Instructions for use

Title
Twenty years of community dynamics in a mixed conifer : broadleaved forest under a selection system in northern Japan

Author(s)
Yoshida, Toshiya; Noguchi, Mahoko; Akibayashi, Yukio; Noda, Masato; Kadomatsu, Masahiko; Sasa, Kaichiro

Citation
Canadian journal of forest research, 36(6): 1363-1375

Issue Date
2006-06

Doc URL
http://hdl.handle.net/2115/14458

Rights
copyright 2006 NRC Canada

Type
article (author version)

File Information
yoshida.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Twenty years of community dynamics in a mixed conifer-broadleaved forest under a selection system in northern Japan

Toshiya Yoshida, Mahoko Noguchi, Yukio Akibayashi, Masato Noda, Masahiko Kadomatsu, and Kaichiro Sasa

T. Yoshida.¹ Uryu Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Moshiri, Horokanai, 074-0741, Japan.

M. Noguchi. Faculty of Environmental Earth Science, Hokkaido University, Tokuda 250, Nayoro, 096-0071, Japan.

Y. Akibayashi, K. Sasa. Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0809, Japan.

M. Noda. Wakayama Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Hirai, Kozakawa, 649-4563, Japan.

M. Kadomatsu. Nakagawa Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Otoineppu, 098-2501, Japan.

¹Corresponding author (e-mail: yoto@exfor.agr.hokudai.ac.jp)

21 pages for the text, 3 tables, 7 figures
Abstract: Single tree selection has been employed widely in northern Japanese mixed forests, but management-induced changes in forests are not been well understood. This study examined demographic parameters of major tree species during 20-years in a 68-ha study stand, in which single tree selection has been conducted since 1971. Results showed that conifers (mostly Abies sachalinensis) gained the strongest positive effects from the treatment on growth and survival. Nevertheless, recruitment of conifers was not sufficiently improved, suggesting their decreased dominance over a longer-term. Instead, shade-intolerant broadleaved (mainly Betula ermanii) will gradually increase because of their higher recruitment rates after the treatment. Shade-tolerant broadleaved (mainly Acer mono and Tilia japonica) appeared to experience the most distinct negative effects, especially on survival. These trends differed markedly from those reported in previous papers concerning partial harvesting system, which predicted increase of shade-tolerant species. The results shown here should be generalized carefully because we have investigated only one stand without repetition of the control area. Nevertheless, trends described in this large-scale and long-term study could provide a basis for simulating stand dynamics. We discussed possible reasons for the observed patterns, and provided implications for sustainable management in the region.
Introduction

Recently, partial harvesting system is raising concerns about managing forests both for timber production and ecosystem functions (Oliver and Larson 1996, Kohm and Franklin 1997, von Gadow et al. 2002) because it often engenders stands with complex structure and composition (O’Hara 1998, Deal 2001, Deal and Tappeiner 2002, Harvey et al. 2002). In a northern Japanese mixed conifer-broadleaved forest (including Abies, Picea, Acer, Tilia, Quercus, Betula, etc.), a typical forest type of that region (Tatewaki 1958), a selection system (single tree selection) has been widely employed since its exploitation period (early 20th century) as a superior option to manage natural forests. Most forests have experienced at least one instance of harvesting in the past. However, despite silviculture basic principles (e.g. Smith et al. 1997), actual harvesting practices were often excessive and showed preferential extraction of large trees (Nagaike et al. 1999), thereby degrading regional forests. Most previous studies of harvesting practices in northern Japan have emphasized sustainable yields (Ohgane et al. 1988, Nigi et al. 1998); few studies have examined broader objectives, including maintenance of biodiversity. Contributing factors for ecosystem integrity (Hunter 1999) such as changes in stand structure and tree species composition have not been well understood.

Sustainable forestry may attempt to mimic natural disturbances through management practices (Spence 2001, Franklin et al. 2002, Mitchell et al. 2002). The natural disturbance regime of northern Japanese mixed forests is a combination of rare large-scale blowdown (> 10^4 m^2; note that fire is unimportant in this region) and frequent small-scale tree death (< 10^3 m^2; Ishikawa and Ito 1984, Kubota 1995, Nakashizuka and Iida 1995). Although little information is available regarding the large-scale disturbances in this region, several previous studies have predicted that the establishment of some major component tree species, including Betula ermanii Cham., Quercus crispula Bl. and Abies sachalinensis (Fr. Schm.) Masters, is related closely to large-scale disturbances (Suzuki et al. 1987, Sano 1988, Ishikawa and Ito 1989, Osawa 1992, Ishizuka et al. 1998). On the other hand, as
shown in many other regions (Hibbs 1982, Runkle 1985, Tanaka and Nakashizuka 1998), small-scale disturbances have been shown to have a fundamental influence on the structure of these natural forests. Natural tree mortalities in terms of basal area observed in this region were frequently less than 1% year\(^{-1}\) (Hiura and Fujiwara 1999, Kubota 2000); some major tree species (*Abies sachalinensis*, *Acer mono* Maxim. and *Sorbus commixta* Hedl.) regenerate in the resultant canopy gaps (Ishizuka 1984, Kubota et al. 1994, Hiura et al. 1996, Kubota 2000, Takahashi et al. 2003).

This study was intended to present implications for sustainable harvesting system, particularly through evaluating the effects on tree species composition. Single tree selection superficially resembles a small-scale disturbance regime (creation of canopy gaps), but it engenders some fundamental differences, such as removal of stems and the consequent reduction of fallen trees (Noguchi and Yoshida 2004). In a mixed forest, we can therefore predict that single tree selection generally enhances the establishment and growth of particular species that adapt ecologically to small canopy gaps (cf. Runkle 1982, Runkle and Yetter 1987, Canham and Marks 1985, Abe et al. 1995, Messier et al. 1999). Actually, some North American studies have reported that dominance of shade-tolerant species gradually increases after single tree selection (Leak and Fillip 1977, Jenkins and Parker 1999, Webster and Lorimer 2002, Shuler 2004). Nevertheless, such a trend in compositional change may differ among forest types. Constituent species probably adapt to inherent environmental conditions and interspecific relationships, both of which can be strongly affected by harvesting treatment. The northern Japanese mixed forest is characterized by a relatively large gap area in the canopy layer, which is often more than 20% (Ishikawa and Ito 1985, Kubota 1995, 2000, Takahashi et al. 2003). This characteristic is conspicuously apparent in heavy snowfall regions; it is inferred to be related to slow recruitment rate caused by dense undercover of dwarf bamboo species (*Sasa kurilensis* (Rupr.) Makino et Shibata or *S. senanensis* (Franch. et Savat.) Rehd.) (Takahashi 1997, Umeki and Kikuzawa 1999). Small trees may not respond directly to single tree selection because dwarf bamboos increasingly dominate the canopy gaps (Noguchi and Yoshida 2005, cf.
The specific questions we address by this study are: (1) Does a single tree selection change tree species composition? and (2) If change occurs, does it correspond to the expectations derived from characteristics (e.g. shade-tolerance) of constituent species? We examined 20 years of community dynamics of a mixed conifer-broadleaved forest in northern Japan under a selection system by which single tree selection at ten-year intervals had been conducted since 1971. We compared demographic parameters of major component tree species (and species groups) between treated and untreated areas based on a repeated census of ca. 27,000 individuals in a large (68-ha) plot. We summarized species recovery for that period and discussed long-term effects of single tree selection on stand structure and species composition in the region.

Methods

This study was conducted in the Nakagawa Experimental Forest of Hokkaido University (44° 48' N, 142° 14' E, 150 m in elevation; Fig. 1). The forest is located in a cool-temperate region with heavy snowfall in winter. Typical vegetation in the Nakagawa forest is mixed conifer-broadleaved forest, as described by Tatewaki and Igarashi (1971). This type of forests are widely distributed in north-eastern Asia as a representative natural vegetation (Tatewaki 1958), and are responsible for regional biodiversity. The mean annual temperature is 5.4°C and the mean precipitation is 1,449 mm. Nearly half of the precipitation falls in the non-growing season (November–April). Snow cover usually extends from early November to early May, with a maximum depth of 200 cm. The soils are classified as Inceptisol (acidic brown forest soil), and the predominant bedrock is Cretaceous sedimentary rock (Tatewaki and Igarashi 1971).

Since 1967, a long-term study has been conducted at a 110-ha study site (Fig. 1, Table 1). Few large-scale disturbances or outbreaks were recorded during the study period, which enabled us to evaluate effects of selection harvesting clearly. The primary objective of the original study was to
develop a relevant management system to extract sustainable yield (Ohgane et al. 1988, Nigi et al. 1998). The ‘check method’ presented by Knuchel (1953), which intend to maintain timber volume and quality in the stand, have been applied (see below for detailed practices).

The original stand had a multiaged structure that was similar to those of other mixed forests in the region (Suzuki et al. 1987, Takahashi et al. 2003). Before the plot establishment, the stand had been partially harvested for domestic fuel materials with very low intensity. The sum of the basal area at the first census (i.e. pre-harvest basal area) was 29.9 m2 ha$^{-1}$, which was typical of the region. There appeared 27 tall-tree species in all (4 evergreen conifers and 23 deciduous broadleaved species), of which *Abies sachalinensis* shared nearly half of the total basal area, with lesser areas occupied, in descending order, by *Acer mono*, *Tilia japonica* (Miq.) Simonkai, *Quercus crispula*, *Betula ermanii*, and others. (see Table 2).

The forest was divided into 11 compartments (areas ranging 5.6–17.6-ha) including a control compartment (5.9-ha). The dominant species showed no strong preferences in their spatial distributions (T. Yoshida, unpublished), and tree species compositions before the treatments were similar among the compartments. A selection system was employed, by which single tree selections were conducted at 10-year intervals (one compartment per year). This study analyzed 20 years of data (i.e. two rounds of harvesting) from six compartments and the control (68-ha in all) within which 27,300 trees were censused individually and identified with numbered tags. The compartment No.1-4 were not subjected in this study, because their census were conducted without individual identifications. The area, the sum of the basal area, and harvested level of the compartments are shown in Table 1. The mean harvested level in terms of basal area was 19% (range 10–28%) for the first treatment and 16% (range 12–18%) for the second. These intensities were determined carefully in consideration of the census data, to maintain harvested volume equivalent to the growth (i.e. volume increment) of the compartments. In these harvestings, trees with a lower timber value (i.e. with injury, crack, etc.) were selected mainly to improve the future economic quality of the stand.
Nevertheless, the harvested trees were selected from a broad range of size classes, and showed no bias to any particular tree species; the total amounts of harvested conifers and harvested broadleaved were roughly equal.

Harvestings were conducted in winter. Trees were felled and their major branches were cut immediately by hand using a chain saw. Then the logs were extracted using a tractor (a sled was used only in a few early years). Snow, normally 100–200 cm deep, covered the forest floor. Consequently, soil disturbances that typically accompany treatments were minor. Although supplemental plantings were conducted for some large non-wooded openings (e.g. canopy gaps larger than 400 m²), we did not consider them in this study because they are still young and planted trees did not reach the lower limit size set for the census (see below). More detailed descriptions of the practices are available in Ohgane et al. (1988).

In the 68-ha area, 27,300 trees were identified with diameter at breast height (DBH) ≥ 12.5 cm. The DBH-classes (5 cm interval) of all living trees were determined by measurement in the year before treatment. Checks of survival or death, repeated measures of the DBH-class, and records of newly recruited trees were carried out in the second and third census. The basal area of individuals was calculated using the median of the DBH-class. We calculated the following demographic parameters.

1. Tree DBH-class promotion rate = \[\frac{(N + N_p)}{N} \]^{0.1} – 1
2. Tree mortality = 1 - \[\frac{(N - N_d)}{N} \]^{0.1}
3. Tree recruitment rate = \[\frac{(N + N_r)}{N} \]^{0.1} – 1

where N represents the initial tree number (except for harvested trees); Np is the number of trees that promote their DBH-class to the next; Nd is the number of naturally dead trees; and Nr is the number of recruited trees during the ten-year period. Compartments with exceptional intervals (eight or nine years) in the first period were calculated separately; then the weighted averages by area were used as a representative value. We calculated these indices for four size classes (DBH: 12.5– 22.4, 22.5–
32.4, 32.5–42.4, and over 42.4 cm [in case of the DBH-promotion rate, 42.5–52.4 cm]) by species. In addition, species were grouped into ‘conifer’, ‘shade-tolerant broadleaved’, and ‘shade-intolerant broadleaved’ to summarize the results. The ‘conifer’ group consists of four shade-tolerant species, represented mostly by *Abies sachalinensis*. The broadleaved species were classified with reference to previous studies of physiological traits (Koike, 1988) or regeneration mode in an old-growth stand (i.e. species with abundant smaller trees are assumed to be shade-tolerant: Masaki 2002) (Table 2).

Conifers shared nearly half of the total basal area: shade-tolerant (dominated by *Acer mono* and *Tilia japonica*) and shade-intolerant broadleaved species (dominated by *Quercus crispula* and *Betula ermanii*) respectively shared a quarter.

Results

Growth

The DBH-class promotion rates of the treated area were lower than those in the control (about 0.8 times) in the first period, but turned higher (about 1.5 times) in the second period in all the DBH-classes (Fig. 2). Improvement in the second period was particularly apparent for conifers, but not so distinct for broadleaved. A markedly high promotion rate was shown in the largest DBH-class (42.5–52.4 cm) of shade-intolerant broadleaved in the control, but it was not followed by that in the treated area, even in the second period. In the first period, nearly half of the species had lower DBH-promotion rates in the treated area than that in the control (Fig. 3). In the smallest DBH-class (12.5–22.4 cm), shade-tolerant broadleaved tended to show higher rates, whereas shade-intolerant broadleaved tended to show lower rates. Nevertheless, in the larger DBH-classes (≥32.5 cm), a shade-intolerant broadleaved species, *Quercus crispula*, which generally showed the highest promotion rate among species in the control, showed a considerably lower rate. In the second period, although the apparent decrease in the treated area remained only in *Quercus crispula* in the largest DBH-class (42.5–52.4 cm), most of species improved the rate. A shade-tolerant conifer, *Abies*
sachalinensis, showed the highest promotion rates among species in the treated area in all the DBH-classes in the second period.

Natural mortality

Natural mortality in the second period of the larger DBH-classes (≥32.5 cm) in the treated area was considerably lower than that in the control when considering all species (Fig. 4). This trend largely reflected that of conifers, and the respective mortalities of broadleaved (both shade-tolerant and shade-intolerant) in the treated area were rather higher than those in the control. Among shade-tolerant broadleaved, the increase in mortality in the smallest DBH-class (12.5–22.4 cm) was remarkable.

The species’ trends (Fig. 5) demonstrated that the range of natural mortality among species was generally smaller in the treated area than in the control: species with higher mortality in the control tended to show a lower mortality rate, and vice versa. Trees in the larger DBH-classes (≥32.5 cm) exhibited generally lower mortality in the second period. In contrast, for trees in the smaller DBH-classes (<32.5 cm), the change between the periods was small; it showed no general trend among species.

Recruitment

For the three species groups, recruitment rates in the treated area in the first period were similar to that in the control, and doubled in the second period (Fig. 6). The recruitment rate of shade-intolerant broadleaved was highest: in the second period, it was roughly two and three times higher than those of shade-tolerant broadleaved and conifers, respectively. Although shade-tolerant broadleaved had the lowest recruitment rate among the groups in the control, they showed greatest improvement. In contrast, the improvement was smallest for conifers.

Five species (four shade-intolerant broadleaved and one conifer) had lower recruitment rates in the treated area (Fig. 7). However, in the second period, almost all the subjected species were over the equivalence line (i.e. the treated area showed higher rates than the control), with considerable
improvement of shade-intolerant broadleaved (such as *Betula ermanii* and *Salix* sp.). In contrast to
the control, *Abies sachalinensis* showed the lowest rate among all species in the treated area.
Shade-tolerant broadleaved did not show a clear trend among species.

Change in basal area

Table 3 summarizes changes in basal area of species (and species groups) during the 20 year
period. In total, 87% of the harvested basal area was recovered in the period; conifers showed
considerably higher recovery (112%). Three minor conifers (*Picea jezoensis* (Sieb. et Zucc.) Carr.,
Picea glehnii (Fr. Schm.) Masters, and *Taxus cuspidate* Sieb. et Zucc.) showed a similar trend to that
of *Abies sachalinensis*. These high recoveries were contributed mainly by high growth, and less so
by recruitment.

In contrast, the recovery of shade-tolerant broadleaved remained only 48%, reflecting both low
growth and high mortality. In particular, species with high dead basal area (*Acer mono*, *Sorbus
alnifolia* (Sieb. et Zucc.) C. Koch and *Prunus sargentii* Rehd.), exhibited the lowest recovery.
Shade-intolerant broadleaved showed intermediate recovery (85%), with high contribution of
recruitment. The species with lowest recoveries (*Magnolia obovata* Thunb., *Alnus hirsuta* Turcz. and
Betula maximowicziana Regel) in this group also showed high dead basal area.

Discussion

Demographic parameters of tree species and species groups differ widely between the treated area
and the control; the response to the single tree selection changed considerably between the first and
second periods. Such a temporal change in the response may be attributable to delay in the response
of trees (e.g. Oliver and Larson 1996, Youngblood and Ferguson 2003) and a cumulative effect of
repetitive harvestings. General expectations of selection harvesting are increased growth, recruitment,
and survival of trees, all positive effects, to compensate the loss of harvested trees. Actually, opposite
and negative effects were dominant in the first period.
Many previous studies have suggested that partial harvesting system can maintain structural complexities of the stand (Deal 2001, Deal and Tappeiner 2002). We can expect that the multiaged structure of this stand was generally maintained because harvested trees were selected from a broad range of size-classes. Nevertheless, our results showed clearly that the selection harvesting changes tree species composition, even if basal area levels are nearly maintained. Although longer-term trends do not necessarily follow the observed characteristics of demography, we could applied those results for predicting stand dynamics. In the short term (i.e. several decades), *Abies sachalinensis* will increase dominance relative to broadleaved because it gained the strongest positive effects from selection harvesting on growth and survival. Such a positive response to small scale canopy disturbances has already been reported in natural forests (Hiura et al. 1996, cf. Veblen 1986), probably because of the physiological ability of *Abies* spp. to rapidly respond to increased light availability (Noguchi et al. 2003, cf. Kneeshaw et al. 1998, Youngblood and Ferguson 2003).

Nevertheless, we found that recruitment of this species was not sufficiently improved after the treatment: it was the lowest among major tree species. This trend should engender a lack of small-sized trees and decreased dominance of this species over the long-term (i.e. more than one hundred years).

Past studies have shown two different regeneration modes of *Abies sachalinensis*: continuous age distribution suggesting dependence for its regeneration on small-scale disturbances (Ishizuka 1984, Takahashi et al. 2003) and discontinuous distribution suggesting importance of large-scale disturbances (Suzuki et al. 1987, Ishikawa and Ito 1989). The present results are, at least, not consistent with the former. We presume that the limited recruitment is explained by 1) contrary to growth improvement (see above), photosynthesis of *Abies sachalinensis* was found to decrease in response to severe increased light availability especially in the dry summer (Noguchi et al. 2003, cf. Kneeshaw et al. 2002, Bourgeois 2004), 2) because seedlings and saplings of this species are frequently distributed around the stems of overstory trees (Suzuki et al. 1987, Takahashi 1997), they
may be affected greatly by physical damage accompanying the treatments (Harvey and Bergeron 1989). In general, it has been predicted that conifers are more vulnerable to such physical damage than broadleaved species because of general inability to sprout (Greene et al. 1999). Furthermore, because conifers base their establishment largely on fallen logs as a preferable substrate (Hiura et al. 1996), the possible decrease in fallen logs resulting from repetitive selection harvestings (Noguchi and Yoshida 2004) may accelerate that decreasing trend over a longer-term. This tendency should be more apparent in minor conifer species in this forest (but common in the region), *Picea jezoensis* and *P. glehnii*, which show a particular dependency upon fallen logs (Kubota et al. 1994, Takahashi 1997).

Despite increased light availability after the selection harvesting, growth improvement of shade-intolerant broadleaved species was less than that of *Abies sachalinensis*. Even in the second period, large-sized trees in the treated area had considerably lower growth than those in the control; their mortality did not decrease after the treatment. These facts seem to greatly reflect the trend of *Quercus crispula*, but its small-sized trees showed an improved response (also see Yoshida and Kamitani 1998). A great difference might exist in response to canopy opening between size classes. *Quercus crispula* had discontinuous age distribution in natural mixed stands (Sano 1988; Takahashi et al. 2003), suggesting the lower contribution of small-scale disturbances. Our results are consistent with this hypothesis. Regarding other shade-intolerant broadleaved species, we found improved growth in small sized *Betula ermanii* and *Alnus firma*, and decreased mortality in mid-sized *Magnolia obovata* and *Kalopanax pictus* (Thunb.) Nakai. These are expected results in consideration of responses to high light availability (Ishikawa and Ito 1989). These species also showed higher recruitment rates after the treatment, which may contribute considerably to their recovery. They may gain a relative advantage because their potential high growth rate occasionally enables them to escape faster from the understory to a lighter environment. We can expect these species to gradually increase in density after several decades.
In contrast, shade-tolerant broadleaved species appeared to incur the most distinct negative effects from the treatment. Recovery of the basal area (percentage of the increment to that lost) in the 20-year period was only 48%; in particular, those of *Acer mono*, *Sorbus alnifolia* and *Prunus sargentii* were less than 40%. These low recoveries were contributed mainly by high mortality, presumably resulting from increased risks of wind or frost damage through canopy exposure (Peltola et al. 1999). In addition, we found no distinct positive effects of the treatment on growth of these species. Despite some exceptions (e.g. small-sized *Ulmus davidiana* Planch. var. japonica (Rehd.) Nakai and *Sorbus alnifolia*), growths of dominant species (*Acer mono* and *Tilia japonica*) were unchanged or decreased in the treated area. This trend is consistent with a previous finding that these species showed low plasticity of growth against high light availability (Umeki 2001). In contrast, recruitment of this species group increased in the second period, showing the greatest improvement, compared with the control, among the three species groups. However, the absolute amount of recruitment was still half that of shade-intolerant species.

Our study demonstrated complicated responses of the mixed species community under the selection system. The observed trends of change in species composition differ markedly from those reported in North America (Leak and Fillip 1977, Jenkins and Parker 1999, Webster and Lorimer 2002, Shuler 2004). We suspect that this difference is attributable to large canopy gap areas in the overstory and dominance of dwarf bamboo species in this forest’s understory. Selection harvesting, and its consequent creation of canopy gaps, increases dwarf bamboos (Noguchi and Yoshida 2005), which thereby suppresses tree regeneration (Hiura et al. 1995, Nagaike 1999, Umeki and Kikuzawa 1999). Those two distinct characteristics are closely correlated. We presume that the results are informative, even for management of stands with rich understory vegetation (e.g. Harvey and Bergeron 1989, Messier et al. 1998, Beckage et al. 2000, Bourgeois 2004), where such an indirect negative effect of harvesting on light availability seems to occur.

The present results should be generalized carefully because we have investigated only one 68-ha
stand without repetition of the control area. Nevertheless, trends described in this large-scale and long-term study present implications for improving current harvesting practices. Attention should be devoted to the possible change in species composition toward shade-intolerant broadleaved, which might alter the ecosystem integrity of these mixed forests. Management plans must mitigate the negative effects of selection harvesting on growth, survival, and recruitment of particular species. For conifer species, supplemental planting or site preparation for natural regeneration (Wurtz and Zasada 2001, Yoshida et al. 2005) should be included to enhance their recruitment. At the same time, with considering the distinct negative effects, harvesting level of shade-tolerant broadleaved species should be limited to preserve their relative dominance. We need more detailed mechanisms by which observed patterns and processes are produced. In particular, we note that the amount of recruitment in this study might depend largely on pre-harvesting accumulation of a seedling bank because most of the recruited trees seemed to be older than 20 years (H. Miya, unpublished). Longer-term studies or those examining dynamics of seedlings and saplings (Noguchi and Yoshida, in preparation) are needed. In addition, we should consider site variations in the stand. Further studies that include responses of individual trees with spatial consideration (Noguchi and Yoshida, in preparation) are expected to yield additional important information. Together with the results of the current study, these extension studies can form an appropriate basis for adaptive management in this region.

Acknowledgements

We would like to thank anonymous reviewers for their helpful comments and suggestions. We gratefully acknowledge S. Taniguchi, E. Ohgane, T. Nigi, Y. Hishinuma, K. Fujiwara, K. Koshika, and K. Kanuma for their combined efforts in maintaining this long-term study. We thank the staff of the Nakagawa Experimental Forest for their proper management of fieldwork, harvesting practices and the data collection. Thanks are also extended to the member of the laboratory of forest management, Hokkaido University, for their assistance in the fieldwork.
References

Harvey, B.D., and Bergeron, Y. 1989. Site patterns of natural regeneration following clear-cutting in

Takahashi, K., Mitsuishi, D., Uemura, S., Suzuki, J., and Hara, T. 2003. Stand structure and

Fig. 1. Location and topography of the study area. Compartments 5-10 (62.1 ha) and the control (5.9 ha) were studied.
Fig. 2. The DBH-class promotion rates (year⁻¹) in the treated area (first and second period) and the control.
Fig. 3. Scatterplots of the DBH-class promotion rates (year\(^{-1}\)) for major tree species in the treated area (first and second period) against those in the control. Species abbreviations are shown in Table 2.
DBH-class promotion rates (year^{-1}) in the treated area

DBH-class promotion rates (year^{-1}) in the control

(e) First Period
32.5 <= dbh < 42.5

(f) Second Period
32.5 <= dbh < 42.5

(g) First Period
42.5 <= dbh < 52.5

(h) Second Period
42.5 <= dbh < 52.5

Fig. 3. Continued
Fig. 4. Tree mortality (year\(^{-1}\)) in the treated area (first and second period) and the control.
Fig. 5. Scatterplots of tree mortalities (year$^{-1}$) for major tree species in the treated area (first and second period) against those in the control. Species abbreviations are shown in Table 2.
Fig. 5. Continued
Fig. 6. Tree recruitment rate (year$^{-1}$) in the treated area (first and second period) and the control.
Fig. 7. Scatterplots of tree recruitment rates (year⁻¹) for major tree species in the treated area (first and second period) against those in the control. Spicies abbreviations are shown in Table 2.
Table 1. Descriptions of the study forest.

<table>
<thead>
<tr>
<th>Compartments*</th>
<th>Area (ha)</th>
<th>Initial Basal area (m²/ha)</th>
<th>Harvested (first)</th>
<th>Census year**</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>11.1</td>
<td>27.8</td>
<td>6.8</td>
<td>3.2</td>
</tr>
<tr>
<td>6</td>
<td>5.6</td>
<td>34.0</td>
<td>4.4</td>
<td>5.7</td>
</tr>
<tr>
<td>7</td>
<td>8.2</td>
<td>22.6</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>8</td>
<td>6.7</td>
<td>27.9</td>
<td>2.9</td>
<td>3.8</td>
</tr>
<tr>
<td>9</td>
<td>12.9</td>
<td>25.3</td>
<td>5.3</td>
<td>3.4</td>
</tr>
<tr>
<td>10</td>
<td>17.6</td>
<td>31.4</td>
<td>6.8</td>
<td>4.2</td>
</tr>
<tr>
<td>subtotal</td>
<td>62.1</td>
<td>28.2</td>
<td>5.4</td>
<td>3.9</td>
</tr>
<tr>
<td>control</td>
<td>5.9</td>
<td>26.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* The compartment No.1–4 were not subjected in this study, because their trees were censused without individual identification.

** The census years were in the year before harvesting.
Table 2. Pre-harvest composition of trees with DBH\(\geq\) 12.5 cm in the study forest.

<table>
<thead>
<tr>
<th>Species</th>
<th>Abbreviation</th>
<th>Group</th>
<th>Basal area (m²/ha)</th>
<th>Density (stems/ha)</th>
<th>Maximum DBH (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies sachalinensis</td>
<td>AS</td>
<td>CF</td>
<td>14.68</td>
<td>49.1</td>
<td>212.9</td>
</tr>
<tr>
<td>Acer mono</td>
<td>AM</td>
<td>BT</td>
<td>3.10</td>
<td>10.4</td>
<td>78.9</td>
</tr>
<tr>
<td>Tilia japonica</td>
<td>TJ</td>
<td>BT</td>
<td>3.06</td>
<td>10.2</td>
<td>50.4</td>
</tr>
<tr>
<td>Quercus crispula</td>
<td>QC</td>
<td>BI</td>
<td>3.06</td>
<td>10.2</td>
<td>33.1</td>
</tr>
<tr>
<td>Betula ermanii</td>
<td>BE</td>
<td>BI</td>
<td>2.17</td>
<td>7.2</td>
<td>27.1</td>
</tr>
<tr>
<td>Alnus hirsuta</td>
<td>AH</td>
<td>BI</td>
<td>0.64</td>
<td>2.1</td>
<td>12.3</td>
</tr>
<tr>
<td>Magnolia obovata</td>
<td>MO</td>
<td>BI</td>
<td>0.56</td>
<td>1.9</td>
<td>16.2</td>
</tr>
<tr>
<td>Ulmus davidiana</td>
<td>UD</td>
<td>BT</td>
<td>0.49</td>
<td>1.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Ulmus laciniata</td>
<td>UL</td>
<td>BT</td>
<td>0.44</td>
<td>1.5</td>
<td>6.0</td>
</tr>
<tr>
<td>Kalopanax pictus</td>
<td>KP</td>
<td>BI</td>
<td>0.28</td>
<td>0.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Sorbus altifolia</td>
<td>SA</td>
<td>BT</td>
<td>0.23</td>
<td>0.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Sorbus commixta</td>
<td>SC</td>
<td>BT</td>
<td>0.23</td>
<td>0.8</td>
<td>7.3</td>
</tr>
<tr>
<td>Prunus sargentii</td>
<td>PS</td>
<td>BT</td>
<td>0.21</td>
<td>0.7</td>
<td>6.4</td>
</tr>
<tr>
<td>Phellodendron amurense</td>
<td>PA</td>
<td>BI</td>
<td>0.18</td>
<td>0.6</td>
<td>4.8</td>
</tr>
<tr>
<td>Prunus ssiori</td>
<td>PR</td>
<td>BT</td>
<td>0.12</td>
<td>0.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Betula maximowicziana</td>
<td>BM</td>
<td>BI</td>
<td>0.10</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Picea jezoensis,</td>
<td>PJ</td>
<td>CF</td>
<td>0.08</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Taxus cuspidata</td>
<td>TC</td>
<td>CF</td>
<td>0.07</td>
<td>0.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Fraxinus mandshurica</td>
<td>FM</td>
<td>BT</td>
<td>0.05</td>
<td>0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Salix bakko</td>
<td>SB</td>
<td>BI</td>
<td>0.04</td>
<td>0.1</td>
<td>1.6</td>
</tr>
<tr>
<td>Swida controversa</td>
<td>SW</td>
<td>BI</td>
<td>0.04</td>
<td>0.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Picea glehnii</td>
<td>PG</td>
<td>CF</td>
<td>0.03</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Betula platyphylla</td>
<td>BP</td>
<td>BI</td>
<td>0.02</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Acanthopanax sciadophylloides</td>
<td>AC</td>
<td>BT</td>
<td>0.01</td>
<td>0.04</td>
<td>0.4</td>
</tr>
<tr>
<td>Juglans mandshurica</td>
<td>JM</td>
<td>BT</td>
<td>0.01</td>
<td>0.02</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>29.9</td>
<td>100.0</td>
<td>484</td>
</tr>
<tr>
<td>Conifer</td>
<td></td>
<td></td>
<td>14.9</td>
<td>49.7</td>
<td>216</td>
</tr>
<tr>
<td>Shade-tolerant Broadleaved</td>
<td></td>
<td></td>
<td>8.0</td>
<td>26.6</td>
<td>167</td>
</tr>
<tr>
<td>Shade-intolerant Broadleaved</td>
<td></td>
<td></td>
<td>7.1</td>
<td>23.7</td>
<td>101</td>
</tr>
</tbody>
</table>

*CF: conifer, BT: shade-tolerant broadleaved, BI: shade-intolerant broadleaved species. The classification was based on Koike (1987) and Masaki (2002).
<table>
<thead>
<tr>
<th>Species</th>
<th>Abbreviation</th>
<th>Group</th>
<th>Basal area (m²/ha)</th>
<th>Recovery (G+R-D)/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies sachalinensis</td>
<td>AS</td>
<td>CF</td>
<td>4.454</td>
<td>5.189</td>
</tr>
<tr>
<td>Acer mono</td>
<td>AM</td>
<td>BT</td>
<td>1.299</td>
<td>0.521</td>
</tr>
<tr>
<td>Tilia japonica</td>
<td>TJ</td>
<td>BT</td>
<td>0.842</td>
<td>0.546</td>
</tr>
<tr>
<td>Quercus crispula</td>
<td>QC</td>
<td>BI</td>
<td>0.689</td>
<td>0.738</td>
</tr>
<tr>
<td>Betula ermanii</td>
<td>BE</td>
<td>BI</td>
<td>0.803</td>
<td>0.365</td>
</tr>
<tr>
<td>Alnus hirsuta</td>
<td>AH</td>
<td>BI</td>
<td>0.245</td>
<td>0.157</td>
</tr>
<tr>
<td>Magnolia obovata</td>
<td>MO</td>
<td>BI</td>
<td>0.248</td>
<td>0.083</td>
</tr>
<tr>
<td>Ulmus davidiana</td>
<td>UD</td>
<td>BT</td>
<td>0.204</td>
<td>0.143</td>
</tr>
<tr>
<td>Ulmus laciniata</td>
<td>UL</td>
<td>BT</td>
<td>0.017</td>
<td>0.103</td>
</tr>
<tr>
<td>Kalopanax pictus</td>
<td>KP</td>
<td>BI</td>
<td>0.049</td>
<td>0.102</td>
</tr>
<tr>
<td>Sorbus alnifolia</td>
<td>SA</td>
<td>BT</td>
<td>0.094</td>
<td>0.037</td>
</tr>
<tr>
<td>Sorbus commixta</td>
<td>SC</td>
<td>BT</td>
<td>0.117</td>
<td>0.044</td>
</tr>
<tr>
<td>Prunus sargentii</td>
<td>PS</td>
<td>BT</td>
<td>0.097</td>
<td>0.026</td>
</tr>
<tr>
<td>Phellodendron amurense</td>
<td>PA</td>
<td>BI</td>
<td>0.043</td>
<td>0.062</td>
</tr>
<tr>
<td>Prunus ssiori</td>
<td>PR</td>
<td>BT</td>
<td>0.024</td>
<td>0.026</td>
</tr>
<tr>
<td>Betula maximowicziana</td>
<td>BM</td>
<td>BI</td>
<td>0.035</td>
<td>0.014</td>
</tr>
<tr>
<td>Picea jezoensis</td>
<td>PJ</td>
<td>CF</td>
<td>0.004</td>
<td>0.039</td>
</tr>
<tr>
<td>Tataria cuneifolia</td>
<td>TC</td>
<td>CF</td>
<td>0.013</td>
<td>0.010</td>
</tr>
<tr>
<td>Fraxinus mandshurica</td>
<td>FM</td>
<td>BT</td>
<td>0.004</td>
<td>0.024</td>
</tr>
<tr>
<td>Salix bakko</td>
<td>SB</td>
<td>BI</td>
<td>0.010</td>
<td>0.021</td>
</tr>
<tr>
<td>Svidia controversa</td>
<td>SW</td>
<td>BI</td>
<td>0.014</td>
<td>0.010</td>
</tr>
<tr>
<td>Picea glehnii</td>
<td>PG</td>
<td>CF</td>
<td>0.001</td>
<td>0.012</td>
</tr>
<tr>
<td>Betula platyphylla</td>
<td>BP</td>
<td>BI</td>
<td>0.002</td>
<td>0.017</td>
</tr>
<tr>
<td>Acanthopanax sciadophyloides</td>
<td>AC</td>
<td>BT</td>
<td>0.005</td>
<td>0.003</td>
</tr>
<tr>
<td>Juglans mandshurica</td>
<td>JM</td>
<td>BT</td>
<td>0.002</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Total | | | 9.315 | 8.296 |

CF: conifer, BT: shade-tolerant broadleaved, BI: shade-intolerant broadleaved species. The classification was based on Koike (1987) and Masaki (2002).