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Meromorphic N= 2 Wess-Zumino supersymmetric quantum mechanics 
Asao Arai and Osamu Ogurisu 
Department of Mathematics, Hokkaido University, Sapporo 060, Japan 

( Received 28 February 199 1; accepted for publication 7 May 199 1) 

The ordinary (holomorphic) N = 2 Wess-Zumino model in supersymmetric quantum 
mechanics is extended to the case where the superpotential V(z) is a meromorphic function on 
CU{ CO}. The extended model is analyzed in a mathematically rigorous way. Self-adjoint 
extensions and the essential self-adjointness of the supercharges are discussed. The 
supersymmetric Hamiltonian defined by one of the self-adjoint extensions of the supercharges 
has no fermionic zero-energy states (“vanishing theorem”). It is proven that if V(z) has only 
one pole at z = 0 in @, then the supercharges are essentially self-adjoint on Cc (IX*\ {O};c”) . 
The special case where V(z) = ;lz-P(#+I&Q=\{O]) is analyzed in detail to prove the 
following facts: (i) the number of the bosonic zero-energy ground state(s) is equal top - 1; 
(ii) the supercharges are not Fredholm. 

I. INTRODUCTION 

In the ordinary (holomorphic) N = 2 Wess-Zumino’ 
(WZ) model in supersymmetric quantum mechanics 
(SSQML’4 which describes the interaction between a com- 
plex bosonic degree of freedom, denoted by z&, and two 
fermionic degrees of freedom, the superpotential V(z) is a 
polynomial ofz. It has been proven’ on this model that there 
exist no fermionic zero-energy states (“vanishing 
theorem”) and the number of the bosonic zero-energy 
ground state(s) is equal to deg V - 1. Moreover, in the case 
where deg V>3, the structure of the degenerate ground 
states has been discussed.3V4 In Ref. 2 the N = 2 WZ model 
has been extended to the case where the superpotential V(z) 
is a nonpolynomial holomorphic function; in particular, it 
has been shown that in the case 
V(z) = ~e”‘(/l~Q;\ {O],a > 0:const ) , there exist infinitely 
many bosonic zero-energy ground states. 

It is interesting (at least from a mathematical point of 
view) to see what happens if the superpotential V(z) is a 
meromorphic function. This is the basic motivation of this 
paper. This namely leads us to consider the N = 2 WZ model 
with a meromorphic superpotential, which may be called the 
meromorphic WZ model. Generally speaking, in construct- 
ing a SSQM model in a mathematically rigorous way, one 
first defines the supercharges of the model on a suitable 
dense domain in the Hilbert space of state vectors for the 
model and then has to prove the (essential) self-adjointness 
of them. This can be easily done in the case of the aforemen- 
tioned holomorphic WZ model.‘~2 In the case of the mero- 
morphic WZ model, however, this is not so obvious, because 
the Dirac type operators representing the supercharges of 
the model are singular in the sense that their potentials have 
singularities and hence one must be careful about defining 
them properly; it is nontrivial whether the supercharges are 
essentially self-adjoint on suitable regular domains. This re- 
quires us to consider the problem on self-adjoint extensions 
of the supercharges. 

The outline of the present paper is as follows. In Sec. II 
we define the N = 2 WZ model with a meromorphic super- 
potential V(z) on CU{ CO]. The Hilbert space of the state 

vectors for the model is realized as L ’ ( !R2;c4), the Hilbert 
space of C4-valued square integrable functions on !R’. Let P 
be the set of the poles of V(z) in Q=. We first construct two 
self-adjoint extentions of one of the supercharges restricted 
to C; (C\P,@“), the space of C4-valued C “-functions with 
compact support in C\P. We show that the vanishing 
theorem holds for the supersymmetric (SUSY) Hamilto- 
nian defined by one of the self-adjoint supercharges. Then we 
discuss the problem of the essential self-adjointness of the 
SUSY Hamiltonian and the supercharges. In particular, we 
prove that if V(z) has only one pole at z = 0 in G [z : co 
may be a pole of V(z) 1, then the SUSY Hamiltonian and the 
supercharges are essentially self-adjoint on C ; (a= \ {O];c4 ) . 

In Sec. III we analyze in detail the meromorphic WZ 
model with V(z) = il /z?(A&\{0),p~N). Weshow that, in 
this case, a symmetry group acts on the quantum system 
under consideration. A structure similar to this appears in 
the case of the holomorphic WZ model with V(z) = /2zP (see 
Ref. 3). We prove that the number of the bosonic zero-ener- 
gy ground state(s) is equal top - 1 and clarify the structure 
of the ground state(s) . 

It is known that the supercharges of the holomorphic 
WZ model with a polynomial superpotential are Fredholm.’ 
In the last section we examine whether the meromorphic 
WZ model has this property. But the result is negative. We 
prove that the supercharges of the WZ model dih sussed in 
Sec. III are not Fredholm. 

II. THE N=2 WZ MODEL WITH A MEROMORPHIC 
SUPERPOTENTIAL 

In this section we define the N = 2 WZ model with a 
meromorphic superpotential and discuss general aspects of 
it. The Hilbert space of state vectors for the model is given by 

A?= L2(C;C4) = L2(R2;C4) 
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which is decomposed as m,ndWJ(O). If there exists a function f,,,d, ,‘,, (a) such 
that z=c%@+ ez-, 

with f &?, = i() I t I.&e 2(w2) zL2(R2;C2), 

0 
called the space of bosonic states, and 

0 

iv- = D I ; 
f&d 2uR2) EL2(iR2$2), 

called the space of fermionic states. 
Let 

1 
ui* =y ( uo 

d2=$(- 

0 aa + 03 

- a3 > 0, ’ 
0 ia, + fl, 

ia, - a2 > 0, ’ 
with {Us};= I and a0 being the Pauli matrices and the 2 x 2 
identity matrix, respectively. 

Let V(z) (~4) be a meromorphic function on @U-f 03) 
and {a , ,...,a,v) (NC ca ) be its poles in C[z = CO may be a 
pole of V(z) 1. Then one of the supercharges of the WZ mod- 
el with the superpotential V(z) is given by the following 
operator in X: 

ij =irj2~+i~d+i$,(Wl -ifi( 

= ( -i(av)* ;i 0 0 ic?V a 0 0 iCW -2 0 3 -i(W)* -a 0 0 1 ’ (2.1) 

where d = a /dz and 2 = d /dz*. We remark that the mero- 
morphic WZ model under consideration also has two super- 
charges as in the case of the holomorphic WZ model,i4 but, 
in the present paper, we consider only one of them. Argu- 
ments similar to those given below apply to the other super- 
charge as well. 

In general, the supercharge(s) of a mod$ in SSQM 
should be self-adjoint. *-’ As is seen from ( 2.1) , (2 is an oper- 
ator of Dirac type v$th a singular potential. This makes it 
nontrivial whether & is (essentially) self-adjoint. A natural 
regular domain for Q is C; ( @C4 ) , where 

fl = C\Ca,lf= ‘. 
We first construct two self-adjoint extensions of the operator 

Q, = 2 1 C;(fk;C4). (2.2) 
The problem of the essential self-adjointness of Q, will be 
discussed in Sec. II C. We shall denote by D(A) the domain 
of the operator A. 

A. Self-adjoint extensions of QO 
We introduce generalized derivatives associated with 

the differential operators d and 3: let f&K ,‘, (a) and 

s 
fwwh40wdx do 

R 

zz (- f)m+n 

I 
f,,, kY)~hY)d~ a% zECOm(ft), 

fl 
then we say that f,,, is the generalized {m,n}-derivative off 
and write as 

f,,, = D”Enf: 
Let 

Q- = -+ (~7, +i0, )a-+- (CT, - ~L+~)B 

( iaV -a = 
-2 > --@F-J)* ' (2.3) 

with 

D(Q.e ) = C;(fl;C’). (2.4) 

In general, we shall denote by ( *,a) inner product (lin- 
ear in the second variable) and by 11. [f norm. 

Lemma 2. I: The adjoint Q *_ of Q _ is given as follows: 
D(QT 1 = C(+L 2(R2;@2) I3BJ 

3Dg satisfying Dg - i(W)*fd 2(R2), 

Bf + wwgd,vw, (2.5) 

Qt(s3=($$~, ($ENQC). (2.6) 

ProoR Let M be the set given by the right-hand side of 
(2.5). Let (f,s)ED(Q% ). Then there exists a vector 
(v&EL *(Rz;C2) such that for all u,wC;(fi), 

(2.7) 

which is equivalent to the equation 
hd + (4~) = ctxm+a4 

- &% + i(av>*t.+,~,egm(i2). 
(2.8) 

Taking u = 0, we have (z = x + iy,x,~~R) 
k&d = ctxwm - (77,~) 

= I n wk~)*w7w - v(x,Y)*Iu~Y~.~x~Y. 
It is easy to see that i(S’)f * - q*d ,‘, (0). Hence, Bg* 
exists and 

-Bg*=i(av)f*-p. 
Taking the complex conjugate of this equation, we obtain 

Dg - i(dV)*f = 7~5 2(R2), 
Similarly, taking II = 0 in (2.8) implies that zf exists and 

Bf-t-i(at3g=gd2(11p2). 
Thus D(&Y )CM. 
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Let ( fTg)EM and set 
v=Dg-i(W)*J g=@+i(dv)g. 

Then, 77,&X *( R2) and (2.7) holds for all u,v&,” (0). This 
implies that (fg)Eo(Q% ). n 

It follows from Lemma 2.1 that 

C;(W2)cD(Q’L 1 
and hence D( Q *_ ) is dense in L 2 ( R2). Therefore, Q _ is 
closable. We denote its closure by B _ . Let 

Q- 
‘=(Q: o (2.9) 

with D(Q) = D(Q’! ) e D(B- ). 
Proposition 2.2: The operator Q is a self-adjoint exten- 

sion of Q, . 
Proofi The self-adjointness of Q is obvious. We see from 

(2.1)-(2.3) and (2.6) that Q= Q, on C,“(fl;G4), which 
implies that Q is an extension of Q,. n 

The SUSY Hamiltonian H of the WZ model with the 
supercharge Q is given by 

HsQ~=(~; HO), (2.10) 

with 

H+ =D-Qt, (2.11) 
the bosonic Hamiltonian, and 

He =Qti2-, (2.12) 
the fermionic Hamiltonian. Since H = Qi on C; (0;C4), 
we have 

H+ =H- + (2.13) 

H- = ( -Ja+ lavy)0,, (2.14) 
on C; ( R;c2). Therefore, H * are a self-adjoint extension of 
a two-dimensional Schrijdinger operator with a matrix-val- 
ued singular potential, respectively. 

We can construct another self-adjoint extension of Q,, . 
Let 

1 Q+ =-to, +iu2)a+-$(o, -ia,) 2 

++- (a0 -aav-+ coo +a,)(apq* 

( -i(W)* a = 
2 > i(N) ’ 

(2.15) 

with 
D(Q+ ) = C;(fi;G’). (2.16) 

Then, in the same way as in the proof of Lemma 2.1, we can 
prove the following lemma. 

Lemma 2.3: The operator Q T is given as follows: 

D(Q$ 1 = {(;W2(~2)l~Dg, 
3Bf satisfying - Dg + i(dV)fd 2(R2), 

Df+ i(aV)*gd, VW, 

o=@=( 
- Dg + ikV9.f 

- Bf - i(dV)*g a(Q: >. 

Lemma 2.3 implies that Q, is closable. Then, in the 
same way as in the proof of Proposition 2.2, we have the 
following fact. 

Proposition 2.4: The operator 

Q=(g)+ “,‘), (2.17) 

withD(Q)=D(Q+)@D(Qy )isaself-adjointextension 
OfQo. 

Obviously we have 

ij, CQ’!!. , e- CQ:. 

6. Vanishing theorem and equations for bosonic zero- 
energy ground states 

In this subsection we consider only the WZ model with 
the supercharge Q. We are interested in the zero-energy 
ground state(s) of the model. The “vanishing theorem” 
holds also in the present case. 

Theorem 2.5: 
KerH- =KerG- ={O}. (2.18) 
Prooj The first equality in (2.18) follows from (2.12). 

We prove the second equality in (2.18). By integration by 
parts, we have for all u,wC,” (a) 

IQ-(:>Il' = II (an242 + iI m*q + iiaq + i1~~11*. 
(2.19) 

Let (Ag)~Ker Q- . Then there exist sequences 
{f,k’~,,&,k=,CCOm(f22) such that f,+A g,-g 
(n--+w) and 

Q-L) fn -0. n 
It follows from (2.19) that 

ilag, 1124 iiJfn ii24 
Note that 

ilag, ii2 = - k,Jag,) = dciia,g, ii2 + iia,g, iI5 
Hence, it follows that gED( D, ) n D( D,, ) and 

D,g = D,,g = 0, 
where D, (resp. Dy ) is the generalized derivative in direc- 
tion x (resp. y). This, together with the fact gd, 2( R’), im- 
plies that g = 0. Similarly we can show that f = 0. Thus 
(2.18) follows. n 

We next consider the zero-energy ground state(s) of 
H, . It follows from (2.11) that 

Ker H + =KerQ%. (2.20) 
We derive partial differential equations for any zero-energy 
ground state of H + . 

Lemma 2.6: (i) The vector (J; - ig)d2(R2;G2) is in 
Ker H + if and only if Dg and zf exist satisfying 

Dg+ (an*f=o, Zft (avjg=o. (2.21) 
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(ii) Every (A - ig)EKer H, is in C”(R;6*) and sat- 
isfies 

( -aJ+ pvl2)f-t (avqcav, -Gf=o, (2.22) 
( - i%‘+ lWl’,g + (i?“V*, (%‘*) - ‘ag = 0, (2.23) 
(iii) For every solution g& m(fi) to Eq. (2.23), the 

pair (f,-ig) withf= - (gV*)-‘DgisasolutiontoEq. 
(2.21). 

Prooj (i) This follows from (2.20) and Lemma 2.1. 
(ii) Let (J; - ig)EKer H, . Then, by part (i), (2.21) 

holds. Since aV& m (a), it follows that D [ (W)g] exists 
and 

D [(af’kl = (d2v>g + (W&c, 
which, together with (2.2 1 ), implies that DBf exists and 

( -DB+ [(av)12)f+(a2V)(aV)-I~ff=o. 
Similarly, we can show that BDg exists and 

(-m+ l(avpg+ (;ii’v*)(~v*)-‘Dg=O. 

Since ldV12, (a2V)(aV) -I, and (a*V*)(%*) -I are in 
C -(a), it follows from elliptic regularity (e.g., Sec. IX.6 in 
Ref. 8) that f and g are in C m (a). Thus the desired results 
follow. 

(iii) This follows from direct computations. n 

C. Essential self-adjointness of QO 
In this subsection we give a sufficient condition for Q, to 

be essentially self-adjoint. Let 
L= -as+ favy, (2.24) 

with D( L ) = C; (a). We prepare some lemmas. 
Lemma 2.7: The following inequality holds: 

IlaW + Ip+112 - Ilwml12 
G IILuI12, UEC,” (0). (2.25) 
Proofi See the proof of Lemma 2.7 in Ref. 2. n 
Lemma 2.8: For every E > 0, there exists a constant 

c, > 0 such that 
Id+-(z) IkElav(z) 14 + cc, ZEQ. (2.26) 
Proo$ Let k, > 1 and m >O be the order of V(z) at z = a,, 

and z = Q, , respectively. We can write V(z) as 

V(z) = 6, + b,z + b,22 + *.a + b,z”’ 

where 6, and c”,j are constants (c,,k,#O,n = l,..., N). We 
have for m>2 

ld2V(z)I-lb,Im(m - l)l~J~-~, 

IaW) I - lb, fmlzlm- *, 

as [zI-+o~. Hence, for every E > 0, there exists a constant 
R, >max{la, I,...,laNI} such that 

Iamv4avwi4, izi >R,. (2.27) 

This inequality obviously holds for the case m = 0, 1, On 
the other hand, we have for each n = l,..JV, 

Id2Q) I -k,(k,, + l)I~,,~~l/lz - a,, Ike+*, 

lcS’V(z) I’-ki Ic,,J’/(z - a,, 12(kn+ “, 

as z-a,. Hence, for every E > 0, there exists a constant 6, 
such that 

lavtz) i2wuz) 14, 
zGS,EU,N=~{ZEQ=I O<tz-a,I<fic}. 

We can take R, such that 
S, CB, ={z&I IzI<Rb}. 

(2.28) 

Since d ‘V(z) is holomorphic in 3, \S,, the quantity 

C, = ,,,~;P\~ mw12 
is finite. Then (i.26) follows from (2.27) and (2.28). q 

Lemma 2.9: Suppose that L is essentially self-adjoint on 
C;(a). Then 

z= --$A, + lavl2, (2,29) 

with D(z) = D( A, ) nD( I&‘)*), where A, is the closure 
of the two-dimensional Laplacian A restricted to C; ( ti). 

Proaf: Let O<e< 1. By (2.25) and (2.26), we have for 
all ~~Cgm(fl): 

:llAn412 + (1 - ~)~lia~~2~il2~~l~~ll2 + c&#. 
(2.30) 

By the assumption, C; (a) is a core for z. It is easy to see 
that (aV I2 is essentially self-adjoint on C; (a). Hence, via a 
limiting argument, (2.30) extends to all u&(z) and, at the 
yrne time, we have D(z) Cp(A,)nD( la?‘/‘). Let 
L = :A,/4 + ldV12 wit& DA(L) = DJAn 1 nD( lG’[‘). 
Then L is symmgric and LCL. Since L is self-adjoint, it 
follows that 2 = L. n 

Lemma 2. IO: Let Tbe a symmetric operator in a Hilbert 
space. Suppose that there exists a dense subspace DC D( T 2, 
and T2 is essentially self-adjoint on D. Then T is essentially 
self-adjoint on every core of the closure of T* f D. 

Prooj This can be easily proven by applying a Glimm- 
Jaffe-Nelson type theorem on essential self-adjointness of 
symmetric operators (e.g., Theorem X.37 in Ref. 8). H 

We are now ready to state and prove the main result in 
this subsection. 

Theorem 2.11: Suppose that L is essentially self-adjoint. 
Then: (i) The operators H f are essentially self-adjoint on 
C,“(Sl;c2) and self-adjoint with D(H+ ) = D(H- ) 
= D( An ) fID( 1% I’). Moreover, the following operator 

equalities hold: 

H- = ( --#AR + lavpo, (2.31) 

H, =H- + ( 
0 -ia 

i(cY’V)* 7 0 * 
(2.32) 

(ii) The operator Q,, is essentially self-adjoint on every 
core of N. 

Proofi (i) The assertion about H _ is easily proven. Let 
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HI = 0 -ia* 
i(d’v)* “> 0 . 

Then we have from (2.13) 
H, =H- +H, 

onC;(R;d=‘). By (2.26) and (2.30) wecanshowthatforall 
flEC;(0;6?) and all e~(O,l), 

Ilf4~l12~- 1” E IIH- $11’ + & II1cIII’* 
Since H _ is essentially self-adjoint on C; (a), this inequal- 
ity extends to all @D( H _ ). Take E < l/2. Then we have 

E/(1 -E)<l. 

Therefore, by the Kato-Rellich theorem (e.g., Sec. X.2 in 
Ref. 8 or Chap. V Sec. 4 in Ref. 9>, H, is self-adjoint with 
D( H + ) = D(H- ) and essentially self-adjoint on every 
coreofH_. 

(ii) Since we have 
H=Q; 

on C; (n;@?) and H is essentially self-adjoint on C; ( R;C4) 
by part (i), we can apply Lemma 2.10 with T = Q, and 
D = C; ( R;C4) to obtain the desired result. w 

When is the assumption of Theorem 2.11 satisfied? In 
the present paper we give an answer to the question only in a 
special case. 

Theorem 2.12: Consider the case where V(z) has only 
onepoleatz= OinC [z= CO maybeapoleof V(z)].ThenL 
is essentially self-adjoint on CT ( R2\ CO]> and the conclu- 
sion of Theorem 2.11 holds. 

Proofi We have 
4L = - A -t 4(dV]’ 

on C; (R’\{O)). In the same way as in the proof of Lemma 
2.8, we can show that for every E> 0, there exists a constant 
6, > 0 such that 

l/]~]~<+k%‘(z) I2 + b,, ZEC\CO). 
Take E < 1. Then we can apply the Kalf-Walter- 
Schmincke-Simon theorem (Theorem X.30 in Ref. 8) to the 
Schrodinger operator 4L to conclude that 4L is essentially 
self-adjoint on C; ( R2\ CO}) and so is L. n 

III. GROUND STATE(S) OF THE N=2 WZ MODEL WITH 
bp) CAM 

In this section we analyze the ground state structure of 
the N = 2 WZ model with the super-potential 

V(z) = A /zp, (3.1) 
where &4=\ {O} and p> 1. In this case, the supercharge Q 
and the SUSY Hamiltonian H (resp. H + ) are essentially 
self-adjoint on C;(fl;d) [resp. C; (sZ;C2)] (Theorem 
2.12). 

Let z = reie (the polar coordinate: r> O,&[ 0,27r] ) and 

M=id-ll!L!3g2). 
de 2 

Then, in the same way as in the proof of Lemma 3.1 in Ref. 3, 
we can prove the following lemma. 
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Lemma 3. I: For all t,sr%, 
eitA4eisH + = eisH + eitM. 

This lemma implies that H, and M commute in the 
proper sense (e.g., Sec. VIII.5 in Ref. 10) and that the uni- 
tary group {exp itM ( tdR) is a symmetry group of the quan- 
tum system under consideration. Note that the coefficient 
- (p + 2)/2 of a, in the generator M is different from that 

in the generator L of the symmetry group given in Ref. 3 to 
analyze the structure of the degenerate ground state of the 
N = 2 WZ model with V(z) = /zzP (Mis just equal to L with 
p replaced by - p) . 

The spectrum a(M) of M is purely discrete and is given 
as 

a(M) = Cn - (p/2)lnd. 
The eigenspace of M with eigenva 
by 

tlue 1 - n + (p/2 1 is given 

K 
u(r)e- i(p+2-nn) 

.3Fn = v( r)eins s> 
2(R + ,rdr) , I 

(3.3) 
where R + = (0, CO >, and x + is decomposed as 

SF+ = ii Pn. (3.4) n= --m 
By Lemma 3.1, H + is reduced by each xn. We denote by 
H + ,n the reduced part of H + to G??,, . 

Let K, be the modified Bessel function of the third kind 
(e.g., Ref. 11) and set 

gn (w) = - ’ K 
).P-tl (p+l-nn)/p 

n&,x + iy = reie. 

Let 

Y, = ( 
ei arg *$+ 2 - R 

- ig, 1 ’ 

(3.5) 

(3.6) 

We prove the following theorem. 
Theorem 3.2: Let V(z) be given by ( 3.1) . Then the bo- 

sonic Hamiltonian H + has exactly p - 1 zero-energy 
ground state(s), i.e., 

dim Ker H + =dimKerQ*_ =p- 1, 
and, if p)2, then an orthogonal basis of Ker H, 
( = Ker Q *_ ) is given by CT,)“, = 2; more precisely, for 
n = L.,P, H, ,n has a unique zero-energy ground state (up 
to constant multiples), which is given by q, . 

Proofi Let p>2. Then, by direct computations using the 
recursion relation 

zK:(z) -t- vK,,(z) = -zK,-, (z) 
and the fact that 

(3.7) 

K,(z) = K-,(z) (3.8) 
(e.g., Ref. 1 l), one can easily check that each Y, with 
206~ is in D(Q*_ ) and satisfies (2.21). Hence, 
{Y ,, ]“, = 2 C Ker Q +_ = Ker H + . Thus to prove Theorem 
3.2 we must show that no zero-energy ground states of H + 
exist other than linear combinations of Y,‘s with 2(n<p. 
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The following discussions are devoted to the proof of this 
fact. 

By the reducibility of H + to %‘,, , we have 

KerH+ = i KerH,,,. n= -a. 

Hence, we need only to know what Ker H + ,” is like. Let 
(J - ig)EKer H, .n with 

f=~(r)e-‘(~+~-“), g=u(r)efno. 

Then, by Lemma 2.6( ii), we have that U,EC m (R f ) 
and we see that v satisfies the differential equation 

_ u”(r) _ 2P + 3 u’(r) + n(n -2P - 2) I 4P’lA I2 
r 1 r2 r2cPf 1) I 

Xv(r) = 0. 

Letx=2/R IrPanddetine 

w(x) = ( l/rp+ ‘)v( l/r). 

Then w satisfies 
w”(x) + (l/x)w’(x) - Cl + y”,/x”)w = 0, 

where 
(3.9) 

V” = I(p + 1 - n,/pl. 
Since vd, 2( R +. ,r dr), the function w must satisfy 

s 
- lw(x)12xdx< 03. (3.10) 

0 

One easily notices that (3.9) is the modified Bessel equa- 
tion.” It is well known that the modified Bessel functions 
I,,(x) and K,,“(x) form a fundamental system of (3.9). 
Since 

Ivs(x) -ex/JZG 
and 

K,,“(x) -meMx 

as x -t CO, each solution w(x) to 
be a constant multiple of K, (x 
count the asymptotic behavior 

(3.9) satisfying (3.10) must 
) . Moreover, taking into ac- 

Kvn(x)-(l -So.,, T 
x 

. + 6O.V” const log x 

asx- + 0, we see that w(x) with condition (3.10) is a solu- 
tion to (3.9) if and only if it is a constant multiple of K,,, (x) 
with 

WY” < 1, 
i.e., 

2<n<2p. (3.11) 
Thus we obtain g = g, (up to constant multiples) with the 
restriction (3.11). This shows also that, if p = 1, then 
Ker H, = CO), so that Theorem 3.2 with p = I is proven. 
By Lemma 2.6(i), Dg must exist and 

f= - (av)*-lDg,. 

By direct computations using ( 3.7)) we can see that 

Dg,= kJ+l-4+n-p-lK 
I 

2lAl 
2rp+’ vtl (4 rp 

. 

It follows from this expression and the asymptotics of K, (z) 
atz=Oandz= CO thatfisinL2(R2) ifandonlyif2Gngp 
and in this case, we have 

f=eiargAgp*+2-n. 
Thus we have proven that, for 2<n<p, the vector Y,, given 
by (3.6) is the only (normalizable) zero-energy state of 
H +,tl* This completes the proof of Theorem 3.2. n 

Remarks: (i) If n&Z\{2,...,p}, then Y,, is not in 
L 2 ( R2;G2), but, it satisfies the partial d@rentiai equation 

H, Y, =O. 
Thus each Y,, with n@(2,...,p) is a generalized eigenfunction 
ofH, with eigenvalue zero. This shows that there exist 
infinitely many generalized zero-energy eigenstates of H f . 
This kind of phenomenon, which may be interesting, ap- 
pears in the N = 2 WZ model with V(z) = A,$’ (see Ref. 3). 

(ii) Let 
-‘“rgRK,,p(2[A I/rP)e”‘* 

iK<, - nvp (2lh f/rP)eicn-P) ’ (3.12) 

Then one can easily check that for all n&5, 
Q-Q,=O, H-Q,,=0 

aspartiaE dl@zrential equations in R’\{O). But, for all n&?, 
Q>,eL ‘(R2;C2). Hence, each @, is a generalized eigenfunc- 
tion of H _ with eigenvalue 0, Thus H _ also has infinitely 
many generalized zero-energy eigenstates. 

IV. NON-FREDHOLMNESS OF THE SUPERCHARGE 

For a densely defined closed linear operator A from a 
Hilbert space to another Hilbert space, the analytic index 
index@ ) of A is defined by 

index (A ) = dim Ker A - dim Ker A *. 
It is known that the number of the zero-energy ground 
state(s) of an SSQM model is related to the analytic index of 
the supercharges, restricted to the bosonic states or the fer- 
mionic ones, of the model. In the case of the meromorphic 
WZ model discussed in Sec. II, we have, from Theorem 2.5, 

dim Ker H, =dimKerQ*_ 

=dimKerQt -dimKerQ- 
= - index(Q- )* 

It is well known (e.g., Chap. IV Sec. 5.3 in Ref. 9) that ifA is 
Fredholm, then index (A) is invariant under compact per- 
turbations relative to A. Therefore, it is interesting to exam- 
ine whether Q- is Fredholm or not. We prove that, in the 
case where V(z) is given by (3.1)) Q _ is not Fredholm. 

Theorem 4.1: Let Q- be defined by (2.3) with V(z) 
given by (3.1) . Then Q _ is not Fredholm. 

We shall prove that Ran Q- is not closed. Then 
Theorem 4.1 follows. 
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Since Ker g _ = CO) as already proved (Theorem 2.5 ), 
Ran s _ is closed if and only if 

IIQ- I4lmi4I~ w@- 19 
with some constant c > 0. Hence, to prove the nonclosedness 
of Ran e _ , we need only to show that there exists a se- 
quence {a,},, CD(Q- ) (0, #O) such that 

IIQ- fL IlWn II -0. (4.1) 
The idea to do that is to note that o0 defined by (3.12) is a 
generalized eigenfunction with eigenvalue zero. We put 

q(r) =&(21/l I/rP), j=O,l. 
Let p&,” (HP) satisfying 

p(x))O, p(x) =p( -x), for all x&, 
p(x) = 0 for ]xJ>l, 

I 
p(x)dx = 1, 

and, for E > 0, define pt by 
fd (xl = (l/d/-a/E). 

Let 0 < e4c < 6 and introduce the following functions: 

A6W =e-i”‘g~p~*(xtc,sI~o)(r), 
*d(r) =Pr*(Xlc.slUl )(r), 
g, (r,@ = &5 (r) 
./L(r,@ = &6a(rk-ipe, 

where * denotes convolution and xrc,s I is the characteristic 
function of [ c,S ] . Obviously& and g,, are in C ; ( R* \ {O] ) . 
Let 

a,, = ge5 
L 1 L * 

Lemma 4.2: There exists a constant C> 0 such that 

m (1% W<llg, 112, (4.2) 
c~2p+2~lv;6112, (4.3) 

for all sufficiently large 6 and small E. 
ProoJ We prove only (4.2). Estimate (4.3) can be prov- 

en similarly. By using the property that 
supp #ca C [c - ~,a + E] and the Schwarz inequality, we 
have 

4n 
[s 

6-!-E 1 2 

%+C)(6-c+22E) c--c 
rdr&(r)Xl . 

The integral part can be written as 

r 
4-c 

c 
6 

rdr4, (r) = dx uo (xl c 
6+E 

rdrp,(r-xx) 
JC-• JC JC-e 

f 

6 
= xuo (x)dx, 

c 

where in the last equality we have used 
p(x) =p( -xl. BY the asymptotic 
u. (x) -const log x as x--t CO, which follows 
asymptotics of K,, (z) at z = 0, we have 

A,<const S (logS)‘/e 
for large S. Using the support property ofp and the Schwarz 
inequality, we have 

the fact 
behavior 

from the 
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s 

6 

u. (x)x dx>const 62 log S 
c 

for large 6. Hence (4.2) follows. n 
Lemma 4.3: There exists a constant C> 0 such that 

ll&re6 + cav,*fc6 I12<CCS (log 612/E + d2p+ 21, (4.4) 
Ila-d + w9g,~~2<CCS2p+ ‘/E + eS2Pf 21, (4.5) 
for all sufficiently large S and small E. 

Proo$ We have 

II&6 + (~~*L611~2~C~dr~ =tJ6irrdr C--E 
x $p,, - 2pA + A6 ) 2. 

By integration by parts, we obtain 

-$$c6 =ewiargA[ [ -pe(x-r)uo(x)]f 

s 

6 

+ 
c 

dxP,(x-r)-$-~~(x) . 
I 

Using the recursion formula (3.7) of K, (z) and (3.8), we 
see that 

&u,(x) =- 2’;1 Ip u (x) 
xP+l 1 * 

Hence, we have 

$ kc? - s $66 
-’ =e rargA [ -pc(x - r)uo(x)]z 

6 
+ 2ph * u, 0). 

Therefore, we obtain 

II& + (~V)*f,I12%~ + B,, 
with 

3?rc 
A, =P 2E bo (&2s + uo (c12c), 

s 
s+s 

B, = 63~p’I/z I2 rdr 
C---E 6 

X If pE(x-r) 

1 1 
E ( --- > 

2 

xP+ rP+ 
1 1 01 

(xl ! 
, 

and 

s 

I 
c, = d.+(x) I’. 

--I 
It is easy to see that 
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Note that 

s J-+c 
dxfp, (x - r) I2 = L C, 

r--E E 
and 

I 1 -_ -_ 
rP+ 1 (r-g)P+l 

Hence we obtain hi C s 6+f -(P rdr 
6np2A2 E c--E X ( 1 1 2'+6 

-_ 
rP+ 1 >S (r-e)P+l ,--E 

dxlu, (~1’~ 

Since u, (x)-constxpasx-tco, wehave Iui(x)f<constxP 
for large x. Hence, for all sufficiently large r, we have 

s 

r+s 
,- ( Iu, (x) l’dx<const cr ‘5 

Consequently, fixing e. > E, we obtain 

r?rlYm+e Iu, (x) 12dx<const S2Pq2, 

for large 8. Since 

( 
1 1 

> 

2 

(c - E)p+ ' - (c - 2,5y+ ’ -const E2 as e-+0, 

we obtain 
B, <const eS2P + 2, 

for large S. Thus (4.4) follows. Similarly we can prove 
(4.5). H 

We are now ready to prove Theorem 4.1. 

Proof of Theorem 4.1: By Lemmas 4.2-4.3, there exist 
positive constants C, and C, such that 

IIQ- bll” = II% + wk&l12 -I- ll?!L5 + cm*&II’ 
<C,{(1/E)S2p+‘+~~2p+23 

and 

II%6 II’ = II/L II2 + II& II’ 
>C2{S2P+2 + 6 (log 512), 

for all sufficiently large 6 and small E. Therefore, we obtain 

Ilee ~n,&112/1[~,1)2~co~st( l/f3 -I- El, 
for ail sufficiently large S and small E. Take sequences 
{en>),,@, 1, such that E, 40, 6, -, CO, and ens,, -+ CO as 
R + CO, and define a, = R, 6 . Then {a, >, satisfies (4.1). 
This completes the proof ot?heorem 4.1. n 
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