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Gauge theory on a non-simply connected domain and 
representations of canonical commutation relations 
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Departmewt of Mathematics, Hokkaido University, Sapporo 060, Japan 

(Received 17 January 1995; accepted for publication 10 February 1995) 

A quantum system of a particle interacting with a (non-Abelian) gauge field on the 
non-simply connected domain it4 =R2\{a,}~=, is considered, where a,, , n = 1,. . . , N, 
are fixed. isolated points in R2. The gauge potential A of the gauge field is a p Xp 
anti-Hermitian matrix-valued l-form on M, and may be strongly singular at the 
points a,, , n = 1 , . . . ,N. If A is flat, then the physical momentum and the position 
operators { Pj ,qj}T= i of the particle satisfy the canonical commutation relations 
(CCR) with two degrees of freedom on a suitable dense domain of the Hilbert space 
L2(R2;Cp). A necessary and sufficient condition for this representation to be the 
Schrodinger 2-system is given in terms of the Wilson loops of the rectangles not 
intersecting a,, n = 1 , . . . , N. This also gives a characterization for the representation 
to be non-Schrodinger. It is proven that, for a class of gauge potentials, which is not 
necessarily flat, Pj is essentially self-adjoint. Moreover, an example, which gives a 
class of non-Schrodinger representations of the CCR with two degrees of freedom, 
is discussed in some detail. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

In Ref. 1, the author considered a quantum system of a charged particle with charge 4 E R\(O) 
moving in the plane R2 under the influence of a perpendicular magnetic field, which may be 
singular at given fixed isolated points a, = (a, 1 ,un2) E R2, n = 1 , . . . ,N. In this quantum system, the 
position operators qj and the physical momentum operators Pj=Pj - qAj (j= 1,2), where pj is 
the canonical momentum operator with respect to qj and (A, ,Az) is a vector potential of the 
magnetic field, satisfy, on a dense domain of L2(R2), the canonical commutation relations (CCR) 
with two degrees of freedom if and only if the magnetic field is concentrated on the set {a,}:= 1. 

A set {kt ,...,@,;Q , ,.. .,Qn} of self-adjoint operators on a Hilbert space 3 is called a 
Schriidinger n-system if there exist mutually orthogonal closed subspaces ?a of 3, such that 
,?:=@a ,.KO* with Jhe following properties: (i) each -Z0 reduces all Pi, Qj ; (ii) the set 
{P ,,...,P,, ;Q, ,...,Q,) is, in each xm, irreducible and unitarily equivalent to the Schrijdinger 
system {P; ,..., Pi;Qi ,..., Qi}, where Pi” and Qq are self-adjoint operators on L2(R”) defined by 
Pi”= - i3j [(‘i denotes the generalized partial differential operator in the jth variable Xi of 
x=(x, ,..., x,) sRn] and Q,“=xj (the multiplication operator by Xi) (Ref. 2, p. 81). We call a 
representation of the CCR with n degrees of freedom non-Schriidinger if it is not a Schrodinger 
n-system. 

It was proven in Ref. 1 that the above mentioned representation {Pj ,qj}i2= r of CCR, where Pj 
denotes the closure of Pj, is a Schrodinger 2-system if and only if the magnetic flux is locally 
quantized [i.e., the magnetic flux of every rectangle not intersecting a,, (n = 1, . . . ,N) is an integer 
multiple of 27r/q]. This result, which generalizes the main result of Ref. 3 concerning a special 
example in the case N= 1, shows that, if the magnetic field is concentrated on {a,}:= 1 and the 
magnetic flux is not locally quantized, then {Fj ,qj}i2= i is a non-Schrodinger representation of 
CCR. Thus, a class of non-Schrlidinger representations of CCR is constructed. Of interest con- 
cerning these non-Schrodinger representations is their relation to the Aharonov-Bohm effect4 in 
an idealized sense. From a mathematical point of view, the non-simply connectedness of the base 
manifold. 

0 1995 American Institute of Physics 2569 

Copyright ©2001. All Rights Reserved.



2570 Asao Arai: Gauge theory and canonical commutation relations 

M = R2\{ a,}:= 1 , (1.1) 
is essential for the analysis just mentioned to be non-trivial. Further properties of the quantum 
system were investigated in terms of the Dirac-Weyl operator.5 

An operator-theoretical analysis related to Refs. 1 and 3 has been made by Kurose and 
Nakazato,6 who have constructed a * representation of the Weyl algebra with two degrees of 
freedom induced by a one-dimensional representation of the fundamental group of M, and proved 
that the * representation is unitarily equivalent to the * algebra generated by {Pi ,qj};= 1. 

The quantum system discussed in Ref. 1 is an example of Abelian gauge theory with gauge 
group U( 1 ), the one-dimensional unitary group. It is natural and interesting to extend the analysis 
made in Ref. 1 to the case of non-Abel&i gauge theory. With this motivation, we consider in this 
paper a quantum mechanical particle moving in M under the influence of a (non-Abel&r) gauge 
field. Indeed, in this case too, the position and the physical momentum operators of the particle 
give a representation of the CCR with two degrees of freedom if the gauge field strength is 
concentrated on {a,}:= t . We formulate a necessary and sufficient condition for the representation 
to be a Schrodinger 2-system. As in the case of Ref. 1,‘this result gives a class of non-Schrodinger 
representations of CCR, which may give a form of non-commutative Aharonov-Bohm effect. Our 
analysis is general, in that it applies to any gauge theory on M with a finite-dimensional unitary 
representation of a Lie group. The Dirac-Weyl operator in the present case will be discussed in a 
separate paper. 

In Sec. II, under the assumption that the physical momentum operators P, , P2 are essentially 
self-adjoint, we compute the commutation relations (in the strong sense) of the position operators 
q r , q2 and PI , P2. It is shown that { Pj ,qj}i2= i is a Schrodinger 2-system if and only if the Wilson 
loop of every rectangle not intersecting a, (n = 1 , . . . . N) is equal to the identity. In Sec. III, we 
derive, in terms of the gauge potential, a condition equivalent to the condition for the Wilson loops 
just mentioned. This can be done by employing the theory of product integrals. Section IV is 
devoted to the proof of essential self-adjointness of Pj for a wide class of gauge potentials. In the 
last section we discuss an example in some detail. 

II. CCR IN (NON-ABELIAN) GAUGE THEORY 

Let M be given by (1 .l). We denote by M:( 6) the set of p Xp anti-Hermitian matrices 
(p EN). Let Aj, j = 1,2, be M:(C)-valued continuously differentiable functions on M, and set 

A(r)=A,(r)dx+A2(r)dy, r=(x,y)EM, 

an MF( C)-valued l-form on M. This l-form may be regarded as a gauge potential in a gauge 
theory on M with a p-dimensional unitary representation of a Lie group. 

We shall use the system of physical units where fi, the Planck constant divided by 271, is equal 
to 1. Let d, and a2 be the generalized partial differential operators in x and y, respectively, and set 

Pj=-idj, j= 1,2. 

Then the physical momentum operator of a quantum mechanical particle interacting with the 
gauge potential A may be given by P=( P, , P2), with 

Pj=pj-iAj, j= 1,2, 

acting in the Hilbert space L2(R2;Cp) [ =L2( M;C!‘)] of CP-valued square integrable functions on 
R2. We denote by Ct(M;CY) the set of C?-valued m times continuously differentiable functions 
on M with compact support. Each Pj is a symmetric operator with 
C;(M;CP)CD(P,P2)fID(P,P,), and 
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[PI J'21@= -FnJ/, @E C;(M;C~), 

where 

F 12:=d,A*-d*A1+[A1,A*l 

is the component of the gauge field strength 2-form, 

F(A): =dA +AAA= F,2 dx/\dy. 

We say that A is Jlat on M if F(A) = 0 on M. 
We denote by q, and q2 the multiplication operators by x and y, respectively. The following 

proposition is easily proven. 
Proposition 2.1: Suppose that A is jlat on M. Then {Pj,qj}j2=t satisfies the CCR with two 

degrees of freedom on &M;Cp): for all +k c(M;Cp), 

For a continuous, piecewise continuously differentiable path C in M with parametrization 
ti~)=(y,(~),yz(~)), TE [a,b] (a<b,a,bER), we define the Wilson loop W,(C) by 

,-(A,(~(~‘))j,(7)+A2(~(7))j2(7)ld7, 

a 

where i;( T) = d rj( 7)/d 7, j = 1,2, and the right-hand side (RHS) is the product integral of the 
matrix-valued function, -{A l(y($)jl( 7) +A2(y( ~))j+( )} T on the interval [a,b] (see Ref. 7, Sec. 
l.l).s It can be shown that W,(C) is independent of the choice of parametrizations of C (cf. Ref. 
7, Sec. 2.1). It follows from the anti-Hermiticity of A, that WA(C) is in U(p), the set of pXp 
unitary matrices. 

For x,y,s,t ER, we define two hook-shaped paths Ctv,s,t from (x,y) to (x+s,y+t), with 
parametrizations y:v,s,r : [ 0, 1 ] +R2 given by 

Y~y;J 4 = 
i 

(x,y+27t), 0<6& 
(x+(27-l)s,yft), $G61; 

(2.2) 

and set 

which is the rectangle: (x,y)-+(x+s,y)+(x+s,y+t)+(x,y+t)--+(x,y). 
For each s, t E R, let 

RS”=R\{a,l,a,l-s}fl=l, Rf2J=R\{a,2,a.2-t}~E1, . 

and M =R’ ’ ) xRj2’. If (x,y) E M, t, then C:y,s,r do not intersect a,, , n = 1,. . . ,N. Hence, for 
each s,ytER,‘we can define U(p)-valued functions Wf,;‘, Wt,, on MS%, by 

w;,;‘(x,Y) = wA(~~y;~,t)~ W:J(~TY) = wA(~x,,;s,t), (-LY) EM,,,. 

J. Math. Phys., Vol. 36, No. 6, June 1995 
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The two-dimensional Lebesgue measure of the set R2 \ M,,, is zero. Hence, Wt,;’ and Wf,I can be 
regarded as almost everywhere (a.e.) finite U(p)-valued functions on R2, so that they define 
unitary operators on L2(R2;Cp) as multiplication operators. We denote these unitary multiplication 
operators by the same symbols Wt;‘, W$, respectively. 

Throughout the rest of this section, we assume the following. 
Assumption: The operators P, and P2 are essentially self-adjoint. 
Theorem 2.2: For all s, t ER, 

e isP,eitP,,(w~t)*eitP2ei,P,. (2.3) 

Proofi The method of proof is similar to the proof of Theorem 2.1 in Ref. 1. By the present 
assumption, we can apply the Trotter product formula to obtain 

where (e,.) denotes the inner product of L2(R2;Cp). We denote by L~X,YJ;(X,,Y,) the straight line 
from (x,y) to (x’,y’). The straight line L~X+s,Y);(X,Y) is parametrized by y($=(x+( 1 - ~)s,y), 
~[0,1]. Then i(7)= -s( 1,O). In terms of r(r) and tin-), we can write 

=exp( -A,( y(G))?,(G) i)**.exp( -A,( y( i)) ?I( k) k) 

which converges to WA(Lcx+S,Y);(x,Y)) @(x + S,Y) a.e. (x,y) E M,,t as rn+a. Moreover, by the fact 
hat ,-Al(Y(d)?l(d/m E U(p), we have 

Il44w)(e isp1’m~sA~‘m~m~~~~y~ll~~ll~~~.y~llcpll~/(~+~~y>ll~ 

and 

Hence, by the dominated convergence theorem, we obtain for all 4, 9’~ L2(R2;Cp), 

which implies that 

Similarly, we can show that 

Combining these formulas, we obtain 
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e isP,eifP2,(w~,;-)-leisp,eitp?, eitP2eisP1, ~~,~+)-l~isp,~itp2, 
t 

which, together with the fact ( Wt,;-) - ’ Wt,,;’ = ( Wf,,,) - ’ = ( W’,,) *, imply (2.3). n 
As for the commutation relations of exp( isqj) and exp( i tPj) (s, t E R), we have the following. 
Lemma 2.3: For all s, t E R, 

e is9je it&=,- istSj,,itP,,isqj ) j,k= 1,2. 

Proofi Similar to the proof of Theorem 2.1. Note that {eirqi, eirpjlt E R, j= 1,2} satisfies the 
Weyl relations with two degrees of freedom (e.g., Ref. 2, p. 81). n 

Theorem 2.2 and Lemma 2.3 imply the following. 
Theorem 2.4: The set {eifqj, eitPilt E R, j= 1,2} satisfies the Weyl relations with two 

degrees of freedom if and only if W,,, A =I for all s,t ER, where I is the identity operator on 
L2(R’;Cp). 

As a corollary, we obtain the following. 
Corollary 2.5: Suppose that A is flat on M. Then {Pi ,qj}3=, is a Schradinger 2-system if and 

only if Wt,t= I for all s,tER. 
Proof: We need only apply the well-known fact that a representation of the CCR with n 

degrees of freedom, satisfying the Weyl relations with the same degrees of freedom, is a Schrij- 
dinger n-system (von Neuman’n’s theorem,’ Ref. 2, p. 81, Theorem 4.11.1). w 

III. THE WILSON LOOPS W$ 
In view of Corollary 2.5 we derive a condition equivalent to the condition that WG,t = I. Let 

S,= min la,-4. (3.1) 
n#m;n,m=l,...,N 

For a positive constant e<dF) and r EM with lr-anl= E, we denote by C’,(a,) the circle of radius 
E with center a, and initial point r, where the direction of the circle is taken to be anticlockwise. 
In this section we prove the following theorem. 

Theorem 3.1: The equality W$= I holds for all s, t E R if and only if A is flat on M, and there 
exists a constant 6~ (O,&), such that for all ~<6 and some r,, EM with Ir, -a,l=~, 

wA(c~(a,))=z, TZ= l,..., N. (3.2) 

Remark: One can easily show that, if wA(C:(a,)) = Z for some r, with Ii-,--a,l=c, then 
\vA(C:(a,)) = Z for all r, with Ir-a,[=6 

We denote by Dx,y;s,t the interior domain of the closed path Cx,Y;s,t. 
Lemma 3.2: For all (x,y) EM, 

W$b,y)=~- 
I F12(r’)dr’+Wlt13), (3.3) 

D,,,:t,t 

as t-+0. 
Proof Informal proofs of this lemma can be found in the physics literature (e.g., Ref. 10, pp. 

52-53). For the sake of completeness, we give a rigorous proof of it. Let yx,y;s,t : [0, I] -+M be the 
parametrization of the path Cr,y:s,t, such that Y*,~;~,~( T)= ~;~,~,~(27) for 0~6; and 

Yx.y:s.t( 7) = Yi+,y,s t , (l-2( 7- i)) for l/2661, where yzy,s,t (7) are given by (2.1) and (2.2). Let 

Bx,?,;s.tt 4 =A t &wt 7)X ?x,y:s,t ) (7)+A2(Yx,y;s,tt~))tjx,y;s,t)2t7), O<FS 1, I 

and, for k> 1, define 
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Then, applying Theorem 4.3 in Sec. 1.4 of Ref. 7 (p. 31), we have for all s,t ER, 

m 

w:,,(-GY)=~+ c (-- l)kJk(&Y;~,~), (X,Y) EM,,*. (3.4) 
k=l 

There is a positive constant fO< 1, such that for all Irl~(O,t~), a,@ Dx,y;r,r, n= l,...,N. Let 
O</tl<ro and a = sup{~~Aj(r’)~~;r’ E D*,Y;ro,toUDx,y;-fg,-‘O, j= 1,2}. Then we have 
Ik,y;r,r(~)b=~ 1 1, h h. ~1 a r w ic lm ies that II~,(x,y;t,t)ll~(8aIrl)~/k!, k> 1. Hence, we have 

z 

2 IIJk(x,y;f,#=f3, 

k=3 
(3.5) 

where C= Zi=3(8a)klk! <a. By Stokes’ theorem, we have 

J,ky;r,t)= 
I 

(d,A,(r’)-&A,(r’))dr’. (3.6) 
Dr,y;r.r 

We can write 

Jz(X,Y ;t,r) = f (J, +J->, 

where 

” &,,;w( WL,;,,t( 72) -Bx.,v,t( #&w( 71)) drz dr1. 

By symmetry, we have J+=J,(~,y;t,t)~/2. By (3.6), we have II~,(x,y;t,t)ll~bt~, O<ltl<t,, 
where b = sup{ll&42(r’) - &Al(r’)ll;r’ E Dx,y;r,,t,UDx,y;--fg,-~O}. Hence, 

[[J+/s; t4. (3.7) 

To estimate J- , we note that 

B .,,:t,t(~)=A~(x,~)(~+,~;f.f),(~)+A2(x,~)(~x,~;r,t)2(~)+~(t~) 

as t--+0 uniformly in +~[0,1]. Hence, 

Bx,y;r,r( ML.v;t,t( 72) -Bx,y;r.r( 72)Bx,y:r,r( ~1) 

It follows that 
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J-=-[A~(~,Y),A~(~,Y)I I 
(x’ dy’-y’ dx’)+O(lt/3) 

C.Ly;t,r 

= -2 [A,(r’),A2(r’)ldr’+O(lt13). (3.8) 

Substituting (3.5)-(3.8) into (3.4), we obtain (3.3). 
The following lemma is well known.” 

n 

Lemma 3:3: Suppose that A is flat on A4 and each component Aj is m times continuously 
differentiable on M. Then, for every simply connected domain D of M, there exists a U(p)- 
valued, m + 1 times continuously differentiable function g on D, such that Aj= g - ‘djg on D. 

L.emma 3.4: Suppose that A is flat on M. Then the following (i)-(iii) hold. 
(i) Let C be any continuous, piecewise continuously differentiable closed path in M, which is 

contractible to a point within M. Then 

wA(c)=z. (3.9) 

(4 Let C~‘(a,)CD,,,;,,, , with Irl--a,l=K$ and Dx,y;s,t~{al,...,aN}={an}. Then there ex- 
ists a unitary matrix U, such that 

Wf,,(x,y)= UWA(C~(a,)W-‘. 

(iii) Let O<E,<E~<&, and rj ER2, j= 1,2, be, such that Irj-anl= Ej. Then 

WA(C::(a,))=WA(L~21rl)-1Wa(C::(a,))WA(Lr2;,,), 

(3.10) 

(3.11) 

where Lr2 ;‘, denotes the straight line from r2 to rl. 
Proof (i) The path C is included in a simply connected domain D of M. By Lemma 3.3, there 

exists a U(p)-valued twice differentiable function g on D, such that Aj=g-’ djg on D (j= 1,2). 
In terms of h: “g-l, we can write Aj= -(,?,Zz)h-‘. Let y:[O,l]+M be a parametrization of C 
(yfO)=y(l)). Then we have 

Hence, applying Theorem 3.1 on p. 20 in Ref. 7, we have WA(C) = h(y(l))h(y(O))-‘=I. Thus we 
obtain (3.9). 

(ii) We decompose Dx,y;s,t, as is shown in Fig. 1. 
Let Vi= WA(Cj), Wj= W,(Lj), j= 1,2. Then, by part (i), we have 

w2v,w1w:,;-b,Y)=L W,‘V,‘W,‘( W$+)-‘=I, 

which imply W,V,V;‘W;‘W~,,(x,y)=Z. We have V2V;’ = W,(C:(a,)). Thus, taking 
U= W2, we obtain (3.10). 

(iii) We need only repeat the proof of part (ii) with E and Dx,y;s,t replaced by q and 
C:2,( a,), respectively. n 

Proof of Theorem 3.1: Suppose that W,,, - A -I holds for all s,t ER. Then Lemma 3.2 implies that 
F, 2(r) =0 for all r E M. Hence, A is flat on M. Then, using Lemma 3.4 (i) and (ii), we obtain (3.2). 

Conversely, suppose that A is flat on M and (3.2) holds. Then, by Lemma 3.4(i), we have 
Wt,,(x,y) =I for all Cx,y;s,t contractible to a point within M. Let a,, E Dx,Y;s,t, but a, $ Dx,y;s,t for 
m # n. Then, by Lemma 3.4 (ii), we have 
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FIG. 1. The decomposition of Dx,,v;S,t for proof of Lemma 3.4 (ii). 

Hence, in this case, Wt,,(x,y> =Z. Finally, we consider the case where Dx,y;s,r includes 
{ai,,..., ai,}, where 2SksN and {il,...,ik} is a subset of { 1 , . . . ,N}. In this case we decompose 

Dx,y;s,t 9 as is shown in Fig. 2, where we set bj = aij, j = 1,. . . , k. 
Then, by Lemma 3.4(ii), there exist Uj E U(p), j= l,..., k, such that for j= l,..., k, 

(“>Y+t) Fl 

DO DI 

I 

(2, Y> Cl 

F2 1 

D2 

L 
c2 

Dk-1 

Fk tx+S,Y+t) 

0 i’k Dk 

ck (x+s,Y) 

FIG. 2. The decomposition of Dx,y;s,, for proof of Theorem 3.1. 
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By (3.2), each of the RHSs of these equalities turns out to be the identity. Then the resulting 
equalities give W$(x,y) =I. w 

IV. ESSENTIAL SELF-ADJOINTNESS OF Pi AND NON-SCHRbDINGER 
REPRESENTATIONS 

For j= 1.2, we set Sj=R\{anj}~=,. Let 

For a subset V of M,(C) (the set of pXy complex matrices) and an open subset D of M, we 
denote by C”‘( D; V) the set of V-valued, m times continuously differentiable functions on D. We 
introduce a class of gauge potentials. 

Dejinition 4.1: We say that a l-form A on M is in the set Ql,,, if there exist 
g, E P”(RxS~;U(J~)) and g2E Cmfl(SIXR;U(p)), such that 

Al=g;’ dIgI, on RxS,; A2=g;’ d2g2, on StxR. 

Theorem 4.2: Assume that A E !2l, _ , (m 2 1). Then, each Pj is essentially self-adjoint on q. 
Proof Let gj be as in Definition 4.1. Then gj is a bijective mapping from q to itself; we 

have P,$=gJ tpjgj+, +q. Hence, we need only to show that pj is essentially self-adjoint on 
q. But this is a well-known fact (see the proof of Theorem 3.2 in Ref. 1). n 

Theorem4.3: Suppose thatAj E C”(M;MF(C))(j = 1,2) (mal) andA=A, dx+A, dy 
is flat on M. Then A E&, . In particular, Pi is essentially self-adjoint on q+‘. 

Proof Let bl ,..., bk (kGN) be the numbers different from each other in the set {a,,}:= r, 
with bl<b2s:*a*<bk. Let M,={(x,y) ER21br-,<y<bl}, I= l,..., k+ 1, with bo= -a, 
b k+, = +m. Then, each M, is simply connected and RxS,= U:f/M,. By Lemma 3.3, there 
exists a function fz,~C~+‘(M~;Ll(p)), such that Aj=hl-’ djhl (j= 1,2) on M,. Defining 
g’ EC’~+‘(RXS~;U(~)) by g,(r)=h,(r) if rEMI, we haveAj=g,’ ajgl on RXS2. In particu- 
lar, A,=g,’ dlgl on RX,!?,. Similarly, we can show that there exists a function 
g2E cm+ (S, xR;U(p)), such that A,=g;’ d2g2 on S,XR. w 

Corollary 2.5 and Theorems 3.1 and 4.3 yield the following result. 
Theorem 4.4: Suppose that Aj E Cm(M;M$ C))(j = 1,2) (m 2 1) and A is flat on M. 

Then, the representation { Pj ,qj}fZl of CCR is a Schrodinger 2-system if and only if there exists 
a constant SE(O,&), such that for all &Sand some rnE M with Irn-anl=c, W,(C:(a,)) = I, 
n= l,...,N. 

This theorem also gives a characterization for {Pi ,sj}f=, to be non-Schriidinger. 

V. EXAMPLE 

In this section we discuss a class of M:(C)-valued, flat l-forms on M. Let S, and T, be p Xp 
Hermitian constant matrices, such that, for all n # m (n ,m = 1,. . . ,N), 

[S,,S,]=O, [T,,T,]=O, [S,,T,]=O, 

but S, does not necessarily commute with T,, . Let 4, be a real-valued, continuously differentiable 
function on R’ (n = 1 ,. . . ,N) (so that 4, and aj4, have no singularity at r=a, , n = 1, . . .,N). Then, 
for each rEM, e2iSn+n(r) are in U(p) and the matrix 

K,(r):=e -iS,+n(r)T ,iS,&(r) 
n 

is Hermitian. Hence 
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&tr)-S, 44,(r) 

and 

K,(r)+& +#,tr) 

are in M$ C). It is easy to see that A t and A, satisfy the nonlinear partial differential equation, 

a,A,(r)-a,A,(r)+[A,(r~,A~~r~~=~~~~ K,(a,)S(r-a,), 
n=l 

where qr) is the two-dimensional Dirac delta distribution. Hence, the l-form A =A 1 dx +A, dy 
is flat on M. For p 22, this example is a non-Abelian generalization of examples in Ref. 1 and 
Ref. 3. 

We want to compute the Wilson loop W,(C’,(a,)) in the present case. We first note that we 
can write Aj in the form 

A,(r)= - ‘~-f~~~f K,(a,)+Fk’)(r), AZ(r)= z~~~~~~) K,(a,)+FL2)(r), 

where E’(j) (j = 1,2) is a function continuous in the domain n 

(a<&) with sup,EDnl/Fi)(r)ll < ~0, j= 1,2. 
Lemma 5.1: Let B = B, dx+ B2 dy be an Mp(C)-valued, continuously differentiable l-form 

on M. Suppose that there exist a constant matrix S E M,(C) and M,(C)-valued continuous func- 
tions G, , G2 on D,, such that Cj: = sup,,D,llGj(r)ll < 03, j=1,2, and, for all rEDn, 

B,(r)=- ‘::I$$ S+G,(r), B2(r)= z~~~~~:) S+G2(r). 

Then 

lim WB(C:(an))=emzTiS, 
El0 

independently of the choice of the initial point r, with Ir-a,l=e. 
Proof We parametrize the circle C’,( a,) by $@=a, + (E cos( f3+ e,), E sin( 0+ e,)), 0~ 1%2n, 

where r=a,+(ecos Bo,esin 0,) (66). Then we have 

where F( E, @=G2(y(@)cos(B+ 80>-Gl(~e))sin(0+ Bo). Hence, we have 
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where Bj=2rrjlm, j= l,...,m. By the condition for Gj, j= 1,2, we have llF(e,e)II~C, where 
C= C, + C2. In general, we can show that, for all Mj, Nj E M,(C), j= l,..., k (k= 1,2 ,... ), 

Ile MI “NI.. .e’+fk+Nk- emu 2i IlMjll e i IlNjll 
j=l j=l 

Applying this estimate to Mj= 2wiSlm, Nj= 2rrcF( E, 6,)/m, we obtain 

with C’=2rrC exp(4rrllsll+2rrCe). Hence, IIWB(C:(a,)) - e-2?risII < C’E, which implies the 
desired result. w 

Applying Lemma 5.1 to the present example, we obtain the following. 
Lemma 5.2: For all n = 1, . . . , N, 

lim WA(Cl;(an))=e-2”iK,(an), 
cl0 

independently of the choice of the initial point r with Ir-anl=c 
Lemma 5.3: Let O<E,<E~<& and rjER2, j=1,2, be such that Irj-a,,l=Ej and 

r,-a,=a(r2-.r,) with a constant a>O. Then 

WA(Lr2 ;a,): = lim WA(L,~ ;,,I 
8110 

exists. 
Proof The straight line L, ;*, is parametrized by 1( 7) = ( 1 - 7)r2+ Ed,, , 0~ 6 1. There exists 

a number r1 E (O,l), such that r,=l( 7,). Then we have, for ~[0,1), 

where f,( r)=(F:‘)(l(~)), Fk2’(l( ~))).(a,-r,). It is easy to see that C, :=lim,!Lfn(~) exists. 
Hence f, can be extended to a continuous function on [O,l] with f,( 1) = C, . We have 
WA(Lr2;‘,) = IIiie-fn(‘)d’. On the other hand, l’Ibe-,fm(7)d ’ is continuous in t E [ 0, 1 ] . Thus, the 
desired result follows. n 

Lemtncz 5.4: Let O<S<& be fixed. Then, for all EE (O,g, n = 1,. ..,N, and all r E M with 
b--a,,1 = 6, 

Proof: By Lemmas 5.2 and 5.3, we can take the limit 6,./O of the RHS of (3.11) to obtain 

Thus, the desired result follows. w 
By Lemma 5.4 and Theorem 4.4, we obtain the following theorem. 
Theorem 5.5: In the present example, the representation { Pj ,4j}i2=, of CCR is a Schriidinger 

2-system if and only if, for all n = 1 , . . . ,N, all the eigenvalues of T, are integers. 
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Proof We need only consider the condition that e - 2TiKn(an) = I for all n = 1, . . . , N, which is 
equivalent to the condition that e2Ti*n = I for all n= 1 ,. ..,N [note that K,(a,) is unitarily 
equivalent to T,]. Since T, is Hermitian, e2TiTn = I ‘f 1 and only if all the eigenvalues of T,, are 
integers. 4 

Theorem 5.5 implies the following: Let 

2t= {A =A, dx +A2 dy 1 at least one T,, has a non-integer eigenvalue}. 

Then, for each A ~2, {l”j ,4j}?= i is a non-Schriidinger representation of the CCR, with two 
degrees of freedom. Thus, we obtain a class of non-Schrijdinger representations of CCR associated 
with M:(C)-valued, flat l-forms on M. 
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