Molecular phylogenetics of soricid shrews (Mammalia) based on mitochondrial cytochrome b gene sequences: with special reference to the Soricinae

Journal of Zoology, 270(1), 177-191
https://doi.org/10.1111/j.1469-7998.2006.00125.x

2006-09

http://hdl.handle.net/2115/14663

For full bibliographic citation, please refer to the version available at www.blackwell-synergy.com.; This is the pre-peer-reviewed version of the following article: Journal of Zoology. Volume 270, Issue 1, pages 177–191, September 2006, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/j.1469-7998.2006.00125.x/full

article (author version)

There are other files related to this item in HUSCAP. Check the above URL.

JZ2006-270-1.pdf (本文)
Molecular phylogenetics of soricid shrews (Mammalia) based on mitochondrial cytochrome b gene sequences: with special reference to the Soricinae

Satoshi D. Ohdachi¹*, Masami Hasegawa², Masahiro A. Iwasa³, Peter Vogel⁴, Tatsuo Oshida⁵, Liang-Kong Lin⁶ and Hisashi Abe⁷

¹Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
²Institute of Statistical Mathematics, Minato-ku, Tokyo 106-8569, Japan
³Department of Wildlife Science, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa 252-8510, Japan
⁴Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
⁵Laboratory of Wildlife Ecology, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
⁶Laboratory of Wildlife Ecology, Department of Life Science, Tunghai University, Taichung, Taiwan 407, R.O.C.
⁷Katsuraoka 26-17, Otaru 047-0264, Japan

Short title: Molecular phylogenetics of Soricidae

* All correspondence to S. D. Ohdachi.

E-mail: ohd@pop.lowtem.hokudai.ac.jp
Abstract

Molecular phylogeny of soricid shrews (Soricidae, Eulipotyphla, Mammalia) was inferred by the maximum likelihood method, based on 1,140 bp mitochondrial cytochrome b gene (cytb) sequences. All 13 genera of extant Soricinae and two genera of Crocidurinae and were included in the analysis. Anourosorex was phylogenetically distant from both the main group of Soricinae and Crocidurinae in the present analysis, whereas the latter two formed a monophyletic group. Thus, it could not be determined to which subfamily Anourosorex should belong, Soricinae or Crocidurinae. We suggest that Soricinae (excluding Anourosorex) should be divided into four tribes (Neomyini, Notiosoricini, Soricini, and Blarinini). However, branching orders among tribes of Soricinae and those among genera of Neomyini could not be determined due to insufficient phylogenetic information of the cytb sequences. For water shrews of Neomyini (Chimarrogale, Nectogale, and Neomys), monophyly of Neomys and the Chimarrogale-Nectogale group could not be certified, which implies the possibility of multiple origins for the semi-aquatic mode of living among taxa within Neomyini.

Episoriculus may contain several separate genera. Blarinella was included in Blarinini.
not Soricini, based on the cytb sequences, but the confidence was rather low.

Furthermore, some specific problems of taxonomy were resolved in the present analysis.

In general, the cytb gene nucleotide sequence had enough information to resolve

phylogenetic relationships at the species level, but seems to be unreliable to determine

the phylogenetic relationships among higher level taxa within Soricidae.

Key words: Soricinae, Crocidurinae, shrew, taxonomy, phylogeny
INTRODUCTION

Soricidae (shrews) contains 312 species and is the second or third largest family in class Mammalia (1,326 species have been listed for Muridae and 318 species for Vespertilionidae), thus it contains about 15% of mammalian species (Wilson & Reeder, 1993). Often, they are considered to be a “primitive” eutherian group and have plesiomorphic characters (e.g., Feldhamer et al., 1999; Vaughan, Ryan & Czaplewski, 2000). Their habitats, however, vary greatly from desert to wetland (even a semi-aquatic habitat), tropical rain forest to arctic tundra, ground surface to underground burrow, and lowland to highland (e.g., Abe, 1983; Churchfield, 1990). Extant Soricidae includes two subfamilies, Soricinae and Crocidurinae (Reumer, 1987; Hutterer, 1993; Wolsan & Hutterer, 1998). Soricine shrews are distributed mainly in the Holarctic region and include about 110 species, whereas crocidurine shrews are diversified primarily in Africa and southern Asia, consisting of about 200 species. At least, 11 and 12 genera are known for Soricinae and Crocidurinae, respectively (Repenning, 1967; Wolsan & Hutterer, 1998).
Phylogenetic investigations of Soricidae at higher taxonomic levels were conducted based mainly on cranial and dental morphology of fossil and/or extant specimens and several phylogenetic hypotheses among tribes and genera were proposed (e.g., Repenning, 1967; Reumer, 1987, 1989). In the last decades, molecular biological techniques have brought deep insights into phylogenetic investigations of many organisms. In Soricidae, some molecular phylogenetic investigations also were conducted within several specific groups, but not for the whole family.

In Crocidurinae, several phylogenetic hypotheses were proposed based on morphology of African (Heim de Balsac & Lamotte, 1957; Butler, Thorpe & Greenwood, 1989; McLellan, 1994) and Asian species (Heaney & Ruedi, 1994). Maddalena & Ruedi (1994) discussed karyological evolution between African and Palearctic *Crocidura* species. Also, phylogenetic relationships of *Crocidura* were explained by use of molecular techniques for some species in Africa and East Asia (Maddalena, 1989; Motokawa *et al*., 2000; Han *et al*., 2002; Ohdachi *et al*., 2004).

Quérouil *et al*., (2001) analyzed the phylogeny of all genera of Crocidurinae by use of 16S rRNA sequences and proposed a hypothesis of interrelationships among African
and Eurasian crocidurine shrews.

In Soricinae, George & Sarich (1994) discussed phylogenetic relationships among some tribes based on biochemical data (see also, George, 1986). Phylogeny of species of Sorex has been well investigated. Phylogenetic hypotheses for some species were proposed based on karyological data (e.g., Dannelid, 1991; Ivanitskaya, 1994; Zima, Lukáčova & Macholán, 1998) and molecular data (e.g., George, 1988; Ohdachi et al., 1997, 2001; Fumagalli et al., 1999; Demboski & Cook, 2001, 2003). In contrast, information pertaining to the phylogeny of non-Sorex species of Soricinae is scarce. Ohdachi et al. (1997) examined several non-Sorex species of soricine shrews in Eurasia and Brant & Ortí (2002) studied North American Blarina and Cryptotis species. However, phylogenetic information for other non-Sorex genera, such as Blarinella, Nectogale, and Megasorex, has not been reported yet. As a result, molecular phylogenetics at higher levels of taxonomy within Soricidae is not well understood.

In addition, there is disagreement regarding the subfamily rank of Anourosorex. Anourosorex was placed in Crocidurinae by Simpson (1945) whereas
Reumer (1984) placed it in Soricinae. This disagreement mainly is due to the difference in interpreting morphology, thus molecular data might resolve this taxonomic problem.

Herein, we estimated phylogenetic relationships among all genera of Soricinae, two genera of Crocidurinae, and *Anourosorex* based on full sequences (1,140 bp) of the mitochondrial cytochrome *b* gene (*cytb*). Based on the phylogenetic trees obtained, we determined the taxonomic status of some species and proposed some hypotheses for the systematics of higher level taxonomy in Soricidae.

MATERIALS AND METHODS

Samples of DNA analysis

Full nucleotide sequences (1,140 bp) of mitochondrial DNA (mtDNA) *cytb* gene of 124 individuals of soricid shrews (Soricidae, Eulipotyphla) were used for phylogenetic analyses (Appendix). Two individuals each from *Mogera wogura* and *Talpa europaea* (Talpidae, Eulipotyphla) were used as an outgroup to Soricidae, because Talpidae is closely related to Soricidae (Murphy *et al.*, 2001a, b; Douady *et al.*, 2002).
Among 126 individuals (124 shrews + two moles), DNA sequences of 49 individuals were cited from DNA databases (DDBJ/EMBL/GenBank); those of the remaining 77 were determined in the present study (Appendix). For the 77 samples that were sequenced for this research, collection numbers or specimen codes were explicitly indicated in the DNA databases.

Fundamentally, we followed the nomenclature system for the order Eulipotyphla (= a part of the order Insectivora according to Douady et al., 2002, or Soricomorpha) as presented by Hutterer (1993) and Wolsan & Hutterer (1998).

Differences are: following Repenning (1967), we treated *Soriculus*, *Episoriculus*, and *Chodsigoa* as three separate genera although Hutterer (1993) treated them as subgenera within the genus *Soriculus* (Table 1). In addition, *Chodsigoa sodalis* and *Anourosorex yamashinai* (Motokawa et al., 1997, 2004, respectively) as well as *Crocidura tadae* (ssp. *kurodai*), *C. shantungensis*, and *C. watasei* (Motokawa, 1999; Fang & Lee, 2002) were regarded as valid species. We used subspecies names of *Episoriculus caudatus caudatus* and *E. c. soluensis* in Nepal tentatively according to Abe (1977), although he originally used the genus *Soriculus* instead of *Episoriculus*. For the other species of *Soriculus* and
Episoriculus in Nepal, we followed the taxonomic treatment by Hoffmann (1985), although he treated the genus Episoriculus as a subgenus of Soriculus. We followed Lunde & Musser (2002) and Lunde, Musser & Son (2003) for taxonomy of soricid shrews in Vietnam and Cheng, Chengchien & Chang (2000) and Ci (1998) for shrews in Taiwan, although we used the names Anourosorex yamashinai, Episoriculus fumidus, Chodsigoa sodalis, and Crocidura tadae kurodai instead of A. squamipes yamashinai, Soriculus fumidus, S. sodalis and C. kurodai, respectively. Sorex antinorii was regarded as an independent species according to Brünner et al. (2002). As a result, 76 species (78 subspecies) of Soricidae and two species of moles were used in analyses (Appendix).

DNA analysis

Total DNA of the 77 individuals whose nucleotide sequences were determined herein were extracted by the phenol/proteinase K/sodium dodecyl sulphate method (Sambrook, Fritsch & Maniatis, 1989) or by use of the DNeasy Tissue Kit (Qiagen) from liver or muscle tissues preserved in 70-100% ethanol (ca. 27 mm³) or a dried foot or muscles. The region of the mtDNA cytb gene (1,140 bases) was amplified by
polymerase chain reaction (PCR) using rTaq DNA polymerase (Takara Bio), KOD-plus DNA polymerase (Toyobo), or AmpliTaq (ABI). When a single PCR could not amplify a region that included the whole region of the cytb gene, several PCRs were conducted until the complete 1,140-bp sequence was obtained. Primer sets for PCR varied depending on species and conditions of samples (Table 2, Appendix). PCR conditions also varied depending on situation; annealing temperature varied from 49 to 55°C and PCR cycles from 35 to 40 cycles. After the PCR products were purified by the PEG (polyethylene glycol) precipitation method, the purified products were directly sequenced using BigDye Terminator kit ver. 3.1 (ABI) by an autosequencer (ABI PRISM 310 or 3100 Avant Genetic Analyzer). When needed internal primers were used and both forward and reverse sequencing was conducted (Ohdachi et al., 2001).

Sequences obtained herein were registered in DNA databases (DDBJ/EMBL/GenBank).

Phylogenetic analysis

Three steps of the phylogenetic analysis were conducted by use of 1,140 bp sequences of the mtDNA cytb gene. First, a preliminary neighbor joining (NJ) tree was
constructed by MEGA3 (Kumar, Tamura & Nei, 2004) using all sequences (Appendix). Kimura’s two-parameter (Kimura, 1980) option was chosen and the bootstrap value was calculated by 10,000 replications. The two mole species were used as an outgroup. More than two individuals were sequenced from a species or subspecies in the present study, unless only a single sample was available. However, to save calculation time for maximum likelihood (ML) analysis, 88 sequences were arbitrarily selected by reviewing the preliminary NJ tree obtained.

Second, a ML tree was constructed for the 88 sequences by the quartet-puzzling method using TREE-PUZZLE ver. 5.2 (Strimmer & von Haeseler, 1996). All codon positions were used for calculations. Confidence of node was evaluated by quartette supporting values (Strimmer & von Haeseler, 1996). Finally, ambiguous points in the ML tree obtained from the 88 sequences were reanalyzed separately by constructing ML trees using individuals of particular interest by TREE-PUZZLE ver. 5.2, NucML program in MOLPHY ver. 2.3 (Adachi & Hasegawa, 1996), or BaseML program in PAML ver. 3.1 (Yang, 1997). The substitution models were selected by the hierarchical likelihood ratio tests of MODELTEST ver. 3.06
(Posada & Crandall, 1998) with PAUP* ver. 4.0b10 (Swofford, 2002). Gamma distribution categories were always eight (Yang, 1996) when gamma distribution for site-heterogeneity was included in the substitution model. Outgroups were carefully selected for each analysis, referring to the remarks by Graham, Olmstead & Barrett (2002) and Van den Bussche & Hooper (2004).

RESULTS

General maximum likelihood tree

All samples were successfully sequenced for 1,140 bases of mtDNA cytb gene. A preliminary NJ tree (Fig. 1) suggested that sequences revealed herein were authentic. Reviewing the NJ tree (Fig. 1), we selected 86 sequences from 124 sequences in the preliminary analysis. The general time-reversible substitution model (Yang, 1994) with gamma distribution + invariable sites (GTR+G+I) were chosen by the hierarchical likelihood ratio test of MODELTEST. Rate matrix R of the GTR model was as follows:

\[R_{A-C} = 0.2162, R_{A-G} = 11.0571, R_{A-T} = 0.3886, R_{C-G} = 0.7556, R_{C-T} = 6.4033, R_{G-T} = 1.0000. \]

Using the selected sequences, a ML tree was obtained (Fig.
2) by TREE-PUZZLE. The fraction of invariable sites estimated from the data set was 0.49 (±0.02 S.E.), and the gamma distribution parameter alpha was 0.80 (±0.06 S.E.). Unresolved quartets were 5.5%. Total rate heterogeneity was 0.77 (±0.03 S.E.). Fully resolved quartets were 91.7%, partly resolved quartets were 6.0%), and unresolved quartets were 2.3%.

Specimens of Soricidae except for *Anourosorex* were monophyletic (Fig. 2) with a high supporting value of quartet puzzling (93%). Crocidurinae and Soricinae excluding *Anourosorex* (= main group of Soricinae) composed a monophyletic group (93%) but shrews of the main group of Soricinae did not show monophyly within the group (Fig. 2). Four tribes (Soricini, Blarinini, Notiosoricini, and Neomyini) of Soricinae showed polychotomy and branching orders among the tribes were completely unsolved. *Anourosorex* fell out of the Crocidurinae-main Soricinae cluster associating with neither Crocidurinae nor the main group of Soricinae (Fig. 2). *Blarinella griselda* was included in Blarinini although the supporting value was low (54%). *Megasorex gigas* and *Notiosorex crawfordi* formed the monophyletic Notiosoricini but they were rather differentiated (Fig. 2). *Notiosorex crawfordi* from Arizona and Texas (USA) and
N. crawfordi from Baja California (Mexico) genetically were rather differentiated (Fig. 2; maximum likelihood distance was 0.224-0.224). Within Crocidurinae, Suncus and Crocidura each were monophyletic (Fig. 2).

The ML tree (Fig. 2) showed four ambiguous points. (1) Within Neomyini relationships among genera were unclear. Especially, it is equivocal whether or not the semi-aquatic shrews (Chimarrogale, Nectogale, and Neomys) are monophyletic. (2) Relationships within Sorex were unclear. (3) Relationships among species within Blarinini were obscure. (4) Relationships of within Crocidura were partly unclear. Thus, these four specific problems were reanalyzed separately.

Phylogeny within Neomyini

All species of Neomyini were included in the reanalyses with seven species of Blarinini serving as an outgroup. First, a ML tree was constructed by the quartet puzzling method using TREE-PUZZLE under the substitution model of Hasegawa, Kishino & Yano (1985) with gamma distribution (HKY+G) (Fig. 3A). Statistics of the ML analysis was as follows: transition/transversion parameter = 5.65 (±0.36 S.E.),
gamma distribution parameter alpha = 0.19 (±0.01 S.E.), and unresolved quartets = 10.7%.

Episoriculus c. caudatus, Ep. c. soluensis, and *Ep. leucops* were included in a monophyletic group (Fig. 3) although *Ep. caudatus* is paraphyletic. In addition, monophyly of *Episoriculus* was not confirmed. Monophyly of three species of *Chodsigoa* (*Cg. caovansunga, Cg. parca,* and *Cg. sodalis*) was strongly supported (96%). *Chimarrogale himalayica* was polyphyletic, as *Cm. himalayica* from Taiwan formed a monophyletic group with *Cm. platycephala,* not with *Cm. himalayica* from Vietnam and Nepal. *Nectogale elegans* was most closely related to *Chimarrogale* sp.* Neomys fodiens* and *Nm. anomalus* were monophyletic but genetically rather distinct. The Eurasian semi-aquatic shrews, *Neomys, Chimarrogale,* and *Nectogale,* were monophyletic (Fig. 3A) but the supporting value was low (51%).

Further analysis was conducted to examine the monophyly of the semi-aquatic shrews. Because of high supporting values in the previous ML analysis (Fig. 3A), within-group topology for the following five clusters were fixed in reanalysis: (*Ep. leucops, Ep. c. caudatus, Ep. c. soluensis-1; (Nm. anomalus, Nm.*
(Cg. parca-1, Cg. sodalis-1, Cg. caovansunga); (Cm. himalayica-TW, (Cm.
platycephala-HN, Cm. platycephala-KS)); and (Cm. himalayica-VN, Cm.
himalayica-NP). Topology of the outgroup also was fixed. Approximate likelihoods
(Adachi & Hasegawa, 1996) were calculated for the possible 2,027,025 topologies
among the 10 groups (Ep. macrurus-1, Ep. fumidus-1, Nc. elegans, Sc. nigrescens, the
fixed five groups and outgroup), and then exact likelihoods were calculated for the best
10,000 trees of the approximate likelihood criterion by NucML with HKY model. From
the 10,000 trees, 3,663 trees that had exact log likelihood scores greater than the
maximum log likelihood minus 2 S.E. were chosen for the more exact analysis. Finally,
likelihoods and bootstrap values were calculated for the 3,663 trees by BaseML with
HKY+G model. The maximum likelihood tree was obtained from the 3,663 trees (Fig.
3B). The confidence of the node was evaluated by the RELL bootstrap value with
10,000 replications (Kishino, Miyata & Hasegawa, 1990; Hasegawa & Kishino, 1994).
For further information regarding this analytical procedure, refer to Kawai et al. (2002),
where the same analysis was applied.

Monophyly of Chimarroga sp. and Nectogale elegans were strongly
supported (94% bootstrap value) but the relationships among the other groups were rather obscure (Fig. 3B). Probability for the monophyly of the semi-aquatic shrews was 24%, calculated by adding bootstrap values of the trees that showed the monophyly of the semi-aquatic shrews in the 3,663 trees. Thus, monophyly of the semi-aquatic shrews of Neomyini was not strongly supported in the present data set although it was not completely rejected. In addition, monophyly of *Episoriculus macrurus* and *E. fumidus* was not supported in the final analysis (Fig. 3B), although they were monophyletic in the previous analysis with 60% supporting value (Fig. 3A).

Phylogeny within Sorex

The genus *Sorex* was unambiguously divided into two subgenera *Sorex* and *Otisorex* in the general ML tree (Fig. 2). Thus, the two groups were individually analyzed. *Sorex saussurei* and *S. cinereus* from the subgenus *Otisorex* served as an outgroup for the analysis of the subgenus *Sorex*, whereas *S. caecutiens* and *S. araneus* from the subgenus *Sorex* formed the outgroup for the subgenus *Otisorex*. For the
subgenus *Sorex*, the substitution model by Tamura & Nei (1993) with gamma
distribution + invariable sites (TrN+G+I) were chosen by the hierarchical likelihood
ratio test of MODELTEST, whereas GTR+G+I model was the best model for the
subgenus *Otisorex*. Rate matrix R of the GTR model for *Otisorex* was as follows: R

\[
\begin{align*}
[A-C] &= 2.5104, \\
[A-G] &= 12.7828, \\
[A-T] &= 2.8445, \\
[C-G] &= 0.4568, \\
[C-T] &= 36.8306, \\
\end{align*}
\]

Maximum likelihood trees were calculated under these
models by TREE-PUZZLE (Fig. 4).

In the analysis for the subgenus *Sorex*, statistics of ML analysis were as follows: transition/transversion parameter = 6.34 (±0.47 S.E.), Y/R transition parameter

\[
= 1.72 (±0.15 S.E.),
\]

fraction of invariable sites (estimated from data set) = 0.63 (±0.01 S.E.), number of invariable sites = 714, and unresolved quartets = 4.1%.

Sorex alpinus branched first in the subgenus (Fig. 4A). The other species
formed a monophyletic group with a marginal supporting value (57%). *Sorex
cylindricauda*-S. *excelsus*, S. *minutissimus*-S. *hosonoi*, S. *unguiculatus*-S. *isodon*, and S.

Sorex caecutiens-S. *shinto* formed monophyletic groups, respectively (Fig. 3A). *Sorex
araneus-arcticus* group (S. *araneus*, S. *antinorii*, S. *granarius*, S. *coronatus*, S.
tundrensis, and S. daphaenodon) and S. samniticus were included in a monophyletic group with a high supporting value (88%). Branching orders among these four monophyletic groups were unclear, although the species, S. roboratus, S. minutus, and S. gracillimus were monophyletic (supporting value = 64%, Fig. 4A). In addition, S. cylindrica was most closely related to S. excelsus.

In the analysis of the subgenus Otisorex, statistics of ML analysis were as follows: Fraction of invariable sites = 0.57 (±0.02 S.E.), number of invariable sites = 655, gamma distribution parameter alpha = 1.29 (±0.24 S.E.), total rate heterogeneity = 0.76 (±0.06 S.E.), and unresolved quartets = 4.4%.

Although Sorex saussurei and S. trowbridgii formed a monophyletic group, they were genetically rather differentiated from each other (Fig. 4B). The S. saussurei-trowbridgii group was branched first within Otisorex. Monophyly of the S. cinereus group was strongly supported (98%), but there were few genetic differences among S. ugyunak, S. portenkoi, S. pribilofensis, S. jacksoni, and S. camtschatica. Sorex palustris was most closely related to S. monticolus and they formed a monophyletic group with S. vagrans (S. vagrans group). Sorex fumeus and S. tenellus also formed a
monophyletic cluster. Further, the *S. cinereus* group, *S. vagrans* group, *S. fumeus*-*S. tenellus* group, and *S. hoyi* formed a monophyletic group, but branching orders among them were unsolved (Fig. 4B).

Phylogeny within Blarinini

Two *Sorex* species served as an outgroup in the reanalysis of the tribe Blarinini and the GTR+G+I model was selected by MODELTEST. Rate matrix R of GTR model was as follows: R [A-C] = 3.3397, R [A-G] = 12.3682, R = [A-T] 3.5024, R [C-G] = 0.5779, R [C-T] = 31.023, R [G-T] = 1.0000. A ML tree was constructed by TREE-PUZZLE (Fig. 5). Statistics of ML analysis were as follows: fraction of invariable sites = 0.56 (±0.02 S.E.), number of invariable sites = 639, gamma distribution parameter alpha = 1.90 (±0.45 S.E.), total rate heterogeneity = 0.71 (±0.07 S.E.), and unresolved quartets = 2.4%.

Blarinella griselda fell out of the group of *Blarina* and *Cryptotis* within Blarinini (Fig. 5). Monophyly of *Cryptotis* and *Blarina* was confirmed with high supporting value (100%). Within *Cryptotis*, three Mexican species (*C. mexicana*,
magna, and C. goldmani) formed a monophyletic group and North American C. parva

was located outside this group (Fig. 5).
For the closer examination of species within *Crocidura*, MODELTEST selected the TrN+G+I model as the best substitution model, and two *Suncus* species served as an outgroup in the reanalysis. A ML tree was constructed under this condition (Fig. 6) by TREE-PUZZLE. Statistics of ML analysis were as follows:

- Transition/transversion parameter = 8.60 (±0.80 S.E.), Y/R transition parameter = 3.31 (±0.42 S.E.), fraction of invariable sites = 0.55 (0.02 S.E.), number of invariable sites = 625, gamma distribution parameter alpha = 1.97 (±0.40 S.E.), total rate heterogeneity = 0.70 (±0.06 S.E.), and unresolved quartets = 5.4%.

Within *Crocidura*, three well-supported monophyletic groups were recognized (Fig. 6): (1) *C. suaveolens*, *C. sibirica*, and *C. shantungensis* (= *C. suaveolens* group); (2) *C. dsinezumi*, *C. lasiura*, and *C. t. kurodai* (= *C. dsinezumi* group); and (3) *C. horsfieldii* and *C. watasei* (= *C. horsfieldii-watasei* group). Further, the *C. dsinezumi* group, the *C. horsfieldii-watasei* group, *C. wuchihensis*, *C. attenuata*, *C. a. tanakae*, and *C. fuliginosa* formed a monophyletic group (= Group A) with 80% supporting value.
although branching orders among them were unsolved (Fig. 6). *Crocidura attenuata*

from Vietnam and *C. a. tanakae* from Taiwan were genetically rather differentiated (Fig. 6); maximum likelihood distance between them was 0.11072, whereas average distance in this reanalysis was 0.12790.

5

DISCUSSION

Higher level taxonomy of Soricidae

Extant Soricidae currently are divided into two subfamilies, Soricinae and

Crocidurinae (e.g., Reumer, 1987; Hutterer, 1993; Wolsan & Hutterer, 1998). Based primarily on morphology, Reumer (1984) and Wolsan & Hutterer (1998) suggested *Anourosorex* belonged to Soricinae whereas Simpson (1945) and Imaizumi & Obara (1966) suggested it belonged to Crocidurinae. The discrepancy mainly was caused by the difference in interpreting morphological data, such as dental characters. We applied molecular data to resolve this taxonomic problem. The phylogeny of the mtDNA *cytb* sequences indicated that *Anourosorex* could not be included in either Soricinae or Crocidurinae (Fig. 2). A new subfamily rank might be created for *Anourosorex*.
However, to conclude its subfamily position, we need more phylogenetical information from both mitochondrial and nuclear genomes. The subfamily status for *Anourosorex* still is pending although we revealed its phylogenetic position based on the mtDNA *cytb* gene.

Although we analyzed only 16 subspecies of *Crocidura* and *Suncus* mainly from eastern Eurasia, monophyly of Crocidurinae (white-toothed shrews) in Eurasia was supported (Fig. 2). In contrast, monophyly of Soricinae (red-toothed shrews) was not confirmed (Fig. 2). Tribal relationships within Soricinae also were unresolved (Fig. 2). Thus, information obtained from the mtDNA *cytb* gene was not sufficient to determine the monophyly of Soricinae and to fully resolve generic and tribal relationships within the subfamily.

Repenning (1967) placed *Anourosorex* in Neomyini whereas Reumer (1984) placed it in Amblycoptini, based mainly on dental and cranial morphology. Hutterer (1993) noted that Amblycoptini was antedated by Anourosoricini, and treated *Anourosorex* as “Anourosoricini or Neomyini” (Table 1). Our result (Fig. 2) based on mtDNA sequence data, suggested that *Anourosorex* should belong in Anourosoricini.
Thomas (1911) proposed that *Blarinella* in East Asia was more closely related to *Blarina* in North America, whereas Allen (1938) suggested it was more closely related to *Sorex*. Many prominent authors followed Allen’s (1938) opinion and placed *Blarinella* in the tribe Soricini (Table 1). However, our result showed *Blarinella* was included in Blarini (Fig. 2), supporting Thomas’s (1911) opinion. However, the supporting value of the monophyly of Blarini was rather low (Fig. 2) and we could not completely deny the hypothesis that *Blarinella* belongs to Soricini.

Repenning (1967) and Hutterer (1993) classified *Megasorex* and *Notiosorex* into Neomyini with *Chimarrogale, Neomys, Nectogale, Soriculus* (= *Soriculus, Episoriculus*, and *Chodsigoa*), whereas Reumer (1984) placed *Megasorex* and *Notiosorex* in Notiosoricini and *Chimarrogale, Neomys, Nectogale Soriculus, Episoriculus*, and *Chodsigoa* in Soriculini (Table 1). Our tribal treatment for these genera was different from both of these opinions (Table 1). We classified *Megasorex* and *Notiosorex* into Notiosoricini as in Reumer (1987) but placed *Chimarrogale, Neomys, Nectogale Soriculus, Episoriculus*, and *Chodsigoa* in Neomyini as in Reppening (1967) and Hutterer (1993).
Neomyini

Repenning (1967) recognized *Soriculus, Episoriculus, and Chodsigoa* as separate genera whereas Hoffmann (1985) and Hutterer (1993) treated them as subgenera of the genus *Soriculus*. We followed the taxonomic scheme of the former author (Table 1). Monophyly of each of *Chodsigoa, Neomys, and Chimarrogale* was supported by the mtDNA cytb phylogeny (Fig. 3). However, monophyly of *Episoriculus* was not confirmed (Fig. 3), although *E. leucops, E. c. caudatus* and *E. c. soluensis* formed a monophyletic group (Fig. 3A). This finding suggests that *Episoriculus* may be polyphyletic.

Abe (1977) regarded *Episoriculus caudatus caudatus* and *E. c. soluensis* as subspecies of *E. caudatus* although he used the genus name *Soriculus* instead of *Episoriculus*. The molecular phylogenetic trees of the cytb gene (Figs. 1-3), however, indicated a large genetic difference between the two “subspecies” and paraphyly of *E. caudatus*. Further investigations including morphological analysis should be conducted to determine taxonomic ranks for *E. c. caudatus* and *E. c. soluensis*.

Hutterer (1993) regarded *Chodsigoa sodalis* in Taiwan as a synonym of
Episoriculus fumidus (he originally used *Soriculus* instead of *Chodsigoa* and *Episoriculus*). However, *C. sodalis* and *E. fumidus* obviously are distinct taxa (Figs. 2 and 3), which has been recognized by researchers in East Asia (e.g., Motokawa *et al.*, 1997, 1998; Cheng *et al.*, 2000; Ci, 1998). Hence, *C. sodalis* is a valid species.

Jones & Mumford (1971) reported a species of water shrew from Taiwan for the first time and assigned it to *Chimarrogale himalayica*. In the molecular phylogenetic trees (Figs. 2 and 3), *C. himalayica* from Nepal and Vietnam were monophyletic with high supporting values, whereas *C. himalayica* from Taiwan formed a monophyletic group with *C. platycephala* from Japan. However, the Taiwanese water shrew was genetically rather different from *C. platycephala* from Japan (Figs. 2 and 3). Thus, either a new species name or a new subspecies name of *C. platycephala* should be given to the *Chimarrogale* species in Taiwan.

Water shrews (*Neomys*, *Chimarrogale*, and *Nectogale*) of Neomyini were monophyletic with low supporting values in a ML tree (Fig. 3A). According to the reanalyzed tree, monophyly among them was not supported (Fig. 3B) and the probability of a monophyletic relationship among them was only 24%. Non-monophyly
among the water shrews may have been caused by a lack of phylogenetic information within the mtDNA cytb gene. If water shrews actually are polyphyletic, they acquired semi-aquatic adaptations independently. Thus, further examination using other gene regions should be conducted to examine the evolution of the semi-aquatic mode of life in the Neomyini.

Notiosorex and Megasorex

We analyzed Notiosorex crawfordi from Arizona, Texas, Baja California, and Baja California Sur (Appendix). There were almost no genetic difference between shrews from Arizona and Texas (Fig. 2; maximum likelihood distance was 0.011). However, N. crawfordi from the Baja California Peninsula was genetically rather different from those in Arizona and Texas (Fig. 2; distance ranged from 0.224 to 0.227) and the genetic distance was small between shrews from Baja California and Baja California Sur (maximum likelihood distance = 0.016; also see Fig. 1).

Carraway & Timm (2000) described three species of Notiosorex mainly based on morphology and Baker, O'Neil & MacAliley (2003) recently described a new species
of *Notiosorex*. Thus, *Notiosorex* is composed of four species. According to Carraway & Timm (2000), the shrew from the Baja California Peninsula is classified as *N. crawfordi*. However, herein we showed (Figs. 1 and 2) that *Notiosorex* on the Baja California Peninsula are phylogenetically distinct from *N. crawfordi* in the U.S.A. Baker *et al.* (2003) also found that a sequence of the *cytb* gene of *Notiosorex* from Baja California was different from those of *N. crawfordi* in Texas and Arizona. *Notiosorex* in the Baja California Peninsula may be a species different from *Notiosorex* in Texas and Arizona.

Megasorex gigas originally was placed in the genus *Notiosorex* (Merriam, 1897) and Hall (1981) regarded *Megasorex* as a synonym of *Notiosorex*. However, other authors have treated it as a separate genus (Table 1). George (1986), based on an allozyme study, suggested a closer relationship between *Megasorex* and *Neomys* than with *Notiosorex*. In contrast, Ducommun, Jeanmaire-Besancon & Vogel (1994) found greater similarity of hair morphology between *Megasorex* and *Notiosorex* than with *Neomys*, and suggested they should be treated as related genera. However, Ducommun *et al.* (1994) treated *Megasorex* and *Notiosorex* as separate genera because there are some morphological differences between them. The phylogenetic tree of the *cytb* gene
(Fig. 2) also showed a close relationship between *Megasorex* and *Notiosorex* and supported the opinion that they should be treated as different genera as they were genetically rather differentiated.

5

Anourosorex

Hutterer (1993) treated *Anourosorex yamashinai* as a synonym of *A. squamipes*, whereas Motokawa *et al.* (2004) insisted *A. yamashinai* was a distinct species because their karyotypes were quite different. *Anourosorex yamashinai* occurs only at higher elevations of Taiwan whereas *A. squamipes* occurs in higher regions of Southeast Asia including Yunnan, China and Assam, India (Motokawa & Lin, 2002). Considering the large genetic differences of the *cytb* gene sequence between *A. squamipes* and *A. yamashinai* (Fig. 1), we support the taxonomic treatment by Motokawa *et al.* (2004) and consider *A. yamashinai* as a valid species.
Sorex

Sorex was clearly divided into two subgenera, Sorex and Otisorex (Fig. 2). Molecular phylogeny based on mtDNA cytb sequences for the subgenus Sorex has been examined by Ohdachi et al. (1997) and Fumagalli et al. (1999); however, branching orders among the species could not be clarified. We also could not determine some branching orders (Fig. 4A). This means that species of the subgenus Sorex diverged so rapidly that nucleotide substitutions of the cytb gene have not accumulated sufficiently, thus contain limited phylogenetic information.

The Sorex araneus-arcticus group is defined as having XY1Y2 sex chromosome (Dannelid, 1991). The monophyly of this group was well supported in the present mtDNA analysis (Fig. 4A). Brünner et al. (2002) suggested, based on the cytb gene sequence that S. antinorii, that was regarded as a chromosomal race of S. araneus, should be treated as a separate species. The present result (Fig. 4A) also supported their taxonomic treatment. Further, Dannelid (1991) stated that S. samniticus was morphologically closest to the S. araneus-arcticus group although it does not have the XYY system. Their close relationship was confirmed in the present molecular
phylogenetic analysis (Fig. 4A).

The chromosome number (2N) of *Sorex caecutiens*, *S. shinto*, *S. unguiculatus*, *S. isodon*, and *S. minutissimus*, (and probably *S. hosonoi*) is 42 (Dannelid, 1991; Zima et al., 1998); we refer to this species group as the “true” 2N = 42 group as *S. minutus* independently obtained 42 chromosome numbers (Dannelid, 1991). Further, *S. caecutiens*, *S. shinto*, *S. unguiculatus*, and *S. isodon* also have very similar karyotypes (Tsuchiya, 1985; Tada & Obara, 1988; Dannelid, 1991). There is no contradiction between these karyological features and the phylogenetic relationships determined herein although monophyly of these karyological groups was not verified in the phylogenetic tree (Fig. 4A). Finally, *S. mirabilis* and *S. alpinus* have a tripartite penis (Dannelid, 1991), but their monophyly was not confirmed herein (Fig. 4A).

Within the subgenus *Otisorex*, Demboski & Cook (2001) revealed phylogenetic relationships among “*S. monticolus*” which may contain several distinct species and 8 other related species. Then, Demboski & Cook (2003) reported on the molecular phylogeny of the *S. cinereus* group using mtDNA *cytb* gene sequences. The data set of *Otisorex* used herein basically was the pruned set of Demboski & Cook
(2003); we obtained almost the same result of ML tree topology (Fig. 4A).

Additional species in the present analysis were *S. fumeus* and *S. saussurei*. Semi-aquatic *S. palustris* was most closely related to terrestrial *S. monticolus* that formed a monophyletic group with *S. vagrans* (= *S. vagrans* group) as in the ML tree by Demboski & Cook (2003). However, unlike their result, the *S. vagrans* group did not form a monophyletic group with *S. hoyi* in the present analysis (Fig. 4B). We analyzed the present data set deleting sequences of *S. fumeus* and used *S. saussurei* and *S. trowbridgii* as an outgroup under the GTR+G+I model, as did Demboski & Cook (2003), and under the GTR+G model, which was the best model for our data set. However, we did not obtain a ML tree wherein the *S. vagrans* group and *S. hoyi* were monophyletic, as in the maximum parsimony tree by Demboski & Cook (2003). Thus, the monophyletic relationship of the *S. vagrans* group and *S. hoyi* is delicate, depending on minor difference in parameters of the substitution model and on the method of tree reconstruction. A further examination is needed to conclude the monophyly of the *S. vagrans* group and *S. hoyi*.

Sorex trowbridgii and *S. saussurei* formed a monophyletic group although
they were distantly related (Fig. 3B). *Sorex trowbridgii* is distributed along the West Coast of U.S.A., whereas *S. saussurei* occurs in higher elevations of Mexico and is one of the southernmost species of *Sorex*. Hutterer (1993) did not apply subgeneric designations to *S. trowbridgii* or *S. saussurei*. We tentatively placed them in the subgenus *Otisorex* as they were phylogenetically closest to it (Fig. 4).

Crocidura and Suncus

Monophyly of *Crocidura* and *Suncus* examined herein was supported (Fig. 2); however, we did not examine any crocidurine species from Africa. Han et al. (2002), based on 402 bp *cytb* sequences, showed that *Crocidura* in Asia might be paraphyletic because *Suncus murinus* was located within the *Crocidura* species. However, the present analysis, using 1,140 bp, clearly demonstrated that the Asian *Crocidura* species we examined are monophyletic (Fig. 2).

Crocidura fuliginosa, C. attenuata, C. a. tanakae, C. wuchihensis, the *C. horsfieldii-watasei* group, and the *C. dsinezumi* group formed a monophyletic group (=
Group A) but their branching orders were unsolved (Fig. 6).

Hutterer (1993) treated *Crocidura watasei* as a synonym of *C. horsfieldii* and

Abe *et al.* (1994) treated it as a subspecies of *C. horsfieldii*, *C. h. watasei*. However,

Motokawa *et al.* (1996) and Motokawa (1999, 2000) regarded it as a valid species, and

we tentatively followed this taxonomic scheme. The phylogeny of the *cytB* gene showed

that *C. horsfieldii* and *C. watasei* are phylogenetically closest to each other, but

genetically are rather different (Fig. 6). In addition, the distribution of *C. watasei* is

limited to the northern Ryukyu Islands, Japan (Motokawa, 1999), whereas *C. horsfieldii*

occurs widely in Southeast Asia and southern East Asia (Hutterer, 1993). Thus, *C.

watasei* certainly speciated after the Ryukyu Islands were separated from the Asian

Continent.

In the general phylogenetic tree (Fig. 2), *C. orii* made a monophyletic group

with the *C. dsinezumi* group. However, in the reanalyzed tree (Fig. 6), branching orders

among *C. orii*, the *C. suaveolens* group, and Group A were unclear. Thus, the *cytB* gene

region did not contain enough information to estimate the phylogenetic positions of *C.

orii*.
Crocidura attenuata tanakae has been treated as a subspecies of C. attenuata in Taiwan (e.g., Cheng et al., 2000). However, C. a. tanakae had a different phylogenetic position from C. attenuata in Vietnam (Figs. 2 and 6). Motokawa et al. (2001) also showed that C. a. tanakae in Taiwan had a karyotype different from C. attenuata in southern mainland China. Therefore, tanakae should be considered as a distinct species, although there may be “true” C. attenuata in Taiwan in addition to “C. a. tanakae”. Extensive sampling of Crocidura in Taiwan is needed to resolve the tanakae problem.

Acknowledgments

First of all, we would like to express our deep gratitude to the following persons and institutes arranging tissue samples of their institutes: D. Lunde, American Museum of Natural History, New York, USA; J. Dines, Natural History Museum of Los Angeles County, California, USA; R. C. Dowler, Angelo State Natural History Collections, Dept. of Biology, Angelo State Univ., Texas, USA; T. Theimer, Museum of
Vertebrate, Northern Arizona Univ., USA; C. Denys, Museum National d'Histoire Naturelle, Paris, France; S. -W. Chang, Taiwan Endemic Species Research Institute, Nantou, Taiwan; and M. P. Moshkin, Institute of Animal Systematics and Ecology, Novosibirsk, Russia. F. A. Cervantes, N. E. Dokuchaev, V. Haukisalmi, M. Kita, and R. Masuda offered us samples and/or assisted sampling by ourselves. K. Kawai assisted in the laboratory and phylogeny reconstruction. L. N. Carraway and M. Motokawa reviewed an earlier draft of this manuscript. U. Arnason, J. Demboski, L. Fumagalli, and J. Moribe gave us information of sequences cited. We also thank J. Cuisin and R. Cornette.
REFERENCES

polymorphism in the gray shrew *Crocidura attenuata* (Mammalia: Insectivora).

Zool. Sci. **18**: 1153-1160.

Anourosorex squamipes. *Mammal Study* **27**: 113-120.

Mamm. Biol. **69**: 197-201.

Ohdachi, S. D., Abe, H. & Han, S. H. (2003). Phylogenetic positions of *Sorex* sp. (Insectivora, Mammalia) from Cheju Island and *S. caecutiens* from the Korean

Tada, T. & Obara, Y. (1988). Karyological relationships among four species and

Thomas, O. (1911). The mammals of the tenth edition of Linnaeus; an attempt to fix

moles inferred from the sequence variation of the mitochondrial cytochrome b

Table 1. Generic and tribal designations for the extant subfamily Soricinae previously published and presented herein.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anourosorex</td>
<td>Neomyini</td>
<td>Anourosorex</td>
<td>Anourosorex</td>
<td>Anourosorex</td>
</tr>
<tr>
<td>Chimmarogale</td>
<td>Neomyini</td>
<td>Chimmarogale</td>
<td>Chimmarogale</td>
<td>Chimmarogale</td>
</tr>
<tr>
<td>Neomys</td>
<td>Neomyini</td>
<td>Neomys</td>
<td>Neomys</td>
<td>Neomys</td>
</tr>
<tr>
<td>Nectogale</td>
<td>Neomyini</td>
<td>Nectogale</td>
<td>Nectogale</td>
<td>Nectogale</td>
</tr>
<tr>
<td>Soriculus</td>
<td>Neomyini</td>
<td>Soriculus</td>
<td>Soriculus</td>
<td>Soriculus</td>
</tr>
<tr>
<td>Episoriculus</td>
<td>Neomyini</td>
<td>Episoriculus</td>
<td>Episoriculus</td>
<td>Episoriculus</td>
</tr>
<tr>
<td>Chodsigoa</td>
<td>Neomyini</td>
<td>Chodsigoa</td>
<td>Chodsigoa</td>
<td>Chodsigoa</td>
</tr>
<tr>
<td>Notiosorex</td>
<td>Neomyini</td>
<td>Notiosorex</td>
<td>Notiosorex</td>
<td>Notiosorex</td>
</tr>
<tr>
<td>Megasorex b</td>
<td>Neomyini</td>
<td>Megasorex</td>
<td>Megasorex</td>
<td>Megasorex</td>
</tr>
<tr>
<td>Sorex</td>
<td>Soricini</td>
<td>Sorex</td>
<td>Sorex (Sorex, Otisorex d & Stroganovia e)</td>
<td>Sorex</td>
</tr>
<tr>
<td>Microsorex c</td>
<td>Soricini</td>
<td>Sorex</td>
<td>Sorex (Otisorex) e</td>
<td>Sorex</td>
</tr>
<tr>
<td>Blarinella</td>
<td>Soricini</td>
<td>Blarinella</td>
<td>Blarinella</td>
<td>Blarinella</td>
</tr>
<tr>
<td>Blarina</td>
<td>Blarinini</td>
<td>Blarina</td>
<td>Blarina</td>
<td>Blarina</td>
</tr>
<tr>
<td>Cryptotis</td>
<td>Blarinini</td>
<td>Cryptotis</td>
<td>Cryptotis</td>
<td>Cryptotis</td>
</tr>
</tbody>
</table>

*Hutterer (1993) regarded Soriculus sodalis as a synonym of S. (Episoriculus) fumidus, whereas it is considered a valid species belonging to the genus Chodsigoa, C. sodalis, in the present study.

*Including only one species Microsorex gigas = Notiosorex gigas.

*Including only one species, Microsorex hoyi = Sorex hoyi.

*No subgeneric name was designated to S. trowbridgii and S. saussurei according to Hutterer (1993); whereas, herein they are designated as belonging to the subgenus Otisorex.

*The subgenus Stroganovia, which contains only S. daphaenodon, was included in the subgenus Sorex in the present study.
Table 2. Primer list for the PCR of the mitochondrial cytochrome b gene. *L and H are light and heavy strands and numeral is the 3'end position of the primer in the human mitochondrial DNA sequence (Anderson et al., 1981).

<table>
<thead>
<tr>
<th>Primer Code</th>
<th>position*</th>
<th>sequence (5'-3')</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>L14721</td>
<td>GACCAATGATATGAAAAACCATCG</td>
<td>1</td>
</tr>
<tr>
<td>F2</td>
<td>L14727</td>
<td>TGACATGAAAAATCTCGTTG</td>
<td>2</td>
</tr>
<tr>
<td>F3</td>
<td>L14734</td>
<td>AAAACCATCGTTATCTAACT</td>
<td>1</td>
</tr>
<tr>
<td>F4</td>
<td>L14986</td>
<td>ATATATGGCTGACTAATCCGT</td>
<td>3</td>
</tr>
<tr>
<td>F5</td>
<td>L14988</td>
<td>ACTAGGCTGACTAATCCGATA</td>
<td>3</td>
</tr>
<tr>
<td>F6</td>
<td>L15129</td>
<td>GCACTAGACCCAGCAGATT</td>
<td>3</td>
</tr>
<tr>
<td>F7</td>
<td>L15131</td>
<td>GCAGATAGCCACAGCTTTTA</td>
<td>3</td>
</tr>
<tr>
<td>F8</td>
<td>L15131</td>
<td>GCTGATAGCAACTGCTTTCA</td>
<td>3</td>
</tr>
<tr>
<td>F9</td>
<td>L15345</td>
<td>CTGAGTTACCTACTATTTCTC</td>
<td>3</td>
</tr>
<tr>
<td>F10</td>
<td>L15346</td>
<td>GAGTCTCAGCTCTATTTCT</td>
<td>3</td>
</tr>
<tr>
<td>F11</td>
<td>L15347</td>
<td>GAGCTACACTCCTATTTCTCC</td>
<td>3</td>
</tr>
<tr>
<td>F12</td>
<td>L15347</td>
<td>GAGTCCACCTCTTTTTTCTCC</td>
<td>3</td>
</tr>
<tr>
<td>F13</td>
<td>L15347</td>
<td>GAGTCCACCTCTATTTCTCC</td>
<td>3</td>
</tr>
<tr>
<td>F14</td>
<td>L15366</td>
<td>CATGAAACAGCTCAACAA</td>
<td>3</td>
</tr>
<tr>
<td>F15</td>
<td>L15366</td>
<td>CATGAAACCGCTCAAAATAA</td>
<td>3</td>
</tr>
<tr>
<td>F16</td>
<td>L15379</td>
<td>AACCCACAGGACTACTAATC</td>
<td>3</td>
</tr>
<tr>
<td>F17</td>
<td>L15505</td>
<td>TCCAGACCTTCTTGGAGATCCG</td>
<td>3</td>
</tr>
<tr>
<td>F18</td>
<td>L15507</td>
<td>CAGACTTATTTGGAGACCCAGA</td>
<td>3</td>
</tr>
<tr>
<td>F19</td>
<td>L15507</td>
<td>CAGACTTCTCTGAGACCCAGA</td>
<td>3</td>
</tr>
<tr>
<td>F20</td>
<td>L15507</td>
<td>CAGACTTATTTAGGAGACCCAGA</td>
<td>3</td>
</tr>
<tr>
<td>F21</td>
<td>L15525</td>
<td>GACAATATATATCCCGCAA</td>
<td>3</td>
</tr>
<tr>
<td>F22</td>
<td>L15526</td>
<td>ATAGCTTATACCTGCGCAAC</td>
<td>3</td>
</tr>
<tr>
<td>F23</td>
<td>L15561</td>
<td>CCACATATATACCAGAATG</td>
<td>4</td>
</tr>
<tr>
<td>F24</td>
<td>L15738</td>
<td>TTCTGAATCTCAGTGCCGAG</td>
<td>3</td>
</tr>
<tr>
<td>Reverse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>H14995</td>
<td>AATATGGGATGCTCCGTTTCCG</td>
<td>3</td>
</tr>
<tr>
<td>R2</td>
<td>H15142</td>
<td>AATATGGGATGCTCCGTTTCCG</td>
<td>3</td>
</tr>
<tr>
<td>R3</td>
<td>H15149</td>
<td>CCTGAGATGATATTTGCTCTCA</td>
<td>1</td>
</tr>
<tr>
<td>R4</td>
<td>H15155</td>
<td>TGCCCTCCTAAAGGATATTG</td>
<td>4</td>
</tr>
<tr>
<td>R5</td>
<td>H15392</td>
<td>GGTTGGAGGGATTTTGTCC</td>
<td>5</td>
</tr>
<tr>
<td>R6</td>
<td>H15392</td>
<td>GGTTGGAGGGATTTTGTCC</td>
<td>3</td>
</tr>
<tr>
<td>R7</td>
<td>H15548</td>
<td>AAATATCATTACGGTTTATAT</td>
<td>3</td>
</tr>
<tr>
<td>R8</td>
<td>H15548</td>
<td>AAATATCATTACGGTTTATAT</td>
<td>3</td>
</tr>
<tr>
<td>R9</td>
<td>H15548</td>
<td>GAAGATATTCCTACGGTTTATAT</td>
<td>3</td>
</tr>
<tr>
<td>R10</td>
<td>H15707</td>
<td>ATCCGAGAATAAAGATCCGCT</td>
<td>3</td>
</tr>
<tr>
<td>R11</td>
<td>H15752</td>
<td>GATTGACCTCCGATTCAATG</td>
<td>3</td>
</tr>
<tr>
<td>R12</td>
<td>H15985</td>
<td>TAGAATGTACGTTTGGTGCT</td>
<td>5</td>
</tr>
</tbody>
</table>

A. Tree 1

B. Tree 2 (reanalysed)
Fig. 6. Ohdachi et al.

Cr. t. kurodai
Cr. lasiura
Cr. dsinezumi (WJ)
Cr. dsinezumi (EJ)
Cr. horsfieldii
Cr. watasei
Cr. wuchihensis-1
Cr. attenuata
Cr. a. tanakae-1
Cr. fuliginosa
Cr. orii
Cr. suaveolens
Cr. sibirica
Cr. shantungensis
Su. stoliczkanus-1
Su. murinus (OK)

0.05 (subs/site)

Group A

C. dsinezumi group
C. horsfieldii-watasei group
C. suaveolens group