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1. Introduction

Scaling concept plays a vital role in describing critical phenomena associated with a

second-order phase transition. The fundamental hypothesis states that, in the vicinity

of a critical point, the largest length scale of the fluctuation of the order parameter

diverges and all length scales contribute with equal importance [1, 2]. Theoretical

arguments based on this hypothesis explain why most thermodynamic quantities near

the critical point exhibit power-law behaviour with characteristic exponents that are

independent of the microscopic details of a system [3, 4, 5].

A primary example of a physical model exhibiting a second-order phase transition is

the two-dimensional Ising model with ferromagnetic interaction [6, 7, 8]. This model has

been used extensively for innumerable projects in statistical physics, mainly due to its

simplicity and broad applicability to real systems. Whereas its physical properties have

been thoroughly investigated, it still continues to raise interesting issues that are relevant

to a wide range of critical phenomena. Most intriguing among them is the critical

properties of the Ising model defined on curved geometry [9, 10, 11, 12, 13, 14, 15]. In

fact, several studies have been carried out on Ising lattice models with topologies ranging

from a torus [6, 9, 16], and sphere [10, 11, 12, 13, 14] to genus two curved surfaces [15],

as well as those with Brascamp-Kunz boundary conditions [17, 18]. The results of these

studies are consistent with the fact that an alteration in the topology or the boundary

condition of the Ising lattice does not change its scaling behaviour, and thus the system

remains in the flat-space Onsager universality class [6].

The objective of the current study is to focus on an alternative property of curved

geometries — surface curvature — instead of their topology. Our main concern is whether

a uniform change in the constant surface curvature affects the scaling behaviour of

the mounted Ising lattice model. It should be noted that in most systems considered

thus far, the magnitude of surface curvature is spatially concentrated on a portion of

the surface, even producing a conical singularity. This inhomogeneous distribution of

local curvature would possibly make it difficult to distinguish the effect of curvature

from among other incidental contributions on the critical properties. In addition, when

a surface has a closed form (e.g., a sphere), its ability to attain the thermodynamic

limit with a constant surface curvature is disabled ‡. This limitation can be removed

successfully by employing a surface with a constant negative curvature. This surface,

in which the Gaussian curvature possesses a finite constant value at arbitrary points, is

simply connected and infinite [19, 20]. Hence, such a surface can serve as an example

for considering the geometric effects on the critical properties of the mounted system.

In the present paper, we investigate the critical behaviour of the two-dimensional

Ising lattice model defined on a curved surface with a constant negative curvature.

Monte Carlo (MC) simulations and finite-size scaling analyses are employed to compute

the critical exponent γ for the zero-field magnetic susceptibility and µ for the correlation

‡ For example, a sphere reduces to a flat plane at some point within the thermodynamic limit where
the effect of curvature is absent.
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volume. We demonstrate that the values of both γ and µ deviate from those for the

planar Ising lattice model, which indicates the relevance of the intrinsic geometry of

the underlying surface to the critical properties of the mounted Ising model. Moreover,

when reducing the boundary contributions, the values of γ and µ exhibit a tendency to

shift to those derived from the mean-field approximation. This non-trivial behavior of

the critical exponents is qualitatively consistent with the conclusion based on the series

expansion analyses [21] and that deduced from the quantum field theory [22]. We also

calculate the fourth-order Binder’s cumulant that provides a check of the results of finite

size scaling.

2. Scaling arguments for the Ising model

Let us briefly review the framework of the scaling argument that successfully explains

the critical properties of the two-dimensional planar Ising lattice model [3]. The scaling

hypothesis states that, in the vicinity of the critical temperature Tc, the singular part

of the free energy fs of the Ising lattice per site should be a homogeneous function:

λdfs(t, h) = fs(λ
xt, λyh), (1)

where t = (T − Tc)/Tc, h = H/(kBT ) and H represents an external magnetic field. The

parameter λd with a spatial dimension d indicates the rescaling of the total number of

sites from N to λdN ; this results from the transformation of the linear dimension of the

entire Ising lattice: L → λL. By eliminating λ from (1), we obtain the scaling relation

of fs:

fs (t, h) = |t|d/x F
(

h

|t|y/x

)
, (2)

where F is a universal scaling function. The appropriate differentiation of (2) yields

the power-law form of thermodynamic quantities such as the zero-field susceptibility

χ ≡ ∂2fs/∂h2 ∝ |t|−γ, where the critical exponents are expressed as functions of x and

y (for instance, γ = (2y − d)/x).

Equation (1) is justified when the Ising lattice is defined on a flat plane, since the

rescaling of L by λ is equivalent to that of N by λd. However, this is not the case when

the Ising lattice is defined on a curved surface; while a wide range of regular lattices

can be constructed on curved surfaces with a constant Gaussian curvature [19, 20], the

relation N = Ld become invalid for these lattices due to the differences in the metric

of the underlying geometry. Hence, the rescaling L → λL does not imply N → λdN ,

which requires some modifications of (1). §
We thus introduce an alternative rescaling parameter Λ for considering the scaling

relation of the Ising model on curved surfaces:

Λfs(t, h) = fs(Λ
x̃t, Λỹh), (3)

§ Similar argument has been made regarding an infinitely coordinated Ising model; see Ref. [23].
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Figure 1. Schematic illustration of a regular heptagonal lattice in terms of the
Poincaré disk representation. The number of concentric layers of heptagons is r = 3
in this figure. All heptagons depicted within the circle are congruent with respect to
the metric given in Eq. (A.3). The circumference corresponds to an infinite distance
from the center of the circle.

where Λ represents the rescaling of total sites N → ΛN . When the underlying geometry

of the lattice is flat, the relation (3) reduces to (1) since Λ = λd. In this case, the

parameters x̃ and ỹ given in (3) are defined as x̃ = x/d and ỹ = y/d, thus yielding

identical values of critical exponents (for instance, γ̃ = (2ỹ − 1)/x̃ = (2y − d)/x = γ).

In contrast, when the underlying geometry is curved, Λ can be no longer expressed

as a power of λ; thus, x̃ and ỹ are not related to x and y. Consequently, the critical

exponents for the latter model, which are determined by x̃ and ỹ, may quantitatively

differ from those for the planar Ising lattice. This naturally motivates us to evaluate the

critical exponent directly by constructing the Ising lattice model on curved surfaces.

3. Regular tessellation of curved surfaces

A simple spherical surface seems to be the optimal geometry to consider the curvature

effect on the critical properties of the Ising model. In fact, a number of efforts have been

preformed on the Ising model with lattices whose topology is equivalent to a spherical

surface [10, 11, 12, 13, 14]. It is noted that, however, the thermodynamic limit cannot

be considered for the closed form of sphere-like surfaces having positive curvature while

maintaining their finite curvature. This is because a spherical surface reduces to a flat

plane in this limit, where the curvature effect vanishes completely.

Therefore, instead of a sphere, we consider a curved surface with negative constant

curvature, termed a pseudosphere [19, 20]. The pseudosphere is a simply connected

infinite surface in which the Gaussian curvature at arbitrary points possesses a constant

negative value. (The definition of the pseudosphere will be given in Appendix.) Hence,

it serves as a suitable geometry for considering the curvature effect on the critical

properties of a system. It should be noted that the pseudosphere occurs in manifold

physical problems ranging from quantum Hall effects [24, 25, 26, 27, 28], quantum chaos
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Figure 2. Total number of sites N involved in the heptagonal lattice with various
system sizes. The horizontal axis represents the number of concentric layers of
heptagons, r; this effectively serves as the linear dimension of the entire lattice. Inset:
A single logarithm plot of the identical data shown in Fig. 2. It is clearly seen that N

for r ≫ 1 increases exponentially with r.

[29, 30, 31], the string theory [32] to cosmology [33], wherein the underlying geometric

character of the system is extremely significant.

Interestingly, a wide range of regular lattices can be constructed on the

pseudosphere [20]. This is achieved by a tessellation procedure, where the entire surface

is covered by non-overlapping regular polygons meeting only along complete edges or

at vertices. It is known that a regular tessellation of the pseudosphere with q regular

p-sided polygons meeting at each vertex satisfies the following property: [20]

(p − 2)(q − 2) > 4. (4)

Hence, the series of integer sets {p, q} satisfying (4) results in an infinite number of

possible regular tessellations of a pseudosphere. This is in contrast to the case of a

flat plane, where only three regular tessellations are allowed: {p, q} = {3, 6}, {4, 4} and

{6, 3} satisfying the condition (p−2)(q−2) = 4. For simplicity, we adopted a heptagonal

{7, 3} tessellation to construct the Ising lattice on a pseudosphere. Figure 1 illustrates

the local bond structure of a regular heptagonal lattice in terms of the Poincaré disk

representation. The resulting lattice comprises concentric layers of congruent heptagons

surrounding a central heptagon. The Ising lattice models embedded on a pseudosphere

have been considered thus far [21, 34, 35]; however, explicit temperature dependences

of thermodynamics quantities close to the transition are yet to be concerned.

Due to a peculiar metric of a pseudosphere, the total number of sites N of our

heptagonal lattice exhibit a non-trivial evolution behaviour with the increase in the

lattice size. The size of our lattice is determined by the number of concentric layers of

heptagons, denoted by r, which effectively serves as a linear dimension in our lattice.
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For a given r, the number of total sites N is expressed as follows:

N(r = 1) = 7,

N(r ≥ 2) = 7 + 7
r−2∑
j=0

[
c+

(
1 + c+

2

)j

+ c−

(
1 + c−

2

)j
]
, (5)

where c± = 2±
√

5. Figure 2 plots the dependence of N on the effective linear dimension

r. When r ≫ 1, it is approximated as N(r) ≃ 5 exp(r); this means that N rapidly

increases with r in comparison with the case of the planar Ising model. The exponential

increase in N(r) is a manifestation of the constant negative curvature of the underlying

geometry of our lattice.

It should be noted that, when considering thermodynamic properties of our lattice,

careful treatments on boundary effects are required. The exponential increase in N(r)

results in that the ratio [N(r)−N(r− 1)]/N(r) approaches a non-zero constant 1− e−1

in the limit r → ∞. This means that the boundaries of our lattices can not be

neglected even in the thermodynamic limit, but contain a finite fraction of the total

sites. Boundary effects coming from these sites are difficult to be eliminated completely,

because the periodic boundary conditions are hard to be employed to regular lattices

assigned on a pseudosphere.

In order to extract the bulk critical phenomena, therefore, we have followed the

procedure mentioned below. Suppose that an Ising lattice consists of rout concentric

layers of heptagons. Then, for computing physical quantities of the system (magnetic

susceptibilities, for instance), we take into account only the Ising spins involved in the

interior rin layers (rin ≤ rout) so as to reduce the contribution of the spins locating near

the boundary. In actual calculations, rin is varied from 4 to 8, and for each rin the

number of disregarded layers ∆r ≡ rout − rin is systematically increased from 0 to 4.

By investigating the asymptotic behavior of the system for large ∆r, we can deduce the

bulk properties of the Ising lattice model embedded on the pseudosphere.

4. Numerical methods

We considered the conventional Ising model with ferromagnetic interaction:

H = −J
∑

<i,j>

sisj, si = ±1, (6)

where ⟨i, j⟩ denotes a pair of nearest-neighbour sites on a heptagonal lattice. The free

boundary condition is imposed for all lattices to be considered. Temperatures and

energies are expressed as units of J/kB and J , respectively. The order parameter m per

site for a given configuration of {si} is given by m =
∑N

i=1 si/N .

Our main objective is to determine the zero-field magnetic susceptibility χ that

exhibits the power-law relation χ(T ) ∝ |T − Tc|−γ near the critical temperature Tc.

The susceptibility for a finite system size can be expressed as a function of the order

parameter m as

χ(T,N) =
N⟨m2⟩
kBT

, (7)
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or alternatively,

χ′(T,N) = N
⟨m2⟩ − ⟨|m|⟩2

kBT
. (8)

Despite the difference in their definitions, both χ and χ′ yield the same critical exponent

γ by the finite-size scaling method, as described in Ref [36]. The expectation values

⟨|m|⟩ and ⟨m2⟩ at temperature T are evaluated by canonical MC simulations [36, 37].

Sampling of the configurational space was carried out by using the single-cluster update

algorithm [38] which prevents the critical slowing down near the transition.

Quantitative evaluation of critical exponents can be achieved by using the finite-size

scaling technique [39, 40, 41]. Close to the critical temperature Tc, the susceptibility for

a finite system size satisfies the following scaling behaviour:

χ(T,N) ∝ Nγ/µ · χ0

(
|T − Tc|N1/µ

)
. (9)

Here, µ is the critical exponent describing the divergence of the correlation volume ξV(T )

of the order parameter:

ξV(T ) ∝ |T − Tc|−µ. (10)

The quantity ξV is a natural generalization [23, 42] of the correlation length ξ that

diverges as ξ(T ) ∝ |T −Tc|−ν with the critical exponent ν in the planar model. Near Tc,

the argument of the scaling functions χ0 in (9), denoted by x = |T − Tc|N1/µ, becomes

much smaller than unity. This allows the polynomial expansion of the scaling function

χ0 as

χ(T,N) = a0N
γ/µ + a1|T − Tc|N (1+γ)/µ + · · · + an|T − Tc|N (n+γ)/µ, (11)

terminating the expansion at the order n. By substituting the numerical data of

χ(T,N) and their corresponding values of T and N into (11), followed by performing the

nonlinear least square fitting, we obtain the critical exponents γ and µ and the critical

temperature Tc as optimal fitting parameters.

5. Results

5.1. Susceptibilities and critical exponents for ∆r = 0

Before addressing the bulk critical properties, we first demonstrate the results for entire

heptagonal lattices with ∆r = 0 (boundary contributions are fully involved). Figure

3(a) and 3(b) show the calculated results of the zero-field susceptibilities χ(T,N) and

χ′(T,N), respectively, as a function of temperature T . The single logarithmic plot is

used in the figure 3(a). The system size r = rin is varied from 4 to 8, which corresponds

to the change in the number of total sites from N = 315 to N = 15435. Both χ and

χ′ exhibit such a typical behaviour that indicates the occurrence of a ferromagnetic

transition within the temperature range of 1.1 ≤ T ≤ 1.3. For instance, the χ curve in

figure 3(a) monotonically increases with a decrease in T ; this is attributed to the onset
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Figure 3. (a) Zero-field magnetic susceptibilities: (a) χ(T,N) and (b) χ′(T,N), for
entire heptagonal lattices with ∆r = 0. The system size is varied from rin = 4 (square)
to rin = 8 (solid circle), which corresponds to the change in the number of total sites
from N = 315 to N = 15435.

of the ordered phase. As well, the plot of χ′ in figure 3(b) exhibits a sharp peak at

T ∼ 1.2, which is also a precursor of the divergence in the infinite system.

Figure 4 (a) shows the scaling plot of χ(T,N) based on (9). The vertical

and horizontal axes represent the scaled susceptibility χ(x)N−γ/µ and its argument

x ≡ |T − Tc|N1/µ, respectively. The critical exponents evaluated from the upper and

lower branches are γ = 2.28(2) and µ = 3.46(1), and γ = 2.26(2) and µ = 3.47(1),

respectively. The errors in the last decimal places, which are shown in parentheses,

designate a 95% confidence interval. As expected, the estimated values of γ and µ for

the two branches are in agreement within numerical errors. The optimal value of the

critical temperature for the two branches is evaluated as Tc = 1.253(1); this agrees with

the preceding estimation from the values of figures 3(a) and 3(b). A similar analysis

for χ′ results in γ = 2.26(3), µ = 3.45(2), and Tc = 1.254(2); these values are fully

consistent with the results deduced from the data of χ.

We re-emphasize the fact that for regular Ising lattices embedded on curved

surfaces, N instead of r should be adopted as the scaling variable. This is justified

by attempting the finite size scaling of χ using r. Figure 4(b) presents the scaling plot

of χ in terms of another scaling argument y = |T − Tc|r1/µ′
; the estimated values

of the parameters are γ′ = 1.8(3), µ′ = 2.0(4), and Tc = 1.46(4). It is evident

that the data points do not collapse onto a single curve, but instead exhibit a large

scatter. Furthermore, the resulting value of Tc differs from the temperature at which

the susceptibility χ′(T ) exhibits a sharp peak (see figure 3). These facts indicate that

the linear dimension r is not a characteristic length scale that describes the scaling

behaviour of the thermodynamic quantities for curved surfaces.
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Figure 4. (a) Scaling plot of χ(T,N) against the argument x = |T − Tc|N1/µ.
The optimal values of critical exponents are γ = 2.28(2) and µ = 3.46(1), and
γ = 2.26(2) and µ = 3.47(1) for the upper and lower branches, respectively. The
critical temperature is estimated as Tc = 1.253(1) for the two branches. (b) Scaling
attempts of χ against the alternative argument y = |T −Tc|r1/µ′

instead of x. Optimal
values of parameters are γ′ = 1.8(3), µ′ = 2.0(4), and Tc = 1.46(4).

5.2. Critical exponents for ∆r > 0: Boundary effects

We now turn to the study of bulk critical properties of the heptagonal Ising lattice

model. As mentioned in Sec. 3, the boundary spins of Ising lattices on a pseudosphere

are thought to affect significantly to the nature of the system, since the number of the

spins along the boundary increases as fast as that of total spins of the lattice. Hence,

in order to extract the bulk critical exponents, we must try to remove the contribution

of the boundary spins to the scaling behavior of the system. This is achieved by setting

the disregarded layers ∆r = rout − rin to be finite, i.e., by summing up only the spins

within the interior rin layers when performing MC simulations on the systems consisting

of rout(> rin) layers. If ∆r is sufficiently large, the ensemble of the spins involved in the

interior rin layers may yield the critical exponents of the bulk system that is free from

the boundary contribution.

On the basis of the argument above, we have prepared the heptagonal lattices

having various values of rin and ∆r, and systematically employed the scaling analysis to

them. It then reveals how the critical exponents γ and µ and the critical temperature

Tc depend on the number of disregarded layers ∆r. The calculated results are given in

Figure 5 (a) and 5 (b); each data point in the plots was extracted by means of the finite

size scaling analysis for the system sizes 4 ≤ rin ≤ 8. (Hence, the maximum system

size we have treated reaches rout = 12 which corresponds to N = 725760.) We found

that an increase in ∆r results in a monotonic decrease in all quantities in question: γ, µ

and Tc, which indicates the significant contribution of the boundary spins to the scaling
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critical temperature Tc. The lines in the plots serve as a guide to eye. Each data
point was extracted by means of the finite size scaling analysis for the system sizes
4 ≤ rin ≤ 8. The values of the mean-field exponents γMF and µMF are indicated in the
plot (a).

behavior of the system.

Asymptotic behavior of the curves of γ and µ for large ∆r provide estimations

of the bulk critical exponents. From Figure 5 (a), we see that the curve of µ shows

somewhat convergence to a particular value of µ ∼ 2 or less. Since this is close to the

value of µ for the two-dimensional planar Ising model∥, µ2d = 2, it appears that the

bulk system attains the planar Ising universality class at around ∆r ∼ 4. However, the

asymptotic behavior of γ is slightly different from that of µ; while the value of γ equals

to that of the planar system γ2d = 1.75 at ∆r ∼ 3, it still continues to decrease almost

linearly with ∆r and thus has no tendency to converge to γ2d for large ∆r. Thereby, the

bulk critical exponent γ will be smaller than γ2d, which suggests that the heptagonal

Ising lattice belongs to some other universality class than of the planar Ising lattices.

In the context above, the asymptotic value µ ∼ 2 for large ∆r is not the exponent

µ2d but another specific exponent characterizing the intrinsic nature of the system.

This point is clarified by referring to the previous studies done by Rietman et al. [21]

and by Doyon and Fonseca [22]. They both have stated that the Ising lattice model

embedded on the pseudosphere should yield the mean-field critical exponents when

the boundary contribution may be omitted. The mean-field nature of the system is

attributed to the fact that an Ising lattice embedded on a pseudosphere is effectively

an infinite dimensional lattice at large distance due to the exponential growth of the

total spins [43]. For an ordinary Ising lattice in d dimension, the number of spins along

the boundary, Ns, is related to that of the total spins N as Ns ∝ N1−(1/d). Hence,

∥ The value µ2d = 2 is derived from the relation µ = νd (See (11)) and the exact solution ν = 1 for
d = 2.
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the peculiar relation Ns ∝ N that holds on negatively curved surfaces consequences

d = ∞. Accordingly, our heptagonal Ising lattices are expected to yield the mean-field

critical exponents γMF = 1 and µMF = 2, where µMF is determined by¶ µMF = νMFdc as

suggested in Ref. [23]. Our numerical results given in Figure 5 (a) is in fact qualitatively

consistent with the argument above; that is, µ converges to µMF = 2 for ∆r ≥ 4, and

γ continues to decrease until it yields γMF = 1. (To be precise, the asymptotic value of

γ may take the value between γ2d and γMF depending on the numerical conditions; this

point will discussed in Section 6 in detail.)

5.3. Binder’s cumulant U4(T,N)

We have also carried out an alternative estimation of Tc and µ in terms of the fourth-

order Binder’s cumulant U4(T,N) defined by [36, 37, 44]

U4(T,N) = 1 − ⟨m4⟩
3⟨m2⟩2

. (12)

For a given N , the cumulant U4(T ) decreases monotonically with an increase in T from

U4(0) = 2/3 to U4(∞) = 0. In the vicinity of Tc, the T -dependence of it can be

approximated by

U4(T,N) = U (0) + U (1)
(
1 − T

Tc

)
N1/µ, (13)

where U (0) and U (1) are constants and are thus independent of T and N . The expression

(13) is a direct consequence of the assumption that the probability distribution of the

order parameter m should be Gaussian close to the transition [36]. From (13), it follows

U4(Tc, N) = const. and
dU4

dT

∣∣∣∣∣
T=Tc

∝ −N1/µ, (14)

which provides a complementary method to estimate Tc and µ.

Figures 6 (a)-(c) present the numerical results for U4(T,N) for several values of

∆r. In each plot, we found a unique crossing point giving an estimate of the critical

temperature as Tc ≃ 1.25, 1.22 and 1.20 for ∆r = 0, 2 and 4, respectively. These

values of Tc are in fair agreement with those obtained by the scaling analyses for the

susceptibilities presented in Figure 5 (b).

Figure 6 (d) shows the N dependence of the derivative with negative sign −dU4/dT

at T = Tc for different ∆r. The magnitude of the derivative grows with a power-law

with increasing N as expected from (14). The estimates of µ are µ ∼ 3.6, 7.7, 12.5

for ∆r = 0, 2, 4, respectively. It should be noted that these values of µ increase with

∆r. This clearly contradicts to the results of the scaling analyses on the susceptibility χ

(See Fig. 5 (a)), where µ is found to be such a decreasing function of ∆r that yields the

mean-field value µMF = 2 in the large ∆r limit. The discrepancy may be due to simply

a finite sized effect; or, it may indicate some intrinsic property of negatively curved

¶ For the Ising model, the mean-field exponent νMF is 1/2, and the upper critical dimension dc is 4;
thus we obtain µMF = 2.
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rin = 4 (square) to rin = 8 (solid circle). (d) The negative slope of the cumulant,
−dU4/dT |T=Tc , for each value of ∆r. The solid lines represent the power-law (∝ N1/µ)
with µ = 3.6, 7.7, and 12.5 from top to bottom.

surfaces with regard to the distribution of the order parameter m, since the power-law

relation (14) originate from the assumption of the Gaussian distribution of m [36]. More

through discussion about this point will be presented elsewhere.

6. Discussions and Concluding remarks

Our numerical analysis revealed that the critical exponents γ and µ of the heptagonal

Ising model defined on negatively curved surfaces assume values that deviate from those

for the planar Ising model. Most striking is that, when reducing the contribution of spins

near the boundary, both γ and µ exhibit a tendency to yield the mean-field exponents.

This phenomenon is attributed to the fact that the regular Ising lattices on negatively

curved surfaces serve as an effectively infinite dimensional lattices due to the peculiarity

of the intrinsic geometry.

The above statement immediately poses the following question: Does the negative

curvature of the underlying geometry alter the other four critical exponents? With

regard to the power-law behaviour of thermodynamic quantities, the planar Ising model

is known to possess four other critical exponents [4]: α = 0, β = 1/8, δ = 15,

and η = 1/4, which correspond to heat capacity, spontaneous magnetization, critical

isotherm, and the two-point correlation function, respectively. Our preliminary study

[45] has suggested that, the exponent β for large ∆r also tend toward the mean-field

exponent βMF = 1/2, whereas Tc estimated there is slightly different from that in the

present work. Detailed analyses on this issue and the quantitative determination of the
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other exponent δ (and η, if it exists+) will be given in a future study. Very recently,

we have found that the dynamic critical exponent z in our heptagonal Ising model also

shift quantitatively from that for the planar Ising model [46].

It deserves comment that the finite curvature of the underlying geometry may

produce another type of effect wherein the spin variables at each site possess

orientational degrees of freedom. This is because the relative angle of interacting spins

at neighbouring sites on a curved surface is determined by a spatially-dependent metric

tensor. Thus, the Hamiltonian of the system should be modified such that it is a

function of the metric tensor. As a result, the energetically preferable configurations of

the vector spins differ from those in planar systems [47, 48, 49, 50, 51], which implies

that the critical behaviour of these vector-spin lattice models is markedly influenced by

a finite surface curvature.

Further noteworthy is, however, the fact that the geometric curvature continues

to be relevant to the critical behavior of the system despite the omission of the

vector property of the interacting spin variables; this was demonstrated by our results.

Evidently, the spin variable of our model is set to be a scalar, and thus the Ising

Hamiltonian given by (6) is devoid of the metric factor. Nevertheless, the surface

curvature is surely relevant to the Ising model on curved surfaces since it enables to

construct peculiar lattice structures that cannot be realize in a flat plane. This means

that the surface curvature induces the alteration of the global symmetry of the system

even when the interacting entities do not exhibit any vector property. Besides, in the

vicinity of the critical point, the discreteness of the lattice becomes irrelevant and the

model can be considered to be a continuum surface with a constant curvature. Therefore,

the metric of the underlying geometry plays a crucial role in the scaling behaviour of

the Ising lattice model defined on the surface. In this context, the mean-field nature

of the critical exponents γ and µ are expected to be universal for all lattice structures

other than the heptagonal one; this point is being investigated.

We remark that it is also interesting to study the dependence of the values of the

bulk critical exponents on the interior lattice size rin we have introduced. Obviously,

the condition 1 ≪ rin ≪ rout is desirable to determine the bulk properties of the lattice

with accuracy. If the rin is not so large (compared to the curvature radius of the

underlying surface), the system can be regarded as an Ising lattice defined on a nearly

flat surface. Thereby, the resultant critical exponents will become comparable with

those for the planar Ising lattice rather than the true bulk critical exponents (i.e., the

mean-field exponents). This implies that, by gradually increasing the size of rin, the

system go through a crossover from the planar Ising class to the mean-field class. We

conjecture that this crossover phenomenon is observed in the shift of the asymptotic

value of γ deduced from the plot in Figure 5 (a); that is, when increasing the size of

r employed in the analyses, the asymptotic value of γ at ∆r ≫ 1 will shift downward

+ Rietman et al. [21] have suggested that the two-point correlation function of the Ising lattices on
a pseudosphere shows an exponential decay instead of an power-law decay. If it is true, the critical
exponent η can be no longer defined.
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from γ ∼ γ2d = 1.75 to γ ∼ γMF = 1. Accordingly, it is possible that the curve of γ

plotted in Figure 5 (a) converges to an intermediate value between γ2d and γMF under

the present numerical conditions.

In conclusion, we have investigated the critical behaviour of the Ising model defined

on a curved surface with constant negative curvature. MC simulations and finite-size

scaling analyses were employed to compute the critical exponent γ and µ for the zero-

field magnetic susceptibility and correlation volume, respectively. The resulting values

γ and µ show distinct values from those for the planar Ising model, and exhibit a

tendency to the mean-field exponents γMF = 1 and µMF = 2 due to the peculiar intrinsic

geometry of the negatively curved surface. As well, we have revealed quantitatively how

the boundary spins contribute to the determination of γ, µ and Tc, and argued the

possibility to occur the crossover from the planar Ising class to the mean-field Ising

class. We hope that the generalization our statistical model (with regard to the lattice

structure, dimensionality of the embedding space, distribution of interacting strength,

etc.) would unveil a wide variety of interacting critical properties of the physical systems

assigned on general curved spaces.
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Appendix A. The pseudosphere

The pseudosphere is defined as one sheet of the double-sheeted hyperboloid [19]

x2 + y2 − z2 = −1, (A.1)

possessing the Minkowskian metric ds2 = dx2 + dy2 − dz2. Since (A.1) specifies the

locus of points whose squared distance from the origin are equal to −1, it is called a

pseudosphere having the radius i =
√
−1 by analogy with the sphere.

While the above definition is rigorous, it is clumsy for computations since three

coordinates are used for only two degrees of freedom. This cumbrousness is removed by

using an alternative representation of the pseudosphere, called the Poincaré disk model

[29]. Suppose that the upper hyperboloid sheet is projected onto the x-y plane using

the following mapping:

(x, y, z) →
(

x

1 + z
,

y

1 + z

)
. (A.2)

This transforms the upper sheet to a unit circle endowed with the metric

ds2 = w2(dx2 + dy2), w =
2

1 − x2 − y2
. (A.3)

The unit circle possessing the metric (A.3) is referred to as a Poincaré disk, and it serves

as a compact representation of the pseudosphere. The boundary of the disk corresponds

to the points at infinity of the hyperboloid. The Gaussian curvature κ on the disk is

calculated using the formula:

κ = − 1

w2

(
∂2

∂x2
+

∂2

∂y2

)
ln w. (A.4)

From (A.3) and (A.4), we see that κ = −1 at arbitrary points on the disk. Thus it

follows that the pseudosphere is a curved surface with a constant negative curvature

κ = −1.
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