Instructions for use

Title
Momentum operators with gauge potentials, local quantization of magnetic flux, and representation of canonical commutation relations

Author(s)
Arai, Asao

Citation
Journal of Mathematical Physics, 33(10): 3374-3378

Issue Date
1992-10

Doc URL
http://hdl.handle.net/2115/13677

Rights
Copyright © 1992 American Institute of Physics

Type
article

File Information
jmp33-10.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Momentum operators with gauge potentials, local quantization of magnetic flux, and representation of canonical commutation relations

Asao Arai
Department of Mathematics, Hokkaido University, Sapporo 060, Japan

(Received 4 February 1992; accepted for publication 20 May 1992)

Commutation properties of two-dimensional momentum operators with gauge potentials are investigated. A notion of local quantization of magnetic flux is introduced to characterize physically the strong commutativity of the momentum operators. In terms of the notion, a necessary and sufficient condition is given for the position and the momentum operators to be equivalent to the Schrödinger representation of the canonical commutation relations.

I. INTRODUCTION

It was shown in Ref. 1 that a representation of the canonical commutation relations (CCRs) inequivalent to the Schrödinger representation occurs in connection with a planar quantum system with a perpendicular magnetic field concentrated on the origin. The inequivalent representation comes from the noncommutativity (in the strong sense) of the momentum operators with a singular gauge potential of vortex type; “Nelson's phenomenon” occurs for the momentum operators. It is interesting to find more gauge potentials that give rise to such a phenomenon and to investigate general mathematical structures underlying it. This is the basic motivation of the present work.

We mention that, in the case of one degree of freedom, Schmidgen3,4 has given a detailed analysis on representations of the CCR inequivalent to the Schrödinger representation, together with some examples,4 one of which is in the spirit of Nelson's example.2 For works related to representations of the CCRs, see the references given in Refs. 3 and 4.

The outline of the present paper is as follows. In Sec. II, we start our analysis with a general two-dimensional quantum system with a gauge potential that may be singular at some isolated points in the two-dimensional space \(\mathbb{R}^2 \). The main point is to investigate the commutation relations (in the strong sense) of the momentum operators with the gauge potential. We introduce a notion of local quantization of magnetic flux. We show that, under some conditions, the momentum operators strongly commute if and only if the magnetic flux is locally quantized. This gives a physical characterization of the strong commutativity of the momentum operators. Also, for a class of gauge potentials, a necessary and sufficient condition is given for the magnetic flux to be locally quantized. In Sec. III, we define classes of gauge potentials, which contain the example used in Ref. 1, and discuss some examples. In Sec. IV, we apply the preceding results to representation of the CCRs to prove that, under some conditions, the position and the momentum operators fulfill the Weyl relations if and only if the magnetic flux is locally quantized. This generalizes the main result in Ref. 1.

II. MOMENTUM OPERATORS WITH GAUGE POTENTIALS AND LOCAL QUANTIZATION OF MAGNETIC FLUX

We consider a quantum system of a spinless charged particle with charge \(q \in \mathbb{R} \setminus \{0\} \) moving in the plane \(\mathbb{R}^2 \) under the influence of a perpendicular magnetic field. We denote by \(A(r) = (A_1(r), A_2(r)) \) a gauge potential of the magnetic field. We consider the situation where \(A_j \) (\(j = 1,2 \)) may be singular at the points \(a_n = (a_{n1}, a_{n2}) \in \mathbb{R}^2 \), \(n = 1, \ldots, N \). Let

\[
\Omega = \mathbb{R}^2 \setminus \{a_1, \ldots, a_N\}.
\]

Throughout this section, we assume the following.

Assumption A: Each \(A_j \) \((j = 1,2) \) is in \(C(\Omega) \) (the space of continuous functions on \(\Omega \)).

Remark: Under Assumption A, it is natural to treat the magnetic field \(B \) as a distribution. Hence, denoting by \(D_x \) and \(D_y \) the distributional partial differential operators in \(x \) and \(y \), respectively, we may define \(B \) by

\[
B(r) = D_x A_2(r) - D_y A_1(r),
\]

provided that \(A_1 \) and \(A_2 \) are distributions on \(\mathbb{R}^2 \).

The purpose of this section is to investigate commutation relations of the momentum operators \(P_1 \) and \(P_2 \) defined by

\[
P_1 = p_1 - q A_1,
\]

\[
P_2 = p_2 - q A_2,
\]

with

\[
p_1 = -i D_x, \quad p_2 = -i D_y,
\]
where we use a system of units in which the light speed c and the Planck constant h are equal to one. To state the main result, we need some definitions. For $x,y,s,t \in \mathbb{R}$, we define two curves $C_\pm(x,y;s,t)$ from $(x,y) \in \mathbb{R}^2$ to $(x+s,y+t) \in \mathbb{R}^2$ by

$$C_-(x,y;s,t) = \{(x+\theta s,y) | 0 < \theta < 1\},$$
$$C_+(x,y;s,t) = \{(x+\theta s,y+\theta t) | 0 < \theta < 1\},$$

which is the rectangular closed curve:

$$(x,y) \rightarrow (x+s,y) \rightarrow (x+s,y+t) \rightarrow (x,y+t) \rightarrow (x,y).$$

Let

$$C(x,y;s,t) = C_-(x,y;s,t) - C_+(x,y;s,t),$$

which physically means the flux of the magnetic field B going through the interior of $C(x,y;s,t)$. Since the Lebesgue measure of the set $\mathbb{R}^2 \setminus \Omega_s$ is zero, the function $\Phi_{x,t}^A(x,y)$ is defined for a.e. (almost everywhere) $(x,y) \in \mathbb{R}^2$ and real valued. Hence it defines a unique, self-adjoint, multiplication operator on $L^2(\mathbb{R}^2)$. We denote it by the same symbol $\Phi_{x,t}^A$.

We shall denote by $D(T)$ the domain of the operator T. The main result in this section is the following.

Theorem 2.1: Suppose that each P_j $(j = 1,2)$ is essentially self-adjoint on $D(P_j) \cap D(A_j)$ and denote the closure of P_j by P_j. Then, for all $s,t \in \mathbb{R}$,

$$(\Phi_{x,t}^A \Psi, e^{itP_1^A} \Psi) = \lim_{n \to \infty} (\Phi_{x,t}^A, (e^{itP_1^A/n} e^{-itP_2^A/n})^n \Psi),$$

$$\Phi_{x,t}^A \in L^2(\mathbb{R}^2), \quad t \in \mathbb{R},$$

where (\cdot, \cdot) denotes the inner product of $L^2(\mathbb{R}^2)$. Using the fact that

$$(e^{itP_1^A/n} e^{-itP_2^A/n}) \Psi(x,y) = \exp \left[-i \sum_{k=1}^{n} \frac{s}{n} A_1 \left(x + \frac{ks}{n}, y \right) \right] \Psi(x+s,y),$$

we can show that

$$\lim_{n \to \infty} (e^{itP_1^A/n} e^{-itP_2^A/n}) \Psi(x,y)$$

$$= \exp \left(-i \int_0^t A_1(x+x',y) \, dx' \right) \Psi(x+s,y).$$

These facts allow us to apply the Lebesgue dominated convergence theorem to obtain

$$(\Phi_{x,t}^A \Psi, \Psi) = \int_{\mathbb{R}^2} \Phi_{x,t}^A(x,y) \Psi(x+s,y) \, dx \, dy,$$

which implies that

$$e^{itP_1^A} \Psi(x,y) = \exp \left(-i \int_0^t A_1(x+x',y) \, dx' \right) \times (e^{itP_1^A} \Psi(x,y)).$$

Similarly, we can prove that

$$e^{itP_2^A} \Psi(x,y) = \exp \left(-i \int_0^t A_2(x,y+y') \, dy' \right) \times (e^{itP_2^A} \Psi(x,y)).$$

Using these formulas, we obtain

$$e^{itP_1^A} e^{itP_2^A} = \exp \left(-i \int_{C_-(x,y,s,t)} A(r') \, dr' \right) e^{itP_1^A} e^{itP_2^A}$$

and

$$e^{itP_1^A} e^{itP_2^A} = \exp \left(-i \int_{C_-(x,y,s,t)} A(r') \, dr' \right) e^{itP_1^A} e^{itP_2^A}.$$
\[e^{iP_2} e^{iP_1} = \exp \left(-i \int_{C_+ \in \mathbb{C}} A(r') \cdot dr' \right) e^{iP_1} e^{iP_2}. \]

Since \(e^{iP_1} \) and \(e^{iP_2} \) commute, (2.1) follows. \(\square \)

Remark: If \(A \) is relatively bounded with respect to \(P_j \) with a relative bound less than one, then it follows from the Kato–Rellich theorem (e.g., Sec. X.2 in Ref. 6) that \(P_j \) is essentially self-adjoint on \(C^0_0 (R^2) \). Hence, in this case, the assumption of Theorem 2.1 is satisfied. More singular gauge potentials that satisfy the assumption of Theorem 2.1 will be considered in Sec. III.

We next discuss implications of Theorem 2.1. For this purpose, we first recall a proper definition of commutativity of self-adjoint operators (e.g., Sec. VIII.5 in Ref. 5): Two self-adjoint operators \(A \) and \(B \) are said to strongly commute if

\[e^{ixA} e^{ixB} = e^{ixB} e^{ixA} \]

for all \(s, t \in \mathbb{R} \). This notion of commutativity and Theorem 2.1 lead us to the following definition.

Definition 2.2: Let \(Z \) be the set of integers. We say that the magnetic flux associated with a vector potential \(A \) is locally quantized if \(\Phi^A \) is a \(2\pi \mathbb{Z} / q \)-valued function for all \(s, t \in \mathbb{R} \).

Remarks: (i) The local quantization property of magnetic flux is gauge invariant.

(ii) The standard notion of quantization of magnetic flux is a global one, i.e., it is concerned with a quantization of the total magnetic flux defined by

\[\Phi^A = \lim_{x,y \to \infty, s,t \to \infty} \Phi^A_{s,t} (x,y), \]

provided that the limit exists. If the magnetic flux associated with \(A \) is locally quantized, then \(\Phi^A \) is quantized. However, the converse is not true.

The following fact immediately follows from Theorem 2.1.

Corollary 2.3: Under the assumption of Theorem 2.1, \(\overline{P}_1 \) and \(\overline{P}_2 \) strongly commute if and only if the magnetic flux associated with \(A \) is locally quantized.

Since the notion of local quantization of magnetic flux is a physical one, Corollary 2.3 gives a physical characterization of the strong commutativity of the momentum operators.

In view of Corollary 2.3, it is important to know for what gauge potentials the magnetic fluxes associated with them are locally quantized. We next consider this problem. Let \(D(x,y;s,t) \) be the interior of \(C(x,y;s,t) \) and

\[\epsilon(s) = \begin{cases} 1, & s > 0, \\ -1, & s < 0. \end{cases} \]

Take a constant \(\delta > 0 \) to be sufficiently small such that for all \(j, k = 1, \ldots, N \) with \(j \neq k \),

\[\{ (r \mid |r - a_j| < \delta) \cap \{ (r \mid |r - a_k| < \delta) \} = \emptyset, \]

and set

\[\gamma_n (A) = \int_{|r - a_n| = \delta} A(r) \cdot dr, \]

where the orientation of the contour \(|r - a_n| = \delta \) is taken to be anticlockwise.

Lemma 2.4: Let \(A \in C^1 (\Omega; R^2) \) (the space of \(R^2 \)-valued, continuously differentiable functions on \(\Omega \)) and suppose that

\[B(r) = 0, \quad r \in \Omega. \]

Then \(\gamma_n (A) \) is independent of \(\delta \) and the following formula holds:

\[\Phi^A_{s,t} (x,y) = \epsilon (s) \epsilon (t) \sum_{s,t \in D(x,y;s,t)} \gamma_n (A), \quad (x,y) \in \Omega_{s,t}. \]

Proof: This follows from an application of Green's theorem. \(\square \)

The following theorem gives a necessary and sufficient condition for the magnetic flux associated with a gauge potential to be locally quantized.

Theorem 2.5: Let \(A \in C^1 (\Omega; R^2) \). Then the magnetic flux associated with \(A \) is locally quantized if and only if (2.2) is satisfied and \(\gamma_n (A) \) is an integer multiple of \(2\pi / q \) for all \(n = 1, \ldots, N \).

Proof: Suppose that the magnetic flux associated with \(A \) is locally quantized. For any \((x,y) \in \Omega \), there exists a constant \(c = c(x,y) > 0 \) such that for all \(s, t \in [-c, c] \), and \(n = 1, \ldots, N \), \(a_n c(x,y,s,t) \cup D(x,y,s,t) \). By Green's theorem, we have

\[\Phi^A_{s,t} (x,y) = \int \int_{D(x,y;s,t)} B(r') dr', \quad |s|, |t| < c. \] (2.4)

It follows from this formula that

\[\Phi^A_{s,t} (x,y) \bigg|_{s,t=0} = B(x,y). \] (2.5)

Using (2.4), we can also show that

\[|\Phi^A_{s,t} (x,y)| < d |s|, |t|, \quad |s|, |t| < c, \] (2.6)

with some constant \(d = d(c,x,y) > 0 \). Under the present assumption, \(\Phi^A_{s,t} (x,y) \) is a \(2\pi \mathbb{Z} / q \)-valued function as a function of \((s,t) \). Hence (2.6) implies that \(\Phi^A_{s,t} (x,y) = 0 \) for all sufficiently small \(|s|, |t| \). This fact and (2.5) give (2.2). Hence, by Lemma 2.4, (2.3) holds. Since \(\Phi^A_{s,t} \) is a \(2\pi \mathbb{Z} / q \)-valued function for all \(s, t \in \mathbb{R} \), it follows that each \(\gamma_n (A) \) must be an integer multiple of \(2\pi / q \).
Conversely, if (2.2) is satisfied and $\gamma_n(A)$ is an integer multiple of $2\pi/q$ for all $n=1,\ldots,N$, then, by Lemma 2.4, Φ_n^T is a $2\pi Z/q$-valued function for all $s\in \mathbb{R}$.

It is easy to see that, under condition (2.2), $\gamma_n(A)$ can be different from zero only if A is singular at $r=a_n$. Hence, Theorem 2.5 shows that, for the magnetic flux associated with a vector potential $A\in C^1(\Omega;\mathbb{R}^3)$ to be locally quantized in a non-trivial way, A must have singularities at some of a_n's.

Remark: If B is a distribution on \mathbb{R}^2 and satisfies (2.2), then it follows from a general theorem in distribution theory (e.g., Chap. II, Sec. 4.5 in Ref. 7) that B must be of the form

$$B(r) = \sum_{n=1}^{\infty} \sum_{a,b=0}^{k} \lambda_{ab}^{(n)} D_a^b \delta(r-a_n),$$

where k is a non-negative integer and $\lambda_{ab}^{(n)}$, $a,b=1,\ldots,k$, $n=1,\ldots,N$, are real constants. A gauge potential that gives such a magnetic field is discussed in Sec. III.

III. CLASSES OF SINGULAR GAUGE POTENTIALS

In this section we show that there exist classes of singular gauge potentials that satisfy the assumption of Theorem 2.1 and discuss some examples. Let

$$S_j = \mathbb{R} \setminus \{a_j\} \cup \{s\}, \quad j=1,2.$$

For an open set $M \subset \mathbb{R}^2$, we denote by $C^m(M)$ [resp. $C^m(M;\mathbb{R}^3)$] the space of (resp. \mathbb{R}^3-valued) m times continuously differentiable functions on M.

Definition 3.1: A gauge potential $A\in C^m(\Omega;\mathbb{R}^3)$ ($m=0,1,\ldots$) is said to be in the set \mathcal{A} if there exist real-valued functions $\phi_1\in C^{m+1}(\mathbb{R}\times S_2)$ and $\phi_2\in C^{m+1}(S_1\times \mathbb{R})$ such that

$$A_1(x,y) = \partial_\phi \phi_1(x,y), \quad (x,y)\in \mathbb{R}\times S_2, \quad (3.1)$$

$$A_2(x,y) = \partial_y \phi_2(x,y), \quad (x,y)\in S_1\times \mathbb{R}, \quad (3.2)$$

where ∂_x and ∂_y denote the usual partial differential operators in x and y, respectively.

For an open set $M \subset \mathbb{R}^2$, we denote by $C^m(M)$ the space of functions in $C^m(M)$ with compact support in M. Let

$$D^m = C^m(\mathbb{R}\times S_2),$$

$$D^m = C^m(S_1\times \mathbb{R}).$$

For all $m\geq 1$ and $A\in \mathcal{A}$, we have

$$D^m \subset D(p_j) \cap D(A_j), \quad j=1,2.$$

Theorem 3.2: Let $m\geq 1$ and $A\in \mathcal{A}$. Then each P_j is essentially self-adjoint on D^m.

Proof: Under the assumption, $\psi_j\in C^m(\mathbb{R}\times S_2)$ and $\phi_2\in C^m(S_1\times \mathbb{R})$. Hence, for each $j=1,2$, $e^{i\phi_j}$ is a unitary operator such that $e^{i\phi_j} D^m = D^m$. We have

$$P_j = e^{i\phi_j} p_j e^{-i\phi_j} \quad \text{on} \quad D^m, \quad j=1,2.$$

Hence we need only to show that P_j is essentially self-adjoint on D^m. In the standard identification $L^2(\mathbb{R}^2) = L^2(\mathbb{R}) \otimes L^2(\mathbb{R})$, we can identify p_j with $-iD_x \otimes I$ (I denotes identity). It is well known that $-iD_x$ is essentially self-adjoint on $C_0^\infty(\mathbb{R})$ and hence on $C_0^\infty(\mathbb{R})$ for all $m\geq 1$. Note that

$$C_0^\infty(\mathbb{R}) \otimes C_0^\infty(\mathbb{S}_2) \subset D^m,$$

where \otimes denotes algebraic tensor product. Hence it follows that P_1 is essentially self-adjoint on D^m. Similarly we can prove the essential self-adjointness of P_2 on D^m.

Theorem 3.2: Let $m\geq 1$ and $A\in \mathcal{A}$. Then each P_j is essentially self-adjoint on D^m. Let

$$A_j(x,y) = \sum_{n=1}^{\infty} \sum_{a,b=0}^{k} \lambda_{ab}^{(n)} D_a^b \delta(y-a_n),$$

Then A_j is in $C^\infty(\Omega)$. Let

$$F_n(t) = \int_0^t \frac{\lambda_j \phi_j^n}{(1+\xi^2)^{\ell_n}} d\xi + C$$

with a constant $C\in \mathbb{R}$ and

$$\phi_1(x,y) = \sum_{n=1}^{N} \sum_{a,b=0}^{k} \lambda_{ab}^{(n)} D_a^b \delta(y-a_n),$$

$$\phi_2(x,y) = \sum_{n=1}^{N} \frac{\lambda_j \phi_j^n}{(x-a_n)}. $$

Then $\phi_1\in C^\infty(\mathbb{R}\times S_2)$, $\phi_2\in C^\infty(S_1\times \mathbb{R})$, and (3.1) and (3.2) hold. Hence $A = (A_1,A_2)\in \mathcal{A}$.

Example 3.4: Let k be a non-negative integer, $\lambda_{ab}^{(n)}\in \mathbb{R}$ ($n=1,\ldots,N; a,b=1,\ldots,k$) be constants, and

$$A_1(x,y) = \sum_{n=1}^{N} \sum_{a,b=0}^{k} \lambda_{ab}^{(n)} D_a^b \delta(y-a_n), \quad (3.3)$$

$$A_2(x,y) = \sum_{n=1}^{N} \sum_{a,b=0}^{k} \lambda_{ab}^{(n)} D_a^b \delta(y-a_n) \frac{y-a_n}{|r-a_n|^2}. \quad (3.4)$$

Asao Arai: Momentum operators with gauge potentials 3377
It is obvious that $A \in C^\infty(\Omega)$. This example is a generalization of the one given in Ref. 1, which is the case of $N=1$ and $k=0$ with $a_1=0$.

Let

$$
\phi_1(x,y) = -\sum_{n=1}^N \sum_{a,b=0}^k \lambda_{ab}^{(n)} \frac{\partial^2 \partial y}{\partial x^2} \arctan \frac{x-a_n}{y-a_n},
$$

$$
\phi_2(x,y) = \sum_{n=1}^N \sum_{a,b=0}^k \lambda_{ab}^{(n)} \frac{\partial^2 \partial y}{\partial x^2} \arctan \frac{y-a_n}{x-a_n},
$$

$$(x,y) \in \Omega.$$

Then $\phi_1 \in C^\infty(\mathbb{R} \times S_2)$, $\phi_2 \in C^\infty(S_1 \times \mathbb{R})$, and (3.1) and (3.2) hold. Hence $A = (A_1, A_2) \in \mathfrak{l}_{\omega}^\infty$.

Noting that

$$
\frac{y-a_n}{|r-a_n|^2} = D_y \log |r-a_n|,
$$

$$
\frac{x-a_n}{|r-a_n|^2} = D_x \log |r-a_n|,
$$

and using the fact that

$$(D_x^2 + D_y^2) \log |r-a_n| = 2\pi \delta(r-a_n),$$

we obtain

$$
B(r) = 2\pi \sum_{n=1}^N \sum_{a,b=0}^k \lambda_{ab}^{(n)} D_x^a D_y^b (r-a_n).
$$

Hence, the magnetic field B is concentrated on the points a_n, $n=1,...,N$. In particular, (2.2) is satisfied. We can show that

$$
\gamma_n(A) = 2\pi \lambda_{00}^{(n)}.
$$

Hence it follows from Lemma 2.4 that

$$
\Phi^A_{\omega}(x,y) = 2\pi \varepsilon(x) \varepsilon(t) \sum_{n \in D(x,y)} \lambda_{00}^{(n)}.
$$

This formula shows that the magnetic flux associated with the vector potential $A = (A_1, A_2)$ given by (3.3) and (3.4) is locally quantized if and only if for all $n = 1,...,N$, $qA_{00}^{(n)}$ is an integer. Therefore, in the present example, Theorem 2.3 implies the following: \mathcal{P}_1 and \mathcal{P}_2 strongly commute if and only if each $qA_{00}^{(n)}$ (n = 1,...,N) is an integer.

IV. REPRESENTATION OF THE CCRs

In this section we discuss the relevance of the previous results to representation of the CCRs. We first note a simple fact.

Lemma 4.1. Let X_j, $j = 1,2$, be the multiplication operators by the coordinate functions x and y, respectively, and set

$$
\mathcal{D} = C^\infty_0(\Omega).
$$

Suppose that $A \in C^\infty(\Omega; \mathbb{R}^2)$. Then \{ $X_j P_j$ | $j = 1,2$ \} satisfy the CCRs on \mathcal{D}:

$$
[X_j P_k] \Psi = [P_j P_k] \Psi = 0,
$$

$$
[X_j P_k] \Psi = i\delta_{jk} \Psi, \quad \Psi \in \mathcal{D}, \quad j,k = 1,2,
$$

if and only if (2.2) holds.

As for the CCRs in the Weyl form, we have the following result.

Theorem 4.2: Under the assumption of Theorem 2.1, the set \{ $X_j P_j$ | $j = 1,2$ \} of self-adjoint operators fulfills the Weyl relations if and only if the magnetic flux associated with A is locally quantized.

Proof: In the same way as in the proof of Theorem 2.1, we can prove the following formula:

$$
e^{ix_j e^{itk}} = e^{ix_j e^{itk}} e^{ix_j e^{itk}}, \quad j,k = 1,2, \quad s,t \in \mathbb{R}.
$$

Obviously X_1 and X_2 strongly commute. Combining these facts with Theorem 2.3, we obtain the desired result.

Theorem 4.2 can be rephrased as follows: Under the assumption of Theorem 2.1, \{ $X_j P_j$ | $j = 1,2$ \} is equivalent to the Schrödinger representation of the CCRs if and only if the magnetic flux associated with A is locally quantized.

2. E. Nelson, Ann. Math. 70, 572 (1959); see also Sec. VIII.5 in Ref. 5.
