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Abstract

The Minimum Description Length principle for online sequence estimateion/prediction in a proper
learning setup is studied. If the underlying model class is discrete, then the total expected square
loss is a particularly interesting performance measure: (a) this quantity is finitely bounded, implying
convergence with probability one, and (b) it additionally specifies the convergence speed. For MDL,
in general one can only have loss bounds which are finite but exponentially larger than those for Bayes
mixtures. We show that this is even the case if the model class contains only Bernoulli distributions.
We derive a new upper bound on the prediction error for countable Bernoulli classes. This implies
a small bound (comparable to the one for Bayes mixtures) for certain important model classes. We
discuss the application to Machine Learning tasks such as classification and hypothesis testing, and
generalization to countable classes of i.i.d. models.

1 Introduction

“Bayes mixture”, “Solomonoff induction”, “marginalization”, all these terms refer to a central induction
principle: Obtain a predictive distribution by integrating the product of prior and evidence over the model
class. In many cases however, the Bayes mixture is computationally infeasible, and even a sophisticated
approximation is expensive. The MDL or MAP (maximum a posteriori) estimator is both a common
approximation for the Bayes mixture and interesting for its own sake: Use the model with the largest
product of prior and evidence. (In practice, the MDL estimator is usually being approximated too, since
only a local maximum is determined.)

How good are the predictions by Bayes mixtures and MDL? This question has attracted much atten-
tion. In many cases, an important quality measure is the total or cumulative expected loss of a predictor.
In particular the square loss is often considered. Assume that the outcome space is finite, and the model
class is continuously parameterized. Then for Bayes mixture prediction, the cumulative expected square
loss is usually small but unbounded, growing with ln n, where n is the sample size [CB90, Hut03b]. This
corresponds to an instantaneous loss bound of 1

n . For the MDL predictor, the losses behave similarly
[Ris96, BRY98] under appropriate conditions, in particular with a specific prior. (Note that in order to
do MDL for continuous model classes, one needs to discretize the parameter space, see also [BC91].)

On the other hand, if the model class is discrete, then Solomonoff’s theorem [Sol78, Hut01] bounds
the cumulative expected square loss for the Bayes mixture predictions finitely, namely by lnw−1

µ , where
wµ is the prior weight of the “true” model µ. The only necessary assumption is that the true distribution
µ is contained in the model class, i.e. that we are dealing with proper learning. It has been demonstrated

∗A shorter version of this paper [PH04b] appeared in ALT 2004.
†This work was supported by SNF grant 2100-67712.02.
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[GL04], that for both Bayes mixture and MDL, the proper learning assumption can be essential: If it is
violated, then learning may fail very badly.

For MDL predictions in the proper learning case, it has been shown [PH04a] that a bound of w−1
µ

holds. This bound is exponentially larger than the Solomonoff bound, and it is sharp in general. A finite
bound on the total expected square loss is particularly interesting:

1. It implies convergence of the predictive to the true probabilities with probability one. In contrast,
an instantaneous loss bound of 1

n implies only convergence in probability.

2. Additionally, it gives a convergence speed, in the sense that errors of a certain magnitude cannot
occur too often.

So for both, Bayes mixtures and MDL, convergence with probability one holds, while the convergence
speed is exponentially worse for MDL compared to the Bayes mixture. (We avoid the term “convergence
rate” here, since the order of convergence is identical in both cases. It is e.g. o(1/n) if we additionally
assume that the error is monotonically decreasing, which is not necessarily true in general).

It is therefore natural to ask if there are model classes where the cumulative loss of MDL is comparable
to that of Bayes mixture predictions. In the present work, we concentrate on the simplest possible
stochastic case, namely discrete Bernoulli classes. (Note that then the MDL “predictor” just becomes
an estimator, in that it estimates the true parameter and directly uses that for prediction. Nevertheless,
for consistency of terminology, we keep the term predictor.) It might be surprising to discover that
in general the cumulative loss is still exponential. On the other hand, we will give mild conditions on
the prior guaranteeing a small bound. Moreover, it is well-known that the instantaneous square loss of
the Maximum Likelihood estimator decays as 1

n in the Bernoulli case. The same holds for MDL, as we
will see. (If convergence speed is measured in terms of instantaneous losses, then much more general
statements are possible [Li99, Zha04], this is briefly discussed in Section 4.)

A particular motivation to consider discrete model classes arises in Algorithmic Information Theory.
From a computational point of view, the largest relevant model class is the class of all computable
models on some fixed universal Turing machine. Thus each model corresponds to a program, and there
are countably many programs. Moreover, the models are stochastic since they are semimeasures on
strings (programs need not halt, otherwise the models were even measures). Each model has a natural
description length, namely the length of the corresponding program. If we agree that programs are binary
strings, then a prior is defined by two to the negative description length. By the Kraft inequality, the
priors sum up to at most one.

Also the Bernoulli case can be studied in the view of Algorithmic Information Theory. We call
this the universal setup: Given a universal Turing machine, the related class of Bernoulli distributions is
isomorphic to the countable set of computable reals in [0, 1]. The description length Kw(ϑ) of a parameter
ϑ ∈ [0, 1] is then given by the length of its shortest program. A prior weight may then be defined by
2−Kw(ϑ). (If a string x = x1x2 . . . xt−1 is generated by a Bernoulli distribution with computable parameter
ϑ0 ∈ [0, 1], then with high probability the two-part complexity of x with respect to the Bernoulli class
does not exceed its algorithmic complexity by more than a constant, as shown by Vovk [Vov97]. That
is, the two-part complexity with respect to the Bernoulli class is the shortest description, save for an
additive constant.)

Many Machine Learning tasks are or can be reduced to sequence prediction tasks. An important
example is classification. The task of classifying a new instance zn after having seen (instance,class) pairs
(z1, c1), ..., (zn−1, cn−1) can be phrased as to predict the continuation of the sequence z1c1...zn−1cn−1zn.
Typically the (instance,class) pairs are i.i.d. Cumulative loss bounds for prediction usually generalize
to prediction conditionalized to some inputs [PH05]. Then we can solve classification problems in the
standard form. It is not obvious if and how the proofs in this paper can be conditionalized.

Our main tool for obtaining results is the Kullback-Leibler divergence. Lemmata for this quantity
are stated in Section 2. Section 3 shows that the exponential error bound obtained in [PH04a] is sharp
in general. In Section 4, we give an upper bound on the instantaneous and the cumulative losses. The
latter bound is small e.g. under certain conditions on the distribution of the weights, this is the subject
of Section 5. Section 6 treats the universal setup. Finally, in Section 7 we discuss the results and give
conclusions.
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2 Kullback-Leibler Divergence

Let B = {0, 1} and consider finite strings x ∈ B∗ as well as infinite sequences x<∞ ∈ B∞, with the first n
bits denoted by x1:n. If we know that x is generated by an i.i.d random variable, then P (xi = 1) = ϑ0 for
all 1 ≤ i ≤ `(x) where `(x) is the length of x. Then x is called a Bernoulli sequence, and ϑ0 ∈ Θ ⊂ [0, 1]
the true parameter. In the following we will consider only countable Θ, e.g. the set of all computable
numbers in [0, 1].

Associated with each ϑ ∈ Θ, there is a complexity or description length Kw(ϑ) and a weight or
(semi)probability wϑ = 2−Kw(ϑ). The complexity will often but need not be a natural number. Typically,
one assumes that the weights sum up to at most one,

∑
ϑ∈Θ wϑ ≤ 1. Then, by the Kraft inequality, for

all ϑ ∈ Θ there exists a prefix-code of length Kw(ϑ). Because of this correspondence, it is only a matter
of convenience if results are developed in terms of description lengths or probabilities. We will choose the
former way. We won’t even need the condition

∑
ϑ wϑ ≤ 1 for most of the following results. This only

means that Kw cannot be interpreted as a prefix code length, but does not cause other problems.
Given a set of distributions Θ ⊂ [0, 1], complexities

(
Kw(ϑ)

)
ϑ∈Θ

, a true distribution ϑ0 ∈ Θ, and
some observed string x ∈ B∗, we define an MDL estimator1:

ϑx = arg max
ϑ∈Θ

{wϑP (x|ϑ)}.

Here, P (x|ϑ) is the probability of observing x if ϑ is the true parameter. Clearly, P (x|ϑ) = ϑ1I(x)(1 −
ϑ)`(x)−1I(x), where 1I(x) is the number of ones in x. Hence P (x|ϑ) depends only on `(x) and 1I(x). We
therefore see

ϑx = ϑ(α,n) = arg max
ϑ∈Θ

{wϑ

(
ϑα(1− ϑ)1−α

)n} (1)

= arg min
ϑ∈Θ

{n·D(α‖ϑ) + Kw(ϑ)· ln 2},

where n = `(x) and α := 1I(x)
`(x) is the observed fraction of ones and

D(α‖ϑ) = α ln α
ϑ + (1− α) ln 1−α

1−ϑ

is the Kullback-Leibler divergence. The second line of (1) also explains the name MDL, since we choose
the ϑ which minimizes the joint description of model ϑ and the data x given the model.

We also define the extended Kullback-Leibler divergence

Dα(ϑ‖ϑ̃) = α ln
ϑ

ϑ̃
+ (1− α) ln

1− ϑ

1− ϑ̃
= D(α‖ϑ̃)−D(α‖ϑ). (2)

It is easy to see that Dα(ϑ‖ϑ̃) is linear in α, Dϑ(ϑ‖ϑ̃) = D(ϑ‖ϑ̃) and Dϑ̃(ϑ‖ϑ̃) = −D(ϑ̃‖ϑ), and
d

dαDα(ϑ‖ϑ̃) > 0 iff ϑ > ϑ̃. Note that Dα(ϑ‖ϑ̃) may be also defined for the general i.i.d. case, i.e. if the
alphabet has more than two symbols.

Let ϑ, ϑ̃ ∈ Θ be two parameters, then it follows from (1) that in the process of choosing the MDL
estimator, ϑ is being preferred to ϑ̃ iff

nDα(ϑ‖ϑ̃) ≥ ln 2 · (Kw(ϑ)−Kw(ϑ̃)
)

(3)

with n and α as before. We also say that then ϑ beats ϑ̃. It is immediate that for increasing n the
influence of the complexities on the selection of the maximizing element decreases. We are now interested
in the total expected square prediction error (or cumulative square loss) of the MDL estimator

∞∑
n=1

E(ϑx1:n − ϑ0)2.

1Precisely, we define a MAP (maximum a posteriori) estimator. For two reasons, our definition might not be considered
as MDL in the strict sense. First, MDL is often associated with a specific prior, while we admit arbitrary priors. Second
and more importantly, when coding some data x, one can exploit the fact that once the parameter ϑx is specified, only
data which leads to this ϑx needs to be considered. This allows for a description shorter than Kw(ϑx). Nevertheless, the
construction principle is commonly termed MDL, compare e.g. the “ideal MDL” in [VL00].
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In terms of [PH04a], this is the static MDL prediction loss, which means that a predictor/estimator
ϑx is chosen according to the current observation x. (As already mentioned, the terms predictor and
estimator coincide for static MDL and Bernoulli classes.) The dynamic method on the other hand would
consider both possible continuations x0 and x1 and predict according to ϑx0 and ϑx1. In the following,
we concentrate on static predictions. They are also preferred in practice, since computing only one model
is more efficient.

Let An =
{

k
n : 0 ≤ k ≤ n

}
. Given the true parameter ϑ0 and some n ∈ N, the expectation of a

function f (n) : {0, . . . , n} → R is given by

Ef (n) =
∑

α∈An

p(α|n)f(αn), where p(α|n) =
(

n

k

)(
ϑα

0 (1− ϑ0)1−α
)n

. (4)

(Note that the probability p(α|n) depends on ϑ0, which we do not make explicit in our notation.) There-
fore,

∞∑
n=1

E(ϑx1:n − ϑ0)2 =
∞∑

n=1

∑

α∈An

p(α|n)(ϑ(α,n) − ϑ0)2, (5)

Denote the relation f = O(g) by f
×≤ g. Analogously define “

×≥” and “×=”. From [PH04a, Corollary 12],
we immediately obtain the following result.

Theorem 1 The cumulative loss bound
∑

n E(ϑx1:n − ϑ0)2
×≤ 2Kw(ϑ0) holds.

This is the “slow” convergence result mentioned in the introduction. In contrast, for a Bayes mixture,
the total expected error is bounded by Kw(ϑ0) rather than 2Kw(ϑ0) (see [Sol78] or [Hut01, Th.1]). An
upper bound on

∑
n E(ϑx1:n − ϑ0)2 is termed as convergence in mean sum and implies convergence

ϑx1:n → ϑ0 with probability 1 (since otherwise the sum would be infinite).
We now establish relations between the Kullback-Leibler divergence and the quadratic distance. We

call bounds of this type entropy inequalities.

Lemma 2 Let ϑ, ϑ̃ ∈ (0, 1). Let ϑ∗ = arg min{|ϑ− 1
2 |, |ϑ̃− 1

2 |}, i.e. ϑ∗ is the element from {ϑ, ϑ̃} which
is closer to 1

2 . Then the following assertions hold.

(i) D(ϑ‖ϑ̃) ≥ 2 · (ϑ− ϑ̃)2 ∀ ϑ, ϑ̃ ∈ (0, 1),
(ii) D(ϑ‖ϑ̃) ≤ 8

3 (ϑ− ϑ̃)2 if ϑ, ϑ̃ ∈ [ 14 , 3
4 ],

(iii) D(ϑ‖ϑ̃) ≥ (ϑ−ϑ̃)2

2ϑ∗(1−ϑ∗) if ϑ, ϑ̃ ≤ 1
2 ,

(iv) D(ϑ‖ϑ̃) ≤ 3(ϑ−ϑ̃)2

2ϑ∗(1−ϑ∗) if ϑ ≤ 1
4 and ϑ̃ ∈ [ϑ

3 , 3ϑ],

(v) D(ϑ̃‖ϑ) ≥ ϑ̃(ln ϑ̃− ln ϑ− 1) ∀ ϑ, ϑ̃ ∈ (0, 1),
(vi) D(ϑ‖ϑ̃) ≤ 1

2 ϑ̃ if ϑ ≤ ϑ̃ ≤ 1
2 ,

(vii) D(ϑ‖ϑ · 2−j) ≤ j · ϑ if ϑ ≤ 1
2 and j ≥ 1,

(viii) D(ϑ‖1− 2−j) ≤ j if ϑ ≤ 1
2 and j ≥ 1.

Statements (iii)− (viii) have symmetric counterparts for ϑ ≥ 1
2 .

The first two statements give upper and lower bounds for the Kullback-Leibler divergence in terms of
the quadratic distance. They express the fact that the Kullback-Leibler divergence is locally quadratic.
So do the next two statements, they will be applied in particular if ϑ is located close to the boundary
of [0, 1]. Statements (v) and (vi) give bounds in terms of the absolute distance, i.e. “linear” instead of
quadratic. They are mainly used if ϑ̃ is relatively far from ϑ. Note that in (v), the position of ϑ and ϑ̃
are inverted. The last two inequalities finally describe the behavior of the Kullback-Leibler divergence
as its second argument tends to the boundary of [0, 1]. Observe that this is logarithmic in the inverse
distance to the boundary.

Proof. (i) This is standard, see e.g. [LV97]. It is shown similarly as (iii).
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(ii) Let f(η) = D(ϑ‖η)− 8
3 (η−ϑ)2, then we show f(η) ≤ 0 for η ∈ [ 14 , 3

4 ]. We have that f(ϑ) = 0 and

f ′(η) =
η − ϑ

η(1− η)
− 16

3
(η − ϑ).

This difference is nonnegative if and only η − ϑ ≤ 0 since η(1− η) ≥ 3
16 . This implies f(η) ≤ 0.

(iii) Consider the function

f(η) = D(ϑ‖η)− (ϑ− η)2

2max{ϑ, η}(1−max{ϑ, η}) .

We have to show that f(η) ≥ 0 for all η ∈ (0, 1
2 ]. It is obvious that f(ϑ) = 0. For η ≤ ϑ,

f ′(η) =
η − ϑ

η(1− η)
− η − ϑ

ϑ(1− ϑ)
≤ 0

holds since η − ϑ ≤ 0 and ϑ(1 − ϑ) ≥ η(1 − η). Thus, f(η) ≥ 0 must be valid for η ≤ ϑ. On the other
hand if η ≥ ϑ, then

f ′(η) =
η − ϑ

η(1− η)
−

[
η − ϑ

η(1− η)
− (η − ϑ)2(1− 2η)

2η2(1− η)2

]
≥ 0

is true. Thus f(η) ≥ 0 holds in this case, too.
(iv) We show that

f(η) = D(ϑ‖η)− 3(ϑ− η)2

2max{ϑ, η}(1−max{ϑ, η}) ≤ 0

for η ∈ [ϑ
3 , 3ϑ]. If η ≤ ϑ, then

f ′(η) =
η − ϑ

η(1− η)
− 3(η − ϑ)

ϑ(1− ϑ)
≥ 0

since 3η(1− η) ≥ ϑ(1− η) ≥ ϑ(1− ϑ). If η ≥ ϑ, then

f ′(η) =
η − ϑ

η(1− η)
− 3 ·

[
η − ϑ

η(1− η)
− (η − ϑ)2(1− 2η)

2η2(1− η)2

]
≤ 0

is equivalent to 4η(1 − η) ≥ 3(η − ϑ)(1 − 2η), which is fulfilled if ϑ ≤ 1
4 and η ≤ 3ϑ as an elementary

computation verifies.
(v) Using − ln(1−u) ≤ u

1−u , one obtains

D(ϑ̃‖ϑ) = ϑ̃ ln
ϑ̃

ϑ
+ (1− ϑ̃) ln

1− ϑ̃

1− ϑ
≥ ϑ̃ ln

ϑ̃

ϑ
+ (1− ϑ̃) ln(1− ϑ̃)

≥ ϑ̃ ln
ϑ̃

ϑ
− ϑ̃ = ϑ̃(ln ϑ̃− ln ϑ− 1)

(vi) This follows from D(ϑ‖ϑ̃) ≤ − ln(1− ϑ̃) ≤ ϑ̃
1−ϑ̃

≤ ϑ̃
2 . The last two statements (vii) and (viii) are

even easier. 2

In the above entropy inequalities we have left out the extreme cases ϑ, ϑ̃ ∈ {0, 1}. This is for simplicity
and convenience only. Inequalities (i) − (iv) remain valid for ϑ, ϑ̃ ∈ {0, 1} if the fraction 0

0 is properly
defined. However, since the extreme cases will need to be considered separately anyway, there is no
requirement for the extension of the lemma. We won’t need (vi) and (viii) of Lemma 2 in the sequel.

We want to point out that although we have proven Lemma 2 only for the case of binary alphabet,
generalizations to arbitrary alphabet are likely to hold. In fact, (i) does hold for arbitrary alphabet, as
shown in [Hut01].

It is a well-known fact that the binomial distribution may be approximated by a Gaussian. Our next
goal is to establish upper and lower bounds for the binomial distribution. Again we leave out the extreme
cases.
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Lemma 3 Let ϑ0 ∈ (0, 1) be the true parameter, n ≥ 2 and 1 ≤ k ≤ n − 1, and α = k
n . Then the

following assertions hold.

(i) p(α|n) ≤ 1√
2πα(1− α)n

exp
(− nD(α‖ϑ0)

)
,

(ii) p(α|n) ≥ 1√
8α(1− α)n

exp
(− nD(α‖ϑ0)

)
.

The lemma is verified using Stirling’s formula. It gives a quantitative assertion about the Gaussian
approximation to a binomial distribution. The upper bound is sharp for n →∞ and fixed α. Lemma 3
can be easily combined with Lemma 2, yielding Gaussian estimates for the Binomial distribution.

Lemma 4 Let z ∈ R+, then

(i)
√

π

2z3
− 1

z
√

2e
≤

∞∑
n=1

√
n · exp(−z2n) ≤

√
π

2z3
+

1
z
√

2e
and

(ii)
∞∑

n=1

n−
1
2 exp(−z2n) ≤ √

π/z.

Proof. (i) The function f(u) =
√

u exp(−z2u) increases for u ≤ 1
2z2 and decreases for u ≥ 1

2z2 . Let
N = max{n ∈ N : f(n) ≥ f(n− 1)}, then it is easy to see that

N−1∑
n=1

f(n) ≤
∫ N

0

f(u) du ≤
N∑

n=1

f(n) and

∞∑

n=N+1

f(n) ≤
∫ ∞

N

f(u) du ≤
∞∑

n=N

f(n) and thus

∞∑
n=1

f(n)− f(N) ≤
∫ ∞

0

f(u) du ≤
∞∑

n=1

f(n) + f(N)

holds. Moreover, f is the derivative of the function

F (u) = −
√

u exp(−z2u)
z2

+
1
z3

∫ z
√

u

0

exp(−v2) dv.

Observe f(N) ≤ f( 1
2z2 ) = exp(− 1

2 )

z·√2
and

∫∞
0

exp(−v2)dv =
√

π
2 to obtain the assertion.

(ii) The function f(u) = u−
1
2 exp(−z2u) decreases monotonically on (0,∞) and is the derivative of

F (u) = 2z−1
∫ z
√

u

0
exp(−v2)dv. Therefore,

∞∑
n=1

f(n) ≤
∫ ∞

0

f(u) du =
√

π/z

holds. 2

3 Lower Bound

We are now in the position to prove that even for Bernoulli classes the upper bound from Theorem 1 is
sharp in general.

Proposition 5 Let ϑ0 = 1
2 be the true parameter generating sequences of fair coin flips. Assume Θ =

{ϑ0, ϑ1, . . . , ϑ2N−1} where ϑk = 1
2 + 2−k−1 for k ≥ 1. Let all complexities be equal, i.e. Kw(ϑ0) = . . . =

Kw(ϑ2N−1) = N . Then
∞∑

n=1

E(ϑ0 − ϑx)2 ≥ 1
84

(
2N − 5

) ×= 2Kw(ϑ0).

6



Proof. Recall that ϑx = ϑ(α,n) the maximizing element for some observed sequence x only depends on
the length n and the observed fraction of ones α. In order to obtain an estimate for the total prediction
error

∑
n E(ϑ0−ϑx)2, partition the interval [0, 1] into 2N disjoint intervals Ik, such that

⋃2N−1
k=0 Ik = [0, 1].

Then consider the contributions for the observed fraction α falling in Ik separately:

C(k) =
∞∑

n=1

∑

α∈An∩Ik

p(α|n)(ϑ(α,n) − ϑ0)2 (6)

(compare (4)). Clearly,
∑

n E(ϑ0 − ϑx)2 =
∑

k C(k) holds. We define the partitioning (Ik) as I0 =
[0, 1

2 + 2−2N

) = [0, ϑ2N−1), I1 = [ 34 , 1] = [ϑ1, 1], and

Ik = [ϑk, ϑk−1) for all 2 ≤ k ≤ 2N − 1.

Fix k ∈ {2, . . . , 2N − 1} and assume α ∈ Ik. Then

ϑ(α,n) = arg min
ϑ
{nD(α‖ϑ) + Kw(ϑ) ln 2} = arg min

ϑ
{nD(α‖ϑ)} ∈ {ϑk, ϑk−1}

according to (1). So clearly (ϑ(α,n) − ϑ0)2 ≥ (ϑk − ϑ0)2 = 2−2k−2 holds. Since p(α|n) decreases for
increasing |α− ϑ0|, we have p(α|n) ≥ p(ϑk−1|n). The interval Ik has length 2−k−1, so there are at least
bn2−k−1c ≥ n2−k−1 − 1 observed fractions α falling in the interval. From (6), the total contribution of
α ∈ Ik can be estimated by

C(k) ≥
∞∑

n=1

2−2k−2(n2−k−1 − 1)p(ϑk−1|n).

Note that the terms in the sum even become negative for small n, which does not cause any problems.
We proceed with

p(ϑk−1|n) ≥ 1√
8 · 2−2n

exp
[− nD

(
1
2 + 2−k‖1

2

)] ≥ 1√
2n

exp
[− n 8

32−2k
]

according to Lemma 3 and Lemma 2 (ii). By Lemma 4 (i) and (ii), we have

∞∑
n=1

√
n exp

[− n 8
32−2k

] ≥
√

π

2

(
3
8

) 3
2

23k − 1√
2e

√
3
8
2k and

−
∞∑

n=1

n−
1
2 exp

[− n 8
32−2k

] ≥ −√π

√
3
8
2k.

Considering only k ≥ 5, we thus obtain

C(k) ≥ 1√
2

√
3
8
2−2k−2

[
3
√

π

16
22k−1 − 1√

2e
2−1 −√π2k

]

≥
√

3
16

[
3
√

π2−5 − 1√
2e

2−2k−1 −√π2−k

]
≥
√

3π

8
2−5 −

√
3

16
√

2e
2−11 >

1
84

.

Ignoring the contributions for k ≤ 4, this implies the assertion. 2

This result shows that if the parameters and their weights are chosen in an appropriate way, then
the total expected error is of order w−1

0 instead of ln w−1
0 . Interestingly, this outcome seems to depend

on the arrangement and the weights of the false parameters rather than on the weight of the true one.
One can check with moderate effort that the proposition still remains valid if e.g. w0 is twice as large as
the other weights. Actually, the proof of Proposition 5 shows even a slightly more general result, namely
admitting additional arbitrary parameters with larger complexities:

Corollary 6 Let Θ = {ϑk : k ≥ 0}, ϑ0 = 1
2 , ϑk = 1

2 + 2−k−1 for 1 ≤ k ≤ 2N − 2, and ϑk ∈ [0, 1]
arbitrary for k ≥ 2N − 1. Let Kw(ϑk) = N for 0 ≤ k ≤ 2N − 2 and Kw(ϑk) > N for k ≥ 2N − 1. Then∑

n E(ϑ0 − ϑx)2 ≥ 1
84 (2N − 6) holds.

We will use this result only for Example 16. Other and more general assertions can be proven similarly.
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4 Upper Bounds

Although the cumulative error may be large, as seen in the previous section, the instantaneous error is
always small. It is easy to demonstrate this for the Bernoulli case, to which we restrict in this paper.
Much more general results have been obtained for arbitrary classes of i.i.d. models [Li99, Zha04]. Strong
bounds hold in particular if MDL modified by replacing the factor ln 2 in (1) by something larger (e.g.
(1+ε) ln 2) such that complexity is penalized slightly more than usually. Note that our cumulative bounds
are incomparable to these and other instantaneous bounds.

Proposition 7 For n ≥ 3, the expected instantaneous square loss is bounded:

E(ϑ0 − ϑ̂x1:n)2 ≤ (ln 2)Kw(ϑ0)
2n

+

√
2(ln 2)Kw(ϑ0) ln n

n
+

6 ln n

n
.

Proof. We give an elementary proof for the case ϑ0 ∈ ( 1
4 , 3

4 ) only. Like in the proof of Proposition 5, we
consider the contributions of different α separately. By Hoeffding’s inequality, P(|α−ϑ0| ≥ c√

n
) ≤ 2e−2c2

for any c > 0. Letting c =
√

ln n, the contributions by these α are thus bounded by 2
n2 ≤ ln n

n .
On the other hand, for |α−ϑ0| ≤ c√

n
, recall that ϑ0 beats any ϑ iff (3) holds. According to Kw(ϑ) ≥ 0,

|α−ϑ0| ≤ c√
n
, and Lemma 2 (i) and (ii), (3) is already implied by |α−ϑ| ≥

√
1
2 (ln 2)Kw(ϑ0)+

4
3 c2

n . Clearly,
a contribution only occurs if ϑ beats ϑ0, therefore if the opposite inequality holds. Using |α− ϑ0| ≤ c√

n

again and the triangle inequality, we obtain that

(ϑ− ϑ0)2 ≤
5c2 + 1

2 (ln 2)Kw(ϑ0) +
√

2(ln 2)Kw(ϑ0)c2

n

in this case. Since we have chosen c =
√

ln n, this implies the assertion. 2

One can improve the bound in Proposition 7 to E(ϑ0 − ϑ̂x1:n)2
×≤ Kw(ϑ0)

n by a refined argument,
compare [BC91]. But the high-level assertion is the same: Even if the cumulative upper bound may tend
to infinity, the instantaneous error converges rapidly to 0. Moreover, the convergence speed depends on
Kw(ϑ0) as opposed to 2Kw(ϑ0). Thus ϑ̂ tends to ϑ0 rapidly in probability (recall that the assertion is not
strong enough to conclude almost sure convergence). The proof does not exploit

∑
wϑ ≤ 1, but only

wϑ ≤ 1, hence the assertion even holds for a maximum likelihood estimator (i.e. wϑ = 1 for all ϑ ∈ Θ).
The theorem generalizes to i.i.d. classes. For the example in Proposition 5, the instantaneous bound
implies that the bulk of losses occurs very late. This does not hold for general (non-i.i.d.) model classes:
The losses in [PH04a, Example 9] grow linearly in the first n steps.

We will now state our main positive result that upper bounds the cumulative loss in terms of the
negative logarithm of the true weight and the arrangement of the false parameters. The proof is similar
to that of Proposition 5. We will only give the proof idea here and defer the lengthy and tedious technical
details to the appendix.

Consider the cumulated sum square error
∑

n E
(
ϑ(α,n)−ϑ0

)2. In order to upper bound this quantity,
we will partition the open unit interval (0, 1) into a sequence of intervals (Ik)∞k=1, each of measure 2−k.
(More precisely: Each Ik is either an interval or a union of two intervals.) Then we will estimate the
contribution of each interval to the cumulated square error,

C(k) =
∞∑

n=1

∑

α∈An,ϑ(α,n)∈Ik

p(α|n)(ϑ(α,n) − ϑ0)2

(compare (4) and (6)). Note that ϑ(α,n) ∈ Ik precisely reads ϑ(α,n) ∈ Ik ∩ Θ, but for convenience we
generally assume ϑ ∈ Θ for all ϑ being considered. This partitioning is also used for α, i.e. define the
contribution C(k, j) of ϑ ∈ Ik where α ∈ Ij as

C(k, j) =
∞∑

n=1

∑

α∈An∩Ij ,ϑ(α,n)∈Ik

p(α|n)(ϑ(α,n) − ϑ0)2.
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Figure 1: Example of the first four intervals for ϑ0 = 3
16 . We have an l-step, a c-step, an l-step and

another c-step. All following steps will be also c-steps.

We need to distinguish between α that are located close to ϑ0 and α that are located far from ϑ0. “Close”
will be roughly equivalent to j > k, “far” will be approximately j ≤ k. So we get

∑
n E

(
ϑ(α,n) − ϑ0

)2 =∑∞
k C(k) =

∑
k

∑
j C(k, j). In the proof,

p(α|n)
×≤ [

nα(1− α)
]− 1

2 exp
[− nD(α‖ϑ0)

]

is often applied, which holds by Lemma 3 (recall that f
×≤ g stands for f = O(g)). Terms like D(α‖ϑ0),

arising in this context and others, can be further estimated using Lemma 2. We now give the constructions
of intervals Ik and complementary intervals Jk.

Definition 8 Let ϑ0 ∈ Θ be given. Start with J0 = [0, 1). Let Jk−1 = [ϑl
k, ϑr

k) and define dk = ϑr
k−ϑl

k =
2−k+1. Then Ik, Jk ⊂ Jk−1 are constructed from Jk−1 according to the following rules.

ϑ0 ∈ [ϑl
k, ϑl

k + 3
8dk) ⇒ Jk = [ϑl

k, ϑl
k + 1

2dk), Ik = [ϑl
k + 1

2dk, ϑr
k), (7)

ϑ0 ∈ [ϑl
k + 3

8dk, ϑl
k + 5

8dk) ⇒ Jk = [ϑl
k + 1

4dk, ϑl
k + 3

4dk), (8)

Ik = [ϑl
k, ϑl

k + 1
4dk) ∪ [ϑl

k + 3
4dk, ϑr

k),

ϑ0 ∈ [ϑl
k + 5

8dk, ϑr
k) ⇒ Jk = [ϑl

k + 1
2dk, ϑr

k), Ik = [ϑl
k, ϑl

k + 1
2dk). (9)

We call the kth step of the interval construction an l-step if (7) applies, a c-step if (8) applies, and an
r-step if (9) applies, respectively. Fig. 1 shows an example for the interval construction.

Clearly, this is not the only possible way to define an interval construction. Maybe the reader wonders
why we did not center the intervals around ϑ0. In fact, this construction would equally work for the proof.
However, its definition would not be easier, since one still has to treat the case where ϑ0 is located close
to the boundary. Moreover, our construction has the nice property that the interval bounds are finite
binary fractions.

Given the interval construction, we can identify the ϑ ∈ Ik with lowest complexity:

Definition 9 For ϑ0 ∈ Θ and the interval construction (Ik, Jk), let

ϑI
k = arg min{Kw(ϑ) : ϑ ∈ Ik ∩Θ},

ϑJ
k = arg min{Kw(ϑ) : ϑ ∈ Jk ∩Θ}, and

∆(k) = max
{
Kw(ϑI

k)−Kw(ϑJ
k ), 0

}
.

If there is no ϑ ∈ Ik ∩Θ, we set ∆(k) = Kw(ϑI
k) = ∞.
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We can now state the main positive result of this paper. The detailed proof is deferred to the appendix.
Corollaries will be given in the next section.

Theorem 10 Let Θ ⊂ [0, 1] be countable, ϑ0 ∈ Θ, and wϑ = 2−Kw(ϑ), where Kw(ϑ) is some complexity
measure on Θ. Let ∆(k) be as introduced in Definition 9 and recall that ϑx = ϑ(α,n) depends on x’s length
and observed fractions of ones. Then

∞∑
n=0

E(ϑ0 − ϑx)2
×≤ Kw(ϑ0) +

∞∑

k=1

2−∆(k)
√

∆(k).

5 Uniformly Distributed Weights

We are now able to state some positive results following from Theorem 10.

Theorem 11 Let Θ ⊂ [0, 1] be a countable class of parameters and ϑ0 ∈ Θ the true parameter. Assume
that there are constants a ≥ 1 and b ≥ 0 such that

min
{
Kw(ϑ) : ϑ ∈ [ϑ0 − 2−k, ϑ0 + 2−k] ∩Θ, ϑ 6= ϑ0

} ≥ k − b

a
(10)

holds for all k > aKw(ϑ0) + b. Then we have

∞∑
n=0

E(ϑ0 − ϑx)2
×≤ aKw(ϑ0) + b

×≤ Kw(ϑ0).

Proof. We have to show that ∞∑

k=1

2−∆(k)
√

∆(k)
×≤ aKw(ϑ0) + b,

then the assertion follows from Theorem 10. Let k1 = daKw(ϑ0) + b + 1e and k′ = k − k1. Then by
Lemma 17 (iii) and (10) we have

∞∑

k=1

2−∆(k)
√

∆(k) ≤
k1∑

k=1

1 +
∞∑

k=k1+1

2−Kw(ϑI
k)+Kw(ϑ0)

√
Kw(ϑI

k)−Kw(ϑ0)

≤ k1 + 2Kw(ϑ0)
∞∑

k=k1+1

2−
k−b

a

√
k − b

a

≤ k1 + 2Kw(ϑ0)
∞∑

k′=1

2−
k′+k1−b

a

√
k′ + k1 − b

a

≤ aKw(ϑ0) + b + 2 +
∞∑

k′=1

2−
k′
a

√
k′

a
+ Kw(ϑ0).

As already seen in the proof of Theorem 10,
√

k′
a + Kw(ϑ0) ≤

√
k′
a +

√
Kw(ϑ0),

∑
k′ 2

− k′
a

×≤ a, and
∑

k′ 2
− k′

a

√
k′
a

×≤ a hold. The latter is by Lemma 4 (i). This implies the assertion. 2

Letting j = k−b
a , (10) asserts that parameters ϑ with complexity Kw(ϑ) = j must have a minimum

distance of 2−ja−b from ϑ0. That is, if parameters with equal weights are (approximately) uniformly
distributed in the neighborhood of ϑ0, in the sense that they are not too close to each other, then fast
convergence holds. The next two results are special cases based on the set of all finite binary fractions,

QB∗ =
{
ϑ = 0.β1β2 . . . βn−11 : n ∈ N, βi ∈ B

} ∪ {
0, 1

}
.

If ϑ = 0.β1β2 . . . βn−11 ∈ QB∗ , its length is l(ϑ) = n. Moreover, there is a binary code β′1 . . . β′n′ for
n, having at most n′ ≤ blog2(n + 1)c bits. Then 0β′10β′2 . . . 0β′n′1β1 . . . βn−1 is a prefix-code for ϑ. For

10



completeness, we can define the codes for ϑ = 0, 1 to be 10 and 11, respectively. So we may define a
complexity measure on QB∗ by

Kw(0) = 2, Kw(1) = 2, and Kw(ϑ) = l(ϑ) + 2
⌊
log2

(
l(ϑ) + 1

)⌋
for ϑ 6= 0, 1. (11)

There are other similar simple prefix codes on QB∗ with the property Kw(ϑ) ≥ l(ϑ).

Corollary 12 Let Θ = QB∗ , ϑ0 ∈ Θ and Kw(ϑ) ≥ l(ϑ) for all ϑ ∈ Θ, and recall ϑx = ϑ(α,n). Then
∑

n E(ϑ0 − ϑx)2
×≤ Kw(ϑ0) holds.

Proof. Condition (10) holds with a = 1 and b = 0. 2

This is a special case of a uniform distribution of parameters with equal complexities. The next
corollary is more general, it proves fast convergence if the uniform distribution is distorted by some
function ϕ.

Corollary 13 Let ϕ : [0, 1] → [0, 1] be an injective, N times continuously differentiable function. Let
Θ = ϕ(QB∗), Kw

(
ϕ(t)

) ≥ l(t) for all t ∈ QB∗ , and ϑ0 = ϕ(t0) for a t0 ∈ QB∗ . Assume that there is
n ≤ N and ε > 0 such that

∣∣∣∣
dnϕ

dtn
(t)

∣∣∣∣ ≥ c > 0 for all t ∈ [t0 − ε, t0 + ε] and

dmϕ

dtm
(t0) = 0 for all 1 ≤ m < n.

Then we have
∑

E(ϑ0 − ϑx)2
×≤ nKw(ϑ0) + 2log2(n!)− 2log2c + nlog2ε

×≤ nKw(ϑ0).

Proof. Fix j > Kw(ϑ0), then

Kw
(
ϕ(t)

) ≥ j for all t ∈ [t0 − 2−j , t0 + 2−j ] ∩QB∗ . (12)

Moreover, for all t ∈ [t0 − 2−j , t0 + 2−j ], Taylor’s theorem asserts that

ϕ(t) = ϕ(t0) +
dnϕ
dtn (t̃)

n!
(t− t0)n (13)

for some t̃ in (t0, t) (or (t, t0) if t < t0). We request in addition 2−j ≤ ε, then |dnϕ
dtn | ≥ c by assumption.

Apply (13) to t = t0 + 2−j and t = t0 − 2−j and define k = djn + log2(n!) − log2ce in order to
obtain |ϕ(t0 + 2−j) − ϑ0| ≥ 2−k and |ϕ(t0 − 2−j) − ϑ0| ≥ 2−k. By injectivity of ϕ, we see that ϕ(t) /∈
[ϑ0 − 2−k, ϑ0 + 2−k] if t /∈ [t0 − 2−j , t0 + 2−j ]. Together with (12), this implies

Kw(ϑ) ≥ j ≥ k − log2(n!) + log2c− 1
n

for all ϑ ∈ [ϑ0 − 2−k, ϑ0 + 2−k] ∩Θ.

This is condition (10) with a = n and b = log2(n!)− log2c + 1. Finally, the assumption 2−j ≤ ε holds if
k ≥ k1 = nlog2ε + log2(n!)− log2c + 1. This gives an additional contribution to the error of at most k1.

2

Corollary 13 shows an implication of Theorem 10 for parameter identification: A class of models is
given by a set of parameters QB∗ and a mapping ϕ : QB∗ → Θ. The task is to identify the true parameter
t0 or its image ϑ0 = ϕ(t0). The injectivity of ϕ is not necessary for fast convergence, but it facilitates the
proof. The assumptions of Corollary 13 are satisfied if ϕ is for example a polynomial. In fact, it should
be possible to prove fast convergence of MDL for many common parameter identification problems. For
sets of parameters other than QB∗ , e.g. the set of all rational numbers Q, similar corollaries can easily be
proven.
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How large is the constant hidden in “
×≤”? When examining carefully the proof of Theorem 10, the

resulting constant is quite huge. This is mainly due to the frequent “wasting” of small constants. The
sharp bound is supposably small, perhaps 16. On the other hand, for the actual true expectation (as
opposed to its upper bound) and complexities as in (11), numerical simulations show

∑
n E(ϑ0 − ϑx)2 ≤

1
2Kw(ϑ0).

Finally, we state an implication which almost trivially follows from Theorem 10 but may be very
useful for practical purposes, e.g. for hypothesis testing (compare [Ris99]).

Corollary 14 Let Θ contain N elements, Kw(·) be any complexity function on Θ, and ϑ0 ∈ Θ. Then
we have ∞∑

n=1

E(ϑ0 − ϑx)2
×≤ N + Kw(ϑ0).

Proof.
∑

k 2−∆(k)
√

∆(k) ≤ N is obvious. 2

6 The Universal Case

We briefly discuss the important universal setup, where Kw(·) is (up to an additive constant) equal to
the prefix Kolmogorov complexity K (that is the length of the shortest self-delimiting program printing
ϑ on some universal Turing machine). Since

∑
k 2−K(k)

√
K(k) = ∞ no matter how late the sum starts

(otherwise there would be a shorter code for large k), Theorem 10 does not yield a meaningful bound.
This means in particular that it does not even imply our previous result, Theorem 1. But probably
the following strengthening of Theorem 10 holds under the same conditions, which then easily implies
Theorem 1 up to a constant.

Conjecture 15
∑

n E(ϑ0 − ϑx)2
×≤ K(ϑ0) +

∑
k 2−∆(k).

Then, take an incompressible finite binary fraction ϑ0 ∈ QB∗ , i.e. K(ϑ0)
+= l(ϑ0) + K

(
l(ϑ0)

)
. For

k > l(ϑ0), we can reconstruct ϑ0 and k from ϑI
k and l(ϑ0) by just truncating ϑI

k after l(ϑ0) bits. Thus

K(ϑI
k) + K

(
l(ϑ0)

) ×≥ K(ϑ0) + K
(
k|ϑ0,K(ϑ0)

)
holds. Using Conjecture 15, we obtain

∑
n

E(ϑ0 − ϑx)2
×≤ K(ϑ0) + 2K(l(ϑ0))

×≤ l(ϑ0)
(
log2l(ϑ0)

)2
, (14)

where the last inequality follows from the example coding given in (11).
So, under Conjecture 15, we obtain a bound which slightly exceeds the complexity K(ϑ0) if ϑ0 has

a certain structure. It is not obvious if the same holds for all computable ϑ0. In order to answer this
question positive, one could try to use something like [Gác83, Eq.(2.1)]. This statement implies that as

soon as K(k) ≥ K1 for all k ≥ k1, we have
∑

k≥k1
2−K(k)

×≤ 2−K1K1(log2K1)2. It is possible to prove an
analogous result for ϑI

k instead of k, however we have not found an appropriate coding that does without
knowing ϑ0. Since the resulting bound is exponential in the code length, we therefore have not gained
anything.

Another problem concerns the size of the multiplicative constant that is hidden in the upper bound.
Unlike in the case of uniformly distributed weights, it is now of exponential size, i.e. 2O(1). This is no
artifact of the proof, as the following example shows.

Example 16 Let U be some universal Turing machine. We construct a second universal Turing machine
U ′ from U as follows: Let N ≥ 1. If the input of U ′ is 1Np, where 1N is the string consisting of N ones and
p is some program, then U will be executed on p. If the input of U ′ is 0N , then U ′ outputs 1

2 . Otherwise,
if the input of U ′ is x with x ∈ BN \ {0N , 1N}, then U ′ outputs 1

2 + 2−x−1. For ϑ0 = 1
2 , the conditions

of Corollary 6 are satisfied (where the complexity is relative to U ′), thus
∑

n E(ϑx − ϑ0)2
×≥ 2N .
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Can this also happen if the underlying universal Turing machine is not “strange” in some sense, like
U ′, but “natural”? Again this is not obvious. One would have to define first an appropriate notion of a
“natural” universal Turing machine which rules out cases like U ′. If N is of reasonable size, then one can
even argue that U ′ is natural in the sense that its compiler constant relative to U is small.

There is a relation to the class of all deterministic (generally non-i.i.d.) measures. Then MDL predicts
the next symbol just according to the monotone complexity Km, see [Hut03c]. According to [Hut03c,
Theorem 5], 2−Km is very close to the universal semimeasure M [ZL70, Lev73]. Then the total prediction
error (which is defined slightly differently in this case) can be shown to be bounded by 2O(1)Km(x<∞)3

[Hut04]. The similarity to the (unproven) bound (14) “huge constant × polynomial” for the universal
Bernoulli case is evident.

7 Discussion and Conclusions

We have discovered the fact that the instantaneous and the cumulative loss bounds can be incompatible.
On the one hand, the cumulative loss for MDL predictions may be exponential, i.e. 2Kw(ϑ0). Thus
it implies almost sure convergence at a slow speed, even for arbitrary discrete model classes [PH04a].
On the other hand, the instantaneous loss is always of order 1

nKw(ϑ0), implying fast convergence in
probability and a cumulative loss bound of Kw(ϑ0) ln n. Similar logarithmic loss bounds can be found in
the literature for continuous model classes [Ris96].

A different approach to assess convergence speed is presented in [BC91]. There in index of resolvability
is introduced, which can be interpreted as the difference of the expected MDL code length and the
expected code length under the true model. For discrete model classes, they show that the index of
resolvability converges to zero as 1

nKw(ϑ0) [BC91, Equation (6.2)]. Moreover, they give a convergence
of the predictive distributions in terms of the Hellinger distance [BC91, Theorem 4]. This implies a
cumulative (Hellinger) loss bound of Kw(ϑ0) ln n and therefore fast convergence in probability.

If the prior weights are arranged nicely, we have proven a small finite loss bound Kw(ϑ0) for MDL
(Theorem 10). If parameters of equal complexity are uniformly distributed or not too strongly distorted
(Theorem 11 and Corollaries), then the error is within a small multiplicative constant of the complexity
Kw(ϑ0). This may be applied e.g. for the case of parameter identification (Corollary 13). A similar
result holds if Θ is finite and contains only few parameters (Corollary 14), which may be e.g. satisfied for
hypothesis testing. In these cases and many others, one can interpret the conditions for fast convergence
as the presence of prior knowledge. One can show that if a predictor converges to the correct model,
then it performs also well under arbitrarily chosen bounded loss-functions [Hut03a, Theorem 4]. From
an information theoretic viewpoint one may interpret the conditions for a small bound in Theorem 10 as
“good codes”.

We have proven our positive results only for Bernoulli classes, where it would be desirable to cover
more general i.i.d. classes. At least for finite alphabet, our assertions are likely to generalize, as this is
the analog to Theorem 1 which also holds for arbitrary finite alphabet. Proving this seems even more
technical than Theorem 10 and therefore not very interesting. (The interval construction has to be
replaced by a sequence of nested sets in this case. Compare also the proof of the main result in [Ris96].)
For small alphabets of size A, meaningful bounds can still be obtained by chaining our bounds A − 1
times.

It seems more interesting to ask if our results can be conditionalized with respect to inputs. That is,
in each time step, we are given an input and have to predict a label. This is a standard classification
problem, for example a binary classification in the Bernoulli case. While it is straightforward to show
that Theorem 1 still holds in this setup [PH05], it is not clear in which way the present proofs can be
adapted. We leave this interesting question open.

We conclude with another open question. In abstract terms, we have proven a convergence result
for the Bernoulli case by mainly exploiting the geometry of the space of distributions. This has been
quite easy in principle, since for Bernoulli this space is just the unit interval (for i.i.d it is the space of
probability vectors). It is not at all obvious if this approach can be transferred to general (computable)
measures.
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A Proof of Theorem 10

The proof of Theorem 10 requires some preparations. We start by showing assertions on the interval
construction from Definition 8.

Lemma 17 The interval construction has the following properties.

(i) |Jk| = 2−k,

(ii) d(ϑ0, Ik) ≥ 2−k−2,

(iii) max
ϑ∈Ik

|ϑ− ϑ0| ≤ 2−k+1,

(iv) d(Jk+5, Ik) ≥ 15 · 2−k−6.

By d(·, ·) we mean the Euclidean distance: d(ϑ̃, I) = min{|ϑ̃− ϑ| : ϑ ∈ I} and d(J, I) = min{d(ϑ̃, I) :
ϑ̃ ∈ J}.
Proof. The first three equations are fairly obvious. The last estimate can be justified as follows. Assume
that kth step of the interval construction is a c-step, the same argument applies if it is an l-step or an r-step.
Let c be the center of Jk and assume without loss of generality ϑ0 ≤ c. Define ϑI = max{ϑ ∈ Ik : ϑ < c}
and ϑJ = min{ϑ ∈ Jk+5} (recall the general assumption ϑ ∈ Θ for all ϑ that occur, i.e. ϑI , ϑJ ∈ Θ).
Then ϑI = c−2−k−1 and ϑJ ≥ c−2−k−2−2−k−6, where equality holds if ϑ0 = c−2−k−2. Consequently,
ϑJ − ϑI ≥ 2−k−1 − 2−k−2 − 2−k−6 = 15 · 2−k−6. This establishes the claim. 2

Next we turn to the minimum complexity elements in the intervals.

Proposition 18 The following assertions hold for all k ≥ 1.

(i) Kw(ϑJ
k ) ≤ Kw(ϑ0),

(ii) Kw(ϑJ
k+6) ≥ Kw(ϑJ

k ),

(iii) Kw(ϑI
k+1) ≥ Kw(ϑJ

k ),

(iv)
∞∑

k=1

max
{
Kw(ϑJ

k+5)−Kw(ϑI
k), 0

} ≤ 6Kw(ϑ0),

Proof. The first three inequalities follow from ϑ0 ∈ Jk and Jk+6, Ik+1 ⊂ Jk. This implies

m∑

j=0

max
{
Kw(ϑJ

6j+6)−Kw(ϑI
6j+1), 0

}

≤ max
{
Kw(ϑJ

6 )−Kw(ϑI
1), 0

}
+

m∑

j=1

max
{
Kw(ϑJ

6j+6)−Kw(ϑJ
6j), 0

}

≤ Kw(ϑJ
6 ) +

m∑

j=1

[
Kw(ϑJ

6j+6)−Kw(ϑJ
6j)

]
= Kw(ϑJ

6m+6) ≤ Kw(ϑ0)
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for all m ≥ 0. By the same argument, we have
m∑

j=0

max
{
Kw(ϑJ

6j+i+5)−Kw(ϑI
6j+i), 0

} ≤ Kw(ϑ0)

for all 1 ≤ i ≤ 6 (use (iii) in the first inequality, (ii) in the second, and (i) in the last). This implies
(iv). Clearly, we could everywhere substitute 5 by some constant k′ and 6 by k′+1, but we will need the
assertion only for the special case. 2

Consider the case that ϑ0 is located close to the boundary of [0, 1]. Then the interval construction
involves for long time only l-steps, if we assume without loss of generality ϑ0 ≤ 1

2 . We will need to treat
this case separately, since the estimates for the general situation work only as soon as at least one c-step
has taken place. Precisely, the interval construction consists only of l-steps as long as

ϑ0 < 3
42−k, i.e. k < −log2ϑ0 + log2(

3
4 ).

We therefore define
k0 = max

{
0, b−log2ϑ0 + log2

3
4c

}
(15)

and observe that the (k0 + 1)st step is the first c-step. We are now prepared to give the main proof.
Proof of Theorem 10. Assume ϑ0 ∈ Θ \ {0, 1}, the case ϑ0 ∈ {0, 1} is handled like Case 1a below

and will be left to the reader.
Before we start, we will show that the contribution of ϑ = 1 to the total error is bounded by 1

4 . This is
immediate, since 1 cannot become the maximizing element as soon as x 6= 1n. Therefore the contribution
is bounded by

∞∑
n=1

(1− ϑ0)2p(1n) = (1− ϑ0)2
∞∑

n=1

ϑn
0 = ϑ0(1− ϑ0) ≤ 1

4 . (16)

The same is true for the contribution of ϑ = 0.
As already mentioned, we first estimate the contributions of ϑ ∈ Ik for small k if the true parameter

ϑ0 is located close to the boundary. To this aim, we assume ϑ0 ≤ 1
2 without loss of generality. We know

that the interval construction involves only l-steps as long as k ≤ k0, see (15). The very last five of these
k still require a particular treatment, so we start with k ≤ k0 − 5 and α is far from ϑ0. (If k0 − 5 < 1,
then there is nothing to estimate.)

Case 1a: k ≤ k0 − 5, j ≤ k1, α ∈ Ij = [2−j , 2−j+1), where k1 = k + dlog2(k0 − k − 3)e + 2.
The probability of α does not exceed p(2−j). The squared error may clearly be upper bounded by
2−2k+2 = O(2−2k). For n < 2j , no such fractions can occur, so we may consider only n = 2j +n′, n′ ≥ 0.
Finally, there are at most dn · 2−j−1e = O(2−jn) fractions α ∈ Ij . This follows from the general fact that
if I ⊂ (0, 1) is any half-open or open interval of length at most l, then at most dnle observed fractions
can be located in I.

We now derive an estimate for the probability which is

p(α|n) ≤ p(2−j |n)
×≤ n−

1
2 2

j
2 exp

[− n ·D(2−j‖ϑ0)
]

according to Lemma 3. Then, Lemma 2 (v) implies

exp
[− nD(2−j‖ϑ0)

] ≤ exp
[− (2j + n′)D(2−j‖2−k0)

] ≤ exp
[
n′2−j(k0 − j − 1)

]
.

Taking into account the upper bound for the squared error O(2−2k) and the maximum number of fractions
O(2−jn), the contribution C(k, j) can be upper bounded by

C(k, j)
×≤

∞∑

n=2j

p(2−j |n)2−2k · 2−jn
×≤

∞∑

n′=0

2−2k− j
2
√

n · exp
[
n′2−j(k0 − j − 1)

]
.

Decompose the right hand side using
√

n ≤
√

2j +
√

n′. Then we have
∞∑

n′=0

2−2k− j
2
√

2j · exp
[
n′2−j(k0 − j − 1)

] ×≤ 2−2k+j(k0 − j − 1)−1 and

∞∑

n′=0

2−2k− j
2
√

n′ · exp
[
n′2−j(k0 − j − 1)

] ×≤ 2−2k+j(k0 − j − 1)−
3
2

16



where the first inequality is straightforward and the second holds by Lemma 4 (i). Letting k′ = k0−k−3,
we have k′ ≥ 2 and

(k0 − j − 1)−
3
2 ≤ (k0 − j − 1)−1 ≤ (k0 − k1 − 1)−1 =

(
k′ − dlog2k

′e)−1
.

Thus we may conclude

C(k, ≤k1) :=
k1∑

j=1

C(k, j)
×≤

k+dlog2k′e+2∑

j=1

2−2k+j

k′ − dlog2k
′e (17)

×≤ 2−k k′

k′ − dlog2k
′e ≤ 2−k

(
1 +

dlog2k
′e

k′ − dlog2k
′e

)
≤ 3 · 2−k

(the last inequality is sharp for k′ = 3).
Case 1b: k ≤ k0− 5, α ≤ 2−k1 (recall k1 = k + dlog2(k0− k− 3)e+ 2). This means that we consider

α close to ϑ0. By (3) we know that ϑ0 beats ϑ ∈ Ik if

n ·Dα
(
ϑ0‖ϑ

) ≥ ln 2
(
Kw(ϑ0)−Kw(ϑ)

)

holds. This happens certainly for n ≥ N1 := ln 2·Kw(ϑ0)·2k+4, since Lemma 20 below asserts Dα
(
ϑ0‖ϑ

) ≥
2−2−4. Thus only smaller n can contribute. The total probability of all α ≤ 2−k1 is clearly bounded by
means of ∑

α

p(α|n) ≤ 1.

The jump size, i.e. the squared error, is again O(2−2k). Hence the total contribution caused in Ik by
α ≤ 2−k1 can thus be upper bounded by

C(k, >k1)
×≤

N1∑
n=1

2−2k
×≤ Kw(ϑ0)2−k,

where C(k, > k1) is the obvious abbreviation for this contribution. Together with (17) this implies

C(k)
×≤ Kw(ϑ0)2−k and therefore

k0−5∑

k=1

C(k)
×≤ Kw(ϑ0). (18)

This finishes the estimates for k ≤ k0 − 5. We now will consider the indices

k0 − 4 ≤ k ≤ k0

and show that the contributions caused by these ϑ ∈ Ik is at most O
(
Kw(ϑ0)

)
.

Case 2a: k0−4 ≤ k ≤ k0, j ≤ k +5, α ∈ Ij . Assume that ϑ ∈ Ik starts contributing only for n > n0.
This is not relevant here, and we will set n0 = 0 for the moment, but then we can reuse the following
computations later. Consequently we have n = n0 + n′, and from Lemma 3 we obtain

p(α|n)
×≤ n−

1
2 2

k0
2 exp

[− (n0 + n′) ·D(α‖ϑ0)
]
. (19)

Lemma 17 implies d(α, ϑ0) ≥ 2−j−2 and thus

D(α‖ϑ0) ≥ 2−2j−4

2 · 2−k0
= 2−2j−5+k0 . (20)

according to Lemma 2 (iii). Therefore we obtain

exp
[− (n0 + n′) ·D(α‖ϑ0)

] ≤ exp
[− n0 ·D(α‖ϑ0)

]
exp

[− n′2−2j−5+k0
]
. (21)
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Again the maximum square error is O(2−2k), the maximum number of fractions is O(n2−j). Therefore

C(k, j)
×≤ exp

[− n0D(α‖ϑ0)
] ∞∑

n′=1

2−2k−j+
k0
2

√
n0 + n′ exp

[− n′2−2j−5+k0
]
. (22)

We have
∞∑

n′=1

2−2k−j+
k0
2 exp

[− n′2−2j−5+k0
] ×≤ 2−2k+j− k0

2 ≤ 2−2k+j and (23)

∞∑

n′=1

2−2k−j+
k0
2
√

n′ exp
[− n′2−2j−5+k0

] ×≤ 2−2k+2j−k0 ≤ 2−2k+2j , (24)

where the first inequality is straightforward and the second follows from Lemma 4 (i). Observe
∑k+5

j=1 2j
×≤

2k,
∑k+5

j=1 22j
×≤ 22k, and

√
n ≤ √

n0 +
√

n′ in order to obtain

C(k, ≤k + 5)
×≤ exp

[− n0D(α‖ϑ0)
]
(1 + 2−k√n0). (25)

The right hand side depends not only on k and n0, but formally also on α and even on ϑ, since n0 itself
depends on α and ϑ. Recall that for this case we have agreed on n0 = 0, thus C(k, ≤k + 5) = O(1).

Case 2b: k0 − 4 ≤ k ≤ k0, α ∈ Jk+5. As before, we will argue that then ϑ ∈ Ik can be the
maximizing element only for small n. Namely, ϑ0 beats ϑ if n · Dα

(
ϑ0‖ϑ

) ≥ ln 2
(
Kw(ϑ0) − Kw(ϑ)

)
holds. Since Dα

(
ϑ0‖ϑ

) ≥ 2−2k−5 as stated in Lemma 20 below, this happens certainly for n ≥ N1 :=
ln 2 ·Kw(ϑ0) · 22k+5, thus only smaller n can contribute. Note that in order to apply Lemma 20, we need
k ≥ k0 − 4. Again the total probability of all α is at most 1 and the jump size is O(2−2k), hence

C(k, >k + 5)
×≤

N1∑
n=1

2−2k
×≤ Kw(ϑ0).

Together with C(k, ≤k + 5) = O(1) this implies C(k)
×≤ Kw(ϑ0) and thus

k0∑

k=k0−4

C(k)
×≤ Kw(ϑ0). (26)

This completes the estimate for the initial l-steps. We now proceed with the main part of the proof.
At this point, we drop the general assumption ϑ0 ≤ 1

2 , so that we can exploit the symmetry otherwise if
convenient.

Case 3a: k ≥ k0 + 1, j ≤ k + 5, α ∈ Ij . For this case, we may repeat the computations (19)-(25),
arriving at

C(k, ≤k + 5)
×≤ exp

[− n0D(α‖ϑ0)
]
(1 + 2−k√n0). (27)

The right hand side of (27) depends on k and n0 and formally also on α and ϑ. We now come to the
crucial point of this proof:

For most k, n0 is considerably larger than 0.

That is, for most k, ϑ ∈ Ik starts contributing late, i.e. for large n. This will cause the right hand side of
(27) to be small.

We know that ϑ0 beats ϑ ∈ Ik for any α ∈ [0, 1] as long as

nDα(ϑ‖ϑ0) ≤ ln 2
(
Kw(ϑ)−Kw(ϑ0)

)
(28)

holds. We are interested in for which n this must happen regardless of α, so assume that α is close enough
to ϑ to make Dα(ϑ‖ϑ0) > 0. Since Kw(ϑ) ≥ Kw(ϑI

k), we see that (28) holds if

n ≤ n0(k, α, ϑ) :=
ln 2 ·∆(k)
Dα(ϑ‖ϑ0)

.
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We show the following two relations:

exp
[− n0(k, α, ϑ)D(α‖ϑ0)

] ≤ 2−∆(k) and (29)

exp
[− n0(k, α, ϑ)D(α‖ϑ0)

]
2−k

√
n0(k, α, ϑ)

×≤ 2−∆(k)
√

∆(k), (30)

regardless of α and ϑ. Since D(α‖ϑ0) ≥ D(α‖ϑ0)−D(α‖ϑ) = Dα(ϑ‖ϑ0), (29) is immediate. In order to
verify (30), we observe that

D(α‖ϑ0) ≥ 2−2j−5+k0 ≥ 2−2k−15+k0 ≥ 2−2k−15

holds as in (20). So for those α and ϑ having

η :=
2−2k−15

Dα(ϑ‖ϑJ
k+5)

≥ 1, (31)

we obtain

exp
[− n0(k, α, ϑ)D(α‖ϑ0)

]
2−k

√
n0(k, α, ϑ) ≤ 2−∆(k)η2−k

√
ln 2 ·∆(k)η22k+15

×≤ 2−∆(k)
√

∆(k).

since η ≥ 1. If on the other hand (31) is not valid, then Dα(ϑ‖ϑJ
k+5)

×≤ 2−2k holds, which together with
D(α‖ϑ0) ≥ Dα(ϑ‖ϑ0) again implies (30).

So we conclude that the dependence on α and ϑ of the right hand side of (27) is indeed only a formal

one. So we obtain C(k, ≤k + 5)
×≤ 2−∆(k)

√
∆(k), hence

∞∑

k=k0+1

C(k, ≤k + 5)
×≤

∞∑

k=1

2−∆(k)
√

∆(k). (32)

Case 3b: k ≥ k0 + 1, α ∈ Jk+5. We know that ϑJ
k+5 beats ϑ if

n ≥ ln 2 ·max
{
Kw(ϑJ

k+5)−Kw(ϑ), 0
} · 22k+5,

since Dα
(
ϑJ

k+5‖ϑ
) ≥ 2−2k−5 according to Lemma 20. Since Kw(ϑ) ≥ Kw(ϑI

k), this happens certainly for
n ≥ N1 := ln 2 ·max

{
Kw(ϑJ

k+5) −Kw(ϑI
k), 0

} · 22k+5. Again the total probability of all α is at most 1
and the jump size is O(2−2k). Therefore we have

C(k, >k + 5)
×≤

N1∑
n=1

2−2k
×≤ max

{
Kw(ϑJ

k+5)−Kw(ϑI
k), 0

}
.

Using Proposition 18 (iv), we conclude
∞∑

k=k0+1

C(k, >k + 5)
×≤ Kw(ϑ0). (33)

Combining all estimates for C(k), namely (18), (26), (32) and (33), the assertion follows. 2

Lemma 19 Let 1 ≤ k ≤ k0 − 5, k1 = k + dlog2(k0 − k − 3)e + 2, ϑ ≥ 2−k, and α ≤ 2−k1 . Then
Dα(ϑ0‖ϑ) ≥ 2−k−4 holds.

Proof. By Lemma 2 (iii) and (vii), we have

D(α‖ϑ) ≥ D(2−k1‖2−k) ≥
(
2−k − 2−k1

)2

2 · 2k(1− 2k)

≥ 2−k−1
(
1− 2−dlog2(k0−k−3)e−2

) ≥ 7 · 2−k−4 and

D(α‖ϑ0) ≤ D(2−k1‖2−k0−1) ≤ 2−k1(k0 + 1− k1)

≤ 2−k−2 k0 − k − dlog2(k0 − k − 3)e − 1
k0 − k − 3

≤ 6 · 2−k−4
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(the last inequality is sharp for k = k0 − 5). This implies Dα(ϑ0‖ϑ) = D(α‖ϑ)−D(α‖ϑ0) ≥ 2−k−4. 2

Lemma 20 Let k ≥ k0 − 4, ϑ ∈ Ik, and α, ϑ̃ ∈ Jk+5. Then we have Dα(ϑ̃‖ϑ) ≥ 2−2k−5.

Proof. Assume ϑ ≤ 1
2 without loss of generality. Moreover, we will only present the case ϑ̃ ≤ ϑ ≤ 1

4 , the
other cases are similar and simpler. From Lemma 2 (iii) and (iv) and Lemma 17 we know that

D(α‖ϑ) ≥ (α− ϑ)2

2ϑ(1− ϑ)
≥ 1522−2k−12

2ϑ
and

D(α‖ϑ̃) ≤ 3(α− ϑ̃)2

2α(1− α)
≤ 4 · 3 · 2−2k−14

3 · 2α
≤ 2 · 128 · 2−2k−14

ϑ
.

Note that in order to apply Lemma 2 (iv) in the second line we need to know that for k + 5 a c-step has
already taken place, and the last estimate follows from ϑ ≤ 128α which is a consequence of k ≥ k0 − 4.
Now the assertion follows from Dα(ϑ̃‖ϑ) = D(α‖ϑ)−D(α‖ϑ̃) ≥ 2−2k−6

(
1522−7 − 1

)
ϑ−1 ≥ 2−2k−5. 2
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