

$= (\Phi, B(e^{itH} f) \Psi).$

Thus (5.4) with $\Psi \in D(h)$ and $f \in \mathcal{S}$ follows. Once this is proved, a limiting argument allows us to obtain the desired result.

In what follows, in addition to (C.1)-(C.12), we assume the following two conditions.

(C.13) For $\lambda = 0$, $-1/2, h^{1/2} V^* \Psi$ is compact.

(C.14) There exists an operator $[h, W^*]$, defined on a dense domain $D_D(h)$ such that for all $f \in D_D(h)$,

$(h f, W^* - W f, h g) = (f, [h, W^*] e^g)$

and

$\int_{-\infty}^{\infty} \| h^{1/2} [h, W^*] e^{-itf} \| dt < \infty, \hspace{1cm} \lambda = 0, -1/2.$

We introduce

$\mathcal{H}_0 = \{ f \in P_{\text{tr}}(h) \cap D_D(h) \cap D(h^{-1/2}) | W^* e^{i\lambda f}, V^* e^{i\lambda f} D(h^{-1/2}) \}$ for all $\lambda \in \mathbb{R},$ (5.5)

where $P_{\text{tr}}(h)$ is the subspace of absolute continuity with respect to h.

For $\lambda \in \mathbb{R}$ and $f \in \mathcal{H}_0$, we define

$b_\lambda (f) = e^{i\lambda f} b(e^{-i\lambda f}) \Psi e^{-i\lambda f}.$ \hspace{1cm} (5.6)

By virtue of Lemmas 5.1, 5.3, and (3.24), $b_\lambda (f)$ is well defined on $D(\hat{H}^{1/2})$ and

$b_\lambda (f) = B(e^{i\lambda f} W^* - W f, e^{-i\lambda f}) - B(e^{i\lambda f} V^* e^{-i\lambda f})*.$ \hspace{1cm} (5.7)

on $D(\hat{H}^{1/2})$. We want to show that $b_\lambda (f)$ converges as $t \to \pm \infty$. By (C.14), we can define

$T_{\pm} f = W^* f + \int_{0}^{\pm \infty} e^{i\lambda [h, W^*]} e^{-i\lambda f} dt, \hspace{1cm} f \in D_D(h),$ \hspace{1cm} (5.8)

where the integral is taken as a \mathcal{H}-valued strong integral.

Theorem 5.4: For all $f \in D(h^{-1/2})$ and $\Psi \in \mathcal{H}_0$ the strong limits

$s - \lim_{t \to \mp \infty} b_\lambda (f) \Psi = b_\lambda (f) \Psi$ \hspace{1cm} (5.9)

exist and are explicitly given by

$b_\lambda (f) \Psi = B(T_{\pm} f) \Psi.$ \hspace{1cm} (5.10)

Proof: Let $f \in \mathcal{H}_0$ and $\Psi \in D(\hat{H}^{1/2})$. By (C.13) and an application of Lemma 2 in Ref. 13 (p. 24), we have

$s - \lim_{|t| \to \infty} h^{1/2} V^* e^{i\lambda f} = 0, \hspace{1cm} \lambda = 0, -1/2,$

which, combined with (5.2), imply that

$s - \lim_{|t| \to \infty} B(e^{i\lambda f} V^* e^{i\lambda f})* \Psi = 0.$ \hspace{1cm} (5.11)

Let

$T_{\pm} f = e^{i\lambda f} W^* e^{-i\lambda f}.$

Then, differentiating the function $(g, T_{\pm} f)$ $(g \in D_D(h))$ in t first and then integrating the derivative from 0 to t, we obtain

$T_{\pm} f = W^* f + \int_{0}^{t} e^{i\lambda [h, W^*]} e^{-i\lambda f} dt.$

By (C.14), we see that

$s - \lim_{t \to \pm \infty} h^{-1/2} T_{\pm} f = h^{-1/2} T_{\pm} f.$

Thus (5.4) with $\Psi \in D(\hat{H})$ and $f \in \mathcal{S}$ follows.
and hence, by (5.1),
\[s \lim_{t \to \pm \infty} B(T_{T,f})\Psi = B(T_{T,f})\Psi, \]
which, together with (5.7) and (5.11), give (5.9) and (5.10).

Physically the operators \(b_+ (f) \) correspond to the annihilation operators of the asymptotic free fields in regard to the degrees of freedom associated with the Hilbert space \(\mathcal{F}_s(\mathcal{H}) \).

Let
\[\mathcal{F} = L^2(\mathbb{R}^d) \oplus L^2(\mathbb{R}^d), \]
and
\[\mathcal{M} = \mathbb{C}_d, \]
where we assume that the electron moves in \(\mathbb{R}^d \) and the radiation field is over \(\mathbb{R}^d \) (\(d \geq 2 \)). The Coulomb gauge is used for the radiation field. In Ref. 21, the author discussed one of such models whose Hamiltonian is given by
\[L = \frac{1}{2m_0} (\mathbf{p} - eA(\rho))^2 + H_F + \frac{1}{2} \mathbf{q}^2, \]
where \(m_0 > 0 \) (resp. \(\varepsilon > 0, e \in \mathbb{R}\setminus\{0\} \)) is a parameter denoting the bare mass of the electron (resp. the spring constant, the elementary charge), \(\mathbf{q} = (q_1, \ldots, q_d) \in \mathbb{R}^d, \rho = (-i\partial_k, \ldots, -i\partial_k), A(\rho) \) is the time-zero radiation field smeared with a suitable function \(\rho \) on \(\mathbb{R}^d \), and \(H_F \) is the free Hamiltonian of the radiation field. By an explicit construction, we can show that there exists a quintuple \((P,Q,V,W,h)\) giving this model. This can be done using results in Ref. 21.

We can also consider another Hamiltonian
\[L' = \frac{1}{2m_0} p^2 + \frac{1}{2} \mathbf{q}^2 + H_F - \frac{e}{m} \mathbf{p} A(\rho), \]
where \(m_0 = \text{a renormalized mass of the electron} \) defined by
\[m_0 = \frac{1}{\mathbb{R}^d} \int d^d k \frac{\hat{\rho}(k)^2}{\omega(k)^2} \]
[\(\hat{\rho} \): the Fourier transform of \(\rho, \omega(k) \): one free photon energy with momentum \(k \)]
This Hamiltonian is obtained by dropping \(A^2 \) term in the Hamiltonian \(L \) given above and renormalizing the electron mass in the way just indicated (cf. Refs. 16, 17, 22, and 23). The mass renormalization makes \(L' \) non-negative. This model is also described in the framework in Secs. III and IV.

ACKNOWLEDGMENT

This work was supported by the Grant-in-Aid 02740094 for science research from the Ministry of Education, Japan.
