9. いくつかの形の leaking mode の性質（その 2）
——いわゆる II 群について——

吉 井 敏 彰
（北海道大学理学部地球物理学教室）
—昭和 44 年 4 月受理—

I. まえがき

小爆破実験で観測される主な波群は、わが国では I, II, III および IV 群と名付けられ1)，
多くの研究者によってその性質が調べられてきた。その結果、I 群、III 群および IV 群はそれ
ぞれ屈折 P 波、高次の M 波、MII 波に対応することはほぼ確かなが、II 群については
今だ明確な説明がなされていない。

II 群に関する議論の要点は、これを実体波的に見るか表面波的に見るかということであろ
う。表面波的な見方としては、初期の研究で高次の M 波とするものであったが、II 群の位相速
度と地下構造を比べるとこれは不合理である。1960 年頃から始まった leaking mode の研究
が II 群の性質を明らかにするかに思わわれたが、まだ理論が不完全なこと、および計算が相当難
しいこともあって、なかなかこの問題に応用されるまではいたらなかった。一方、実体波説
の支えは、分散性がとぼしく見えること、および振幅が IV 群のごとくには深さと共に急激に減
衰しないことであろう。OKADA2) はこの立場から II 群の性質を調べた。

II 群について統一した意見がなかなか得られていない 1 つの原因は、観測場所によりその性質
が甚だしく異なることであり、これはまた、II 群の発生の相対さを物語るものでもある。前論
文では II 群を leaking mode として説明しようという立場から leaking mode の性質を調べ、
ポアソン比が十分大きい場合、II 群を圧力波として近似できることを示した。本論文では、さ
らに速度比の異なるモデルについて前回と同様な計算を行なった。また、観測例としては、
1953 年、地質調査所の構内で行なわれた地震探査実験グループの協同実験の記録を用いた。

II. 速度比 1.5 のモデルの分散曲線

前論文3) では、半無限媒質と表層の速度比が P 波、S 波とも 2.0 の場合について考察した
が、今回はまず速度比 1.5 のモデルについて数値計算を行なった。計算に使用したモデルの定

1) K. TAZIME; Wave Groups Generated by a Very Small Explosion, J. Phys. Earth, 4 (1956),
113-126.
2) H. OKADA; Analyses of Seismic Waves Generated by Small Explosions, J. Fac. Sci.,
3) 吉井敏彰；いくつかの形の leaking mode の性質、北海道物理学会研究報告, 21 (1969),
117-131.
表 1. 模型の定数（速度比 1.5）

<table>
<thead>
<tr>
<th>model</th>
<th>(\alpha_2/\alpha_1)</th>
<th>(\beta_1/\alpha_1)</th>
<th>(\beta_2/\alpha_1)</th>
<th>(p_2/p_1)</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-11</td>
<td>1.5</td>
<td>0.577</td>
<td>0.866</td>
<td>1.0</td>
<td>0.250</td>
</tr>
<tr>
<td>A-12</td>
<td>1.5</td>
<td>0.500</td>
<td>0.750</td>
<td>1.0</td>
<td>0.333</td>
</tr>
<tr>
<td>A-12A</td>
<td>1.5</td>
<td>0.400</td>
<td>0.600</td>
<td>1.0</td>
<td>0.405</td>
</tr>
<tr>
<td>A-12B</td>
<td>1.5</td>
<td>0.333</td>
<td>0.500</td>
<td>1.0</td>
<td>0.438</td>
</tr>
<tr>
<td>A-13</td>
<td>1.5</td>
<td>0.250</td>
<td>0.375</td>
<td>1.0</td>
<td>0.467</td>
</tr>
<tr>
<td>A-1L</td>
<td>1.5</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
<td>(0.5)</td>
</tr>
</tbody>
</table>

\(\alpha \); 压縮波速度。
\(\beta \); 軸波速度。
\(\rho \); 密度。
\(\sigma \); ポアソンの比。

数を表1に示す。前回同様、速度比を1.5に保ち全体のポアソン比を0.250, 0.333, 0.405, 0.438, 0.467, 0.5に変えた。計算された分散曲線を第1図〜第5図に示す。leaking mode の領域では OLIVER and MAJOR 4) よび SU and DORMAN 5) の方法で分散曲線が計算された。これらの図には、leaking mode と圧力波の分散曲線を比較するために、モデル A-1L の圧力波の分散曲線も点線で示した。

第1図はモデル A-11 (\(\sigma = 0.25 \)) の計算例である。leaking mode の分散曲線には M 波との

第1図 モデル A-11 の分散曲線。点線はモデル A-1L の圧力波の分散曲線

Fig. 1. Dispersion curves for model A-11.
Dotted lines indicate the dispersion curves of pressure waves for model A-1L.

第2図 モデル A-12 の分散曲線

Fig. 2. Dispersion curves for model A-12.

いくつかの leaking mode の性質 (その 2)

第 3 図 モデル A-12A の分散曲線
Fig. 3. Dispersion curves for model A-12A.

第 4 図 モデル A-12B の分散曲線
Fig. 4. Dispersion curves for model A-12B.

第 5 図 モデル A-13 の分散曲線
Fig. 5. Dispersion curves for model A-13.

対応をもとに PL_{21}, PL_{12} 等の名前を付けた。圧力波との関係はほとんど見られなかった。また, PL_{11} のシリーズはいずれも c/a_1 = 1 付近から始まる形をしているのが特徴である。このことは GILBERT and LASTER によっても指摘されており, 彼らは "疑似的なカットオフ" と呼んでいる。

モデル A-12 (第 2 図) では, 圧力波と leaking mode との関係が, やや現れ始めている。

モデル A-12A (第 3 図) では, ボアソン比が 0.405 とやや大きくなったため, ここに見られる leaking mode をいわゆる PL mode と呼んで良いものかどうか問題なので, 本論文では, 単に (21), (12) 等でその次数を表わすこととした。

モデル A-12A では leaking mode と圧力波との関係がますますはっきりしてくる。田治美・浜田は, 固体-液体モデルについて固体層のボアソン比を大きくしていた時の分散曲線を計算し, ボアソン比 0.5 の極限において圧力波の分散曲線は無数の M 波の分散曲線から構成されることを示した。第 3 図の leaking mode と圧力波の関係は, これに大変良く似ている。

OLIVER and MAJOR の方法で計算すると, これらの leaking mode は圧力波に近い部分で特性関数の極小が特に鋭くなっており, この部分が卓越した波群として観測されるであろうこととが期待される。

6) F. GILBERT and S. J. LASTER; Experimental Investigation of Model Seismograms for a Layer over a Half-Space, Geophysics, 30 (1965), 571-596.
7) 前出 6)。
8) 田治美・浜田和郎；固体-流体波から流体-流体波への移り変わり，地磁気, 14 (1961), 63-76.
さらにポアソン比が大きくなってモデル A-12B（第 4 図）では、上に述べた圧力波との関係はさらにはっきりとくる。

ところで、前論文では PL_{22}→圧力波 (1)，PL_{41}→圧力波 (2) という対応があるらしいと述べたが、第 4 図からも明らかのように、この考えは改められるべきであろう。ポアソン比が 0.5 に近づくと leaking mode の間隔が近づき、ついには無数の leaking mode が圧力波を構成することを考えると、PL mode と圧力波の次数を対応させるところは全く無意味である。

また、第 4 図にはしばしば dc/dt > 0 の部分が見られる。この部分では群速度が負となるはずであるが、物理的な意味は明らかでない。

モデル A-13（第 5 図）はさらにポアソン比が大きく、leaking mode の分散曲線はモデル A-1L の圧力波に極めて近く、モデル A-13 の分散曲線も、くわしく見ると A-12B のように多数の分散曲線から構成されているはずであるが、近似法の “分解能” があまり良くないために圧力波に近い鋭い極小のみが目立つと考えられる。

III. 速度比 3.0 のモデルの分散曲線

数値計算に使用したモデルの定数を第 2 表に、計算結果を第 6 図～第 10 図に示す。

第 6 図はモデル A-21 の計算結果である。前と同様にモデル A-2-L の圧力波の分散曲線を

<table>
<thead>
<tr>
<th>model</th>
<th>α_2/α_1</th>
<th>β_1/α_1</th>
<th>β_2/α_1</th>
<th>β_2/β_1</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-21</td>
<td>3.0</td>
<td>0.577</td>
<td>1.732</td>
<td>1.0</td>
<td>0.250</td>
</tr>
<tr>
<td>A-22</td>
<td>3.0</td>
<td>0.500</td>
<td>1.500</td>
<td>1.0</td>
<td>0.333</td>
</tr>
<tr>
<td>A-22A</td>
<td>3.0</td>
<td>0.400</td>
<td>1.200</td>
<td>1.0</td>
<td>0.405</td>
</tr>
<tr>
<td>A-23</td>
<td>3.0</td>
<td>0.250</td>
<td>0.750</td>
<td>1.0</td>
<td>0.467</td>
</tr>
<tr>
<td>A-24</td>
<td>3.0</td>
<td>0.167</td>
<td>0.500</td>
<td>1.0</td>
<td>0.468</td>
</tr>
<tr>
<td>A-2L</td>
<td>3.0</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
<td>(0.5)</td>
</tr>
</tbody>
</table>

第 6 図 もモデル A-21 の分散曲線。点線はモデル A-2-L の圧力波の分散曲線

Fig. 6. Dispersion curves for model A-21. Dotted lines indicate the dispersion curves of pressure waves for model A-2L.
いくつかの形の leaking mode の性質 (その 2)

点線で示した。このモデルでは“類似的なカットオフ” $c/\alpha_1 \approx 1$ が β_2/α_1 よりも小さいためか PL12 は一般にあまり明瞭でないが、PL13 のみはやや優勢である。

普通、速度比の大きなモデルでは M 波の分散曲線が大変複雑で、一見他のモードに乗りうるような形がしばしば見られる。第 6 図でも $c/\alpha_1 \approx 1$ 付近で M12 と M23、および M12 と M22 の間にこれが見られる。また、PL12 は $c=\beta_2$ で実際は M13 につながっているにもかかわらず、むしろ M22 にスムーズにつながるように見える。PL22 と M13 についても同様である。このように leaking mode もふくめて“乗りうつり”の現象が見られるのは興味深いことである。

第 7 図 モデル A-22 の分散曲線
Fig. 7. Dispersion curves for model A-22.

第 8 図 モデル A-22A の分散曲線
Fig. 8. Dispersion curves for model A-22A.

第 7 図のモデル A-22 の場合も、各モードの間隔が A-21 よりは狭くなれたが定性的にはほとんど同じであり、圧力波との関係も明らかでない。また、$c=\beta_2$ で PL32→M13、PL12→M22 とつながっているように見える。

モデル A-22A（第 8 図）では leaking mode と圧力波との関係がやや現れてきた。ここで $c=\beta_2$ で (23)→M4n、(14)→M23 とつながっているように見えるが、leaking mode 同志でも (22) と (13) の間、および (24) と (15) の間にこれに近い現象が見られる。

モデル A-23（第 9 図）ではポアソン比が相当大きい ($\sigma=0.467$) にもかかわらず A-13 や A-3 ほど圧力波に近くならない。これはおそらく速度比の違いによるものであろう。また、第 9 図に示したように、SU and DORMAN の方法でスペクトルの上下成分の極大をたどって行くと (22) と (23) はつながるようである。

さらにポアソン比の大きなモデル A-24（第 10 図）では、leaking mode の分散曲線は圧力波の分散曲線に大変近いにもかかわらず、切れ切れになっている。

第 9 図 モデル A-23 の分散曲線
Fig. 9. Dispersion curves for model A-23.

第 10 図 モデル A-24 の分散曲線
Fig. 10. Dispersion curves for model A-24.
第11図にモデルA-24の特性関数の絶対値の計算例（c/α₁=1.8）を示す。この曲線は見かけ上2つの波長の曲線が重ね合わせた形をしているが、長波長のものにはP波、短波長のものにはS波が主として寄与していることに前論文でも述べた。leaking modeの分散曲線が切れ切れとなるのは、この短波長の振動が原因なのである。

OLIVER and MAJORの方法では、一般にc=const.に対して特性関数の極小をとるのであるが、f(周波数)=const.に対して特性関数の絶対値を描いたのが第11図の下である。上に述べた短波長の極小は、f=const.に比べ平行な“谷”を形作っているため、これらの図には短波長の振動は全く見られない。

\(f \times H_1/\alpha_1 = 0.400 \) および 0.425は、第10図の分散曲線のちょうど切れ目にあたるが、f=const.の図上では鋭い極小が存在する。これらの極小は、例えばf×H₁/α₁ = 0.375の場合等に比べややその絶対値は大きいのであるが、とてもこうこれらをただって分散曲線を描くと第12図のようなになる。第11図および第12図から想像されるように、モデルA-24のleaking modeの分散曲線は、実質的にはほとんどモデルA-2Lの圧力波の分散曲線に等しいと考えて良いであろう。

今回の計算例でも、ポアソン比が0.48程度になるとleaking modeの分散曲線は圧力波の分散曲線にほとんど一致することが確かめられた。一般に、小爆破実験ではポアソン比が0.48以上がほとんどで、0.49あるいはそれ以上になることも珍しくない。従って、II群を近似的に圧力波として解析することはほとんどの場合許されるであろうし、必要なら近似法でleaking modeの計算を行なえばよい。しかし、この種の波群はS波の構造には全く関係と思われるので9)、より正確に地下構造を推定するためには、IV群あるいはIII群と合わせて解析することが望まれる。

9) 吉井敏雄：東シナ海で観測された水中分散波について、北大地球物理学研究報告，20 (1968)，77-89.

Fig. 11. Example of characteristic function.
Upper : c = const. Lower : f = const.

Fig. 12. Dispersion curves for model A-24.
Minima of the characteristic function were traced under the condition of freq. = const.
IV. 近似法についての考察

Oliver and Major および Su and Dorman の方法で分散曲線を求める際生ずる 1 つの問題は、特性関数の極小、スペクトルの上下・水平成分の極大が完全には一致しないことであり、これら 3 つの関数は、それぞれ極値を中心としてひどく非対称的 なことが多く、これが極値の位置を乱す原因となっているのである。1 例として、モデル A-22A についての計算例 (c/a=2.2) を第13図に示す。と なり合った極値が、互いに相手の位置を乱したり、急な付合の変化がひどく極値をずら していることが明らかであろう。そこでスペク タルの上下・水平両成分を合成した振幅 \(\sqrt{H_1^2+V_1^2} \) を計算してみると下図のようにな り、上に述べた欠点がうまく消える。極大 はほぼ対称的な形をしており、\(f \times H_1/a_1=0.4 \) および 1.0 付近のようにかなり接近していても、相互の形を乱すようなことは無い。この合成された振幅は、水平成分、上下成分をバラバ ラに考えるよりむしろ物理的にも意味があると思われ、今回の解析の 1 部にはこの関数も参 考にした。例えば、計算機により自動的に極値を見つけて出し leaking mode の分散曲線を作 るときには、この方法が大変有用であろう。

V. 解析例

解析の例として、1953 年、地震探査実験グループにより地質調査所（川崎市）の構内で行なわれた実験10) について述べる。記録を第14図（上下成分）および第15図（水平成分）に示す。これらは主として表面波を解析する目的で得られたものであるが、地震探査実験グループの最初の共同観測にもかかわらず、記録は極めて良好である。この理由の 1 つは地下構造が比 較的単純なことであろう。Tazime11) は、これらの記録に見られるいくつかの波群が表面波 として説明されるとし、いわゆる、“4 分の 1 波長則”を示した。

第14図に認められる 3 つの波群（II群，III群，IV群）をの図のように \(U \)（群速度）= 90.8 m/s および 60.1 m/s の線で分けると、各波群の特性が良くわかる。また、IV群の終りと思われる とともに \(U=37.5 \) m/s の線を引いた。

10) この実験のくわしい内容については、地震探査実験グループ会報，第 1 号（1954）。
11) 前出 1)。
Fig. 14. Records of vertical component obtained from small explosion seismology experiment in the ground of Geological Survey of Japan.

Fig. 15. Records of horizontal component.

Fig. 16. Travel time diagram obtained from the records of vertical component.
いくつかの形の leaking mode の性質 (その 2)

第 17 図は今回分散曲線を計算した地下構造モデルの例である。CASE I は太田・他 12) が 1966 年、同じ場所で行なった屈折法の解析結果をもとにしたモデルである。後述するように、このモデルは観測された表面波をかなり良く説明できることがわかった。CASE II はこれを少し変形してさらに良く実測値を説明できるように改めたモデルである。

第 18 図は II 群の分散と理論曲線との比較である。太田・他のモデル (CASE I) から計算した圧力波の分散曲線でもかなり良く実測値を説明できるが、1 層目の速度を少し小さくした CASE II の方がより実測値と合う。また、破線で CASE II の leaking mode の位相速度を示したが、圧力波とほとんど一致する。群速度についても同様である。

これらのモデルの欠点は、実測値の短周期の部分をうまく説明できないことである。しかし、前論文の例のように地表近くに速度勾配を持たせることによって、かなりこの欠点を改めることができるよう。

第 19 図は IV 群についての実測値と理論曲線との比較である。CASE I は群速度の実測値と良く合うが、位相速度は長周期の方にずれる。試みに位相速度の実測値を数値微分して群速度を計算してみると、図中の ▲ 印のようになり、直接求めた群速度 (● 印) と合わない。従って

第 18 図 II 群の分散
Fig. 18. Dispersion of the wave group II.

第 19 図 IV 群の分散
Fig. 19. Dispersion of the wave group IV.

て、位相速度、群速度の実測値を同時に説明できるようなモデルは存在しないと考えられる。この原因は、主として水平方向の構造の変化であろう。CASE IIでは1層目の厚さを小さくしたので、位相速度の実測値を良く合う。

ここで特筆すべきのは、太田・他の求めた1層目のS波の速度（60m/s）が、IV群の分散を説明するうえで極めて都合が良いことである。

III群の解析結果を第20図に示す。図から明らかのように、上下成分の記録に見られるIII群は非常に高次のM波と思われ、これから信頼できる情報を得ることは不可能である。従って、計算はCASE IのM20波までで打ち切ったが、ここに観測されたIII群の周期は主として2層目の厚さに大きく左右されるようである。第15図に見られるIII群は周期がこれより2倍ほど長いが、やはり高次のM波と思われる。

III群はM20波と考えられていることが多いが、今回のように非常に高次のM波が卓越することもあるらしく解析には注意が必要である。この原因は単に計器の特性のためだけではない。今回計算したような地下構造モデルでは、圧力波の分散曲線のうち位相速度の小さな部分はM波の領域に入ってくる。あるいは、ポアソン比の大きな場合、M波も圧力波に近い部分で振幅が卓越するのかもしれない。この問題は、理論的にM波のexcitation functionを計算することによりある程度解決されるであろう。

VI. あとがき

本論文では、II群をleaking modeとして説明するという立場から、様々な速度比、ポアソン比を持ったモデルについて分散曲線を計算した。その結果、ポアソン比が0.5に近い場合、leaking modeの分散曲線が圧力波の分散曲線に極めて近くなることが確かめられた。しかし、実際に観測されるII群については不可解なことが少なくない。later arrivalがあからさまにバルス状の形で重なり、分散波とはみなし得しないような波形となることもしばしばある。II群の性質をよりくわしく調べには、分散のみでなく振幅の深度分布、スペクトル等を合わせて考察することが必要である。KUBOTERA and OHTAによれば、II群の振幅の深度分布は、圧力

9. Characteristics of Some Types of Leaking Mode (II)
—On the Wave Group II—

By Toshikatsu Yoshii
(Department of Geophysics, Faculty of Science, Hokkaido University)

The wave group II observed in the experiment of small explosion seismology were considered. The dispersion curves for rather simple models shown in Table 1 and Table 2 were calculated by Oliver and Major’s and Su and Dorman’s approximate methods. These curves are shown in Fig. 1—Fig. 10. When Poisson’s ratio of the model is nearly 0.5, the dispersion curves of the leaking mode are almost same to those of the pressure waves. It is immediately recognized from above result that the wave group II can be approximately analyzed as the pressure wave.

Some actual examples of analyses were shown in Fig. 14—Fig. 20.