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Abstract. We calculated the drift velocity vector W of electron swarms in crossed

electric and magnetic åelds using a Monte Carlo method. Values of W in F2, CF4

and constant-collision-frequency (CCF) model gases at various values of the reduced

electric and magnetic åelds, E=N and B=N (N is the gas molecule number density),

were illustrated as vector loci in velocity space. Under a CCF condition, W draws

right semicircular loci with varying B and N at a constant E when the number of

electrons is conservative. These semicircular loci can be a reference to characterize the

W behaviour in real gases. We presented an analytical derivation of W in the CCF

condition, extending its expression to that in the presence of ionization and attachment.

Features of the vector loci in F2 and CF4 were discussed.
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1. Introduction

The electron swarm development in crossed electric and magnetic åelds (EÇB åeld) is

a fundamental process in magnetized plasmas such as inductively coupled plasmas and

magnetron plasmas. Under a recent tendency where simulations of such plasmas have

been performed in three-dimensional models (e.g. Hopwood 1992, Nanbu and Kondo

1997, Shon et al 1999), it is important to consider the direction-dependent electron

transport in E ÇB åelds as a primary factor to govern the plasma behaviour.

A survey of concepts quantifying the electron transport inEÇB åelds was presented

by Heylen (1980), and a lot of progressive work has previously been reported. Dincer

and Gokmen (1992) measured electrical breakdown properties of SF6, and subsequently

Dincer (1993) and Milsom (1993) calculated electron transport coeécients in SF6

employing a Monte Carlo method. Shimura and Makabe (1993) analyzed the electron

velocity distribution in Ar using a Boltzmann equation technique. Pekker (1995) and

Cramer (1997) performed one-dimensional analyses of Ar plasmas between parallel-plane

electrodes. Nakamura et al (1999) presented electron swarm parameters in Ar and CH4

calculated with a Monte Carlo method, being conscious of inductive plasma sources.

In this paper, we calculate the drift velocity vector W of electron swarms in F2

and CF4 in E ÇB åelds using a Monte Carlo method. The dependence of W on the

magnetic åeld and the gas molecule number density (or the gas pressure) was depicted as

vector loci in velocity space. In order to characterize the behaviour of W in real gases,

we analyse W under a constant-collision-frequency (CCF) condition as a reference. The

vector loci under a CCF condition are right semicircles when the number of electrons is

conservative, which reçects the essential W behaviour in E ÇB åelds.

CCF conditions have often been assumed to simplify the calculation in theoretical

studies. Blevin and Haydon (1958) estimated the average electron collision frequency

in H2 from experimental data of the electron drift velocity. Heylen and Bunting (1969)

evaluated this estimation quantitatively. Bunting and Heylen (1971) and Heylen and



3

Dargon (1973) performed similar evaluations for N2, O2 and air as well. White et

al (1997) employed a CCF condition in benchmark simulations for various numerical

methods of swarm analyses in EÇB åelds. White et al (1999) performed a Boltzmann

equation analysis in a CCF model in E ÇB åelds crossed at arbitrary angles as well.

We show a detailed derivation of the analytical expression of W in a CCF condition,

now for the årst time taking account of the eãects of ionization and attachment on W .

Features of the vector loci in F2 and CF4 were discussed.

2. Derivation of the drift velocity vector

An electron undergoes free çight and collision (scattering) processes alternately. The

former is described as single electron motion based on the motion equation. The latter

quantiåed by the collision frequency determines the start and end of a free çight. We

deåne the drift velocity vector W of an electron swarm in E Ç B åelds as being

the average electron velocity vector over the swarm. We must consider the change

in the electron population when calculating W in the presence of ionization and/or

attachment.

2.1. Single electron motion

Uniform dc electric and magnetic åelds are applied to the Äz and +y directions

in real space (x; y; z) as E = (0; 0;ÄE) and B = (0;B; 0) (see also ågure 1).

With an initial electron velocity v0 = (v0x; v
0
y; v
0
z) at time t0, the motion equation,

m(dv=dt) = Äev Ç B Ä eE, yields the following solution for the electron velocity

v(t) = (vx; vy; vz):

vx = E=B + v0z sin!(tÄ t0) + (v0x ÄE=B) cos!(tÄ t0) (1)

vy = v0y (2)

vz = v0z cos!(tÄ t0)Ä (v0x ÄE=B) sin!(tÄ t0) (3)
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where e and m are the electron charge and mass, and ! = eB=m. Elimination of a

factor (tÄt0) from equations (1) and (3) gives the following circular locus of an electron:

(vx ÄE=B)2 + v2
z = (v0x ÄE=B)2 + v02z : (4)

The electrons orbit the center C at (vx; vz) = (E=B; 0) with a constant angular velocity

! during free çight (see ågure 2).

2.2. Collision and scattering

The present model assumes the following conditions. The total collision frequency ó

for an electron is constant, being independent of the electron energy (CCF condition).

Scattering due to collision is isotropic in laboratory system, and the momentum loss at

an elastic collision is negligible. The initial velocity distribution of secondary electrons

produced by ionization is also isotropic. The ionization and attachment frequencies, ói

and óa, are constant in equilibrium, thus the electron population varies exponentially

with time.

After scattering, most electrons start their next free çights with non-zero initial

velocities (v0 6= 0). Let us call such electrons warm-start electrons. However, Blevin

and Haydon (1958) and Heylen (1980) assumed v0 = 0 for all the electrons (i.e. cold-start

electrons) in their derivations for W . For this treatment, Blevin and Haydon (1958)

noted that an electron loses all its momentum in any speciåed direction on the average

in a collision; they regarded the condition hv0i = 0 as if v0 = 0. Here, it was unconårmed

in the literature above whether the motion of a cold-start electron is equivalent to the

average motion of the warm-start electrons, not only at the start but also throughout the

çight even in the presence of collisions. We clarify this point in the following subsection.

2.3. Free çight of electron squad

In order to formulate the averaging scheme for W , let us deåne an electron squad, a

subset of the entire electron swarm, as being electrons starting free çight together at
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coincident collisions. The electron velocity distribution fs(v; t0; t), the average velocity

vs(t0; t) and the electron population dns(t0; t) of a squad satisfy

dns(t
0; t) =

Z
fs(v; t

0; t)dv (5)

vs(t
0; t) =

R
vfs(v; t0; t)dvR
fs(v; t0; t)dv

(6)

where t0 and t refer to times of birth and observation of the squad. The electrons

scattered at collisions drop out of the squad and they form new squads together with

dropouts from the other squads. Thus dns(t0; t) decreases monotonously with t.

For the isotropic scattering, fs at t = t0 is isotropic around v = 0, thus vs(t0; t0) = 0.

A cold-start electron in the squad is at the center of the distribution fs at this moment.

The squad would simply rotate around C with the angular velocity ! during collisionless

çight, therefore the electron formation in fs is unchanged (see ågure 2). The cold-start

electron in the squad is always at the center of fs, thus its velocity is identical to vs(t0; t).

This situation also applies to the collisional case, because the electron dropout away

from the squad due to collisions occurs uniformly in fs as a result of the CCF condition.

The value of dns decays exponentially with t keeping fs isotropic around the cold-start

electron (see ågure 3). Therefore, although fs is unknown, we can conclude that a cold-

start electron represents the average motion of a squad without loss of generality in the

CCF condition. Note here that the change of the electron population due to ionization

and attachment does not aãect this conclusion because the isotropy of fs is kept in the

collision processes under the CCF condition.

2.4. Averaging over the swarm

The drift velocity W of the entire electron swarm is obtained by integrating vs(t0; t)

over t0 2 (Ä1; t ], i.e. over all the squads born before observation, with the weight of

dns(t0; t).

In equilibrium, the electron population of the entire swarm, n, is an exponential

function given as n(t) = n(0) exp[(ói Ä óa)t]. The initial value of dns at t = t0 is
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the number of scattered electrons in the entire swarm in a short interval dt0. The

number of collisions during dt0 is n(t0)ódt0, and taking account of lost electrons due

to attachment and secondary electrons produced by ionization, we obtain dns(t0; t0) =

n(t0)(ó+ ói Äóa)dt0. For the dropout of scattered electrons, dns decays exponentially

as dns(t0; t) = dns(t0; t0) exp[Äó(t Ä t0)]. In consequence, we obtain dns(t0; t) =

n(t0)(ó+ói Äóa) exp[Äó(tÄ t0)]dt0.
The two non-zero components of W , WE and WEÇB, are the average values of vz

and vx in equations (1) and (3) under the cold-start condition v0 = 0. We obtain

W =
1

n(t)

Z t

Ä1
vs(t

0; t)dns(t
0; t) =

Z t

Ä1
v(t0; t)ó0 exp[Äó0(tÄ t0)]dt0 (7)

WE = hvzi =
Z 1

0
ó0 exp(Äó0ú)

E

B
sin!údú=

E

B

ó0!

ó02 + !2
(8)

WEÇB = hvxi =
Z 1

0
ó0 exp(Äó0ú)

E

B
(1Ä cos!ú)dú=

E

B

!2

ó02 + !2
(9)

where ú= t Ä t0 is the free çight time up to observation and ó0 = ó+ ói Ä óa is the

electron-population-modiåed total collision frequency.

3. Properties of the drift velocity vector

Equations (8) and (9) are diãerent from the conventional expressions only in the factor

ó0 instead of ó. The present expressions are identical to the conventional ones when

ói = óa. Quantities derived from W are extended to those in the presence of ionization

and attachment by simply replacing ówith ó0; for example the Hall deçection angle í

satisåes taní= WEÇB=WE = !=ó0 instead of the conventional expression !=ó.

Parameters E and B are externally controllable, and ó is proportional to the gas

molecule number density N (or the gas pressure p). The vector loci of W for varying

ó0 under a constant E=B and for varying B under a constant E=ó0 are obtained by

eliminating each of ó0 and B from equations (8) and (9):

W 2
E +

í
WEÇB Ä

1

2

E

B

ì2

=
í1

2

E

B

ì2

(10)í
WE Ä

eE

2mó0

ì2

+W 2
EÇB =

í eE

2mó0

ì2

: (11)



7

These are semicircles in parameter space (WEÇB;WE) when E=B and E=ó0 are constant

(see ågure 4). Here, it is not always easy to keep ó0 constant under varying B. The

terms ói and óa included in ó0 may vary with B through the change of the electron

energy distribution. However, in the absence of ionization and attachment (electron-

conservative) under the CCF condition, constant E=ó0 (= E=ó) is achievable by keeping

E=N constant.

Because of the geometrically simple shape, the semicircular vector loci can be a

reference when characterizing the W behaviour in real gases. This visual expression of

W would be informative for the control of W and design of plasma equipment. We

present examples of the vector loci in model and real gases in the following section.

Another property of W in the electron-conservative CCF condition is that the plots

of WE versus ln(ó=!) for varying ó (or N ) under constant E=B and WEÇB versus

ln(ó=!) for varying B (or !) under constant E=ó(E=N) are symmetric in ó=! = 1 as

we can write

WE =
E

B

ó=!

1 + (ó=!)2
=
E

B

!=ó

1 + (!=ó)2
(12)

WEÇB =
eE

mó

ó=!

1 + (ó=!)2
=
eE

mó

!=ó

1 + (!=ó)2
: (13)

WE and WEÇB take their maxima, E=(2B) and eE=(2mó), at ó=! = 1.

The properties of W shown here typify qualitative tendencies of W in real gases.

4. Numerical calculation method

We calculated W in CCF model gases, F2 and CF4 at various values of B=N and E=N

using a Monte Carlo method. The number of electrons sampled in each equilibrium was

106 or more. Values of W at B = 0 in the real gases were obtained from a Boltzmann

equation analysis. The E Ç B drift velocity, E=B, was also evaluated to show the

collisionless case (ó= 0).

For eécient Monte Carlo performance, we adopted the stochastic choice of free

çight time (Skullerud 1968). This method introduces an imaginary collision cross
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section qnull (ï 0) associating with no scattering (null collision) so that we obtain

N [qt(v) + qnull(v)]v = ó (CCF) in a range of v = jvj of interest, where qt is the total

cross section of real collisions. The probability P (ú) = exp [Ä R ú0 Nqt(v(t))v(t)dt] of a

free çight time greater than úis simpliåed as P (ú) = exp(Äóú). A free çight time ú is

chosen as ú= óÄ1 ln(1Äò) by a uniformly distributed random number ò2 [ 0; 1), and

the kind of collisional event is selected in proportion to each collision cross section at

v(ú).

Because a null collision interrupts a free çight for nothing and requires a load for

the calculation of electron trajectory, a way to save the computational time is to set ó

as low as possible but not violating qnull ï 0. Providing a single óvalue for a simulation,

such ówould be given as ó= [Nqt(v)v]max. Moreover, we can refer to lower óbased

on a fact that the jvj proåle of an electron gyrating in an E ÇB åeld is periodic and

within a ånite range [vmin; vmax]. Here, from equations (1){(3) at vz = 0, vmax and vmin

are given as

v2
max =

ö
E=B +

h
(v0x ÄE=B)2 + v02z

i1=2
õ2

+ v02y (14)

v2
min =

ö
E=B Ä

h
(v0x ÄE=B)2 + v02z

i1=2
õ2

+ v02y : (15)

With a data table to ånd the optimumóvalue for given vmin and vmax, the computational

time of a Monte Carlo simulation in CF4 at low E=N and high B=N values, at which

electrons are concentrated in a low v range around the Ramsauer-Townsend minimum,

was less than 1/20 of that of a Monte Carlo simulation with a single åxed óvalue.

5. Results and discussion

5.1. Constant-collision-frequency model gases

We assumed three CCF model gases; case 1, an ionization-dominated model (ói > óa);

case 2, an electron-conservative model (ói = óa = 0); and case 3, an attachment-

dominated model (ói < óa). Their cross sections were assigned by table 1 and the
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following deånitions (see also ågure 5):

qt(è) = q1(è) + q2(è) + q3(è) + q4(è) = ó1

ê
N1v1

p
è
ëÄ1

(16)

q2(è) = 0:9Ç qt(è)f1 + exp[30(0:1Äè)]gÄ1f1 + exp[10(èÄ 1:0)]gÄ1 (17)

q3(è) = 0:2Ç qt(è)
q

max(1Ä [max(3:0Äè; 0)]2; 0) (18)

q4(è) = 0:7Ç qt(è)
q

max(1Ä [max(5:0Äè; 0)]2; 0): (19)

Here, èis the electron energy in eV, and v1 is the electron velocity associating with 1 eV.

We set the total collision frequency ó1 to be 3:0Ç 109 sÄ1 at the gas pressure p0 = 133

Pa (1 Torr) at 0 éC. The gas molecule number density N1 at this p0 is 3:54Ç1016 cmÄ3.

E was åxed at 15 VcmÄ1, B = 1:8{9.0 mT and p0 = 13:3{66.5 Pa.

Table 1. Assignment of the electron collision cross sections of constant-collision-

frequency model gases; qm, momentum transfer; qa, attachment; qe, excitation

(threshold 2 eV); and qi, ionization (threshold 4 eV).

qm qa qe qi

Case 1 (ói > óa) q1 + q2 0 q3 q4

Case 2 (ói = óa = 0) q1 + q2 0 q3 + q4 0

Case 3 (ói < óa) q1 q2 q3 q4

W is depicted in ågure 6. The intersections of the semicircles drawn based on

equations (10) and (11) are the theoretical prediction for W in case 2. The results

of case 2 indicated by crossed squares are right at the intersections, which veriåes the

derivation ofW . In case 1,W shifts towards the origin along the semicircles of equation

(10). Ionization supplies isotropic secondary electrons, which reduces the directivity of

the swarm by increasing ó0. Attachment in case 3 decreases ó0 by excluding the electrons

captured by gas molecules from the swarm population, which appears as the shift in

opposite way to case 1. It is noted that W does not deviate from the locus represented

by equation (10) under a constant óeven in the presence of ionization and attachment.
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5.2. F2

F2 is an example of real gases that satisfy a CCF condition to some extent, i.e. the

total collision frequency does not change signiåcantly under the conditions examined

here. The set of the electron collision cross sections of F2 taken from Hayashi and

Nimura (1983) is shown in ågure 7. The approximate CCF feature is probably due

to the gradient d lg qt=d lgèclose to Ä1
2 in a range from a few electronvolts to tens

electronvolts around which a major part of the electron energy distribution lies.

Figure 8 shows W in F2 at E = 60 VcmÄ1, B = 5{30 mT and p0 = 13:3{79.8

Pa. Open and full squares indicate whether the eãective ionization frequency, óiÄóa, is

positive (ionization-dominated) or negative (attachment-dominated), respectively. With

varying p0 under constant B, W draws åne semicircular loci. On the other hand,

for changing B under constant p0, W deviates from the guiding semicircles inwards

when ionization-dominated and outwards when attachment-dominated as discussed

before. However, ói and óa are too small (only a few percents relative to ó) to

induce such an observable deviation. The deviation is attributed rather to the fact

that the collision frequency of each electron is actually energy-dependent although the

macroscopic collision frequency which is the integrated value over the swarm seems

constant.

Dincer (1993) showed that the ionization coeécient in SF6 is a function of the

eãective reduced electric åeld (E=N)eã = (E=N ) cosí, where í is the Hall angle. A

similar situation is found also in F2. When we put (E=ó) cosí= c assuming ó/ N ,

we obtain W 2
E + W 2

EÇB = jW j = (ec=m)2 which represents a circle of the center (0; 0)

in parameter space (WEÇB;WE). In ågure 8, the border between the regions of ói > óa

(2) and ói < óa ( ) could be found around the broken quadrant.

5.3. CF4

Figure 9 shows the set of the electron collision cross sections of CF4 taken from Bordage

et al (1999). It is characteristic that CF4 has Ramsauer-Townsend minimum, and ó
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decreases signiåcantly at low E=N values. The calculation conditions for CF4 were

E = 60 VcmÄ1, B = 5{70 mT and p0 = 13:3{399 Pa.

Figure 10 shows the W proåle. As a general tendency, the Hall angle íincreases

with B, which aãects (E=N)eã through a factor cosí. Then, low values of óappear

under high B, which results in the increase in WEÇB as expected from equation (9). At

high gas pressures (i.e. at low E=N values), the locus çattens signiåcantly. In particular,

a part of the curve for 399 Pa (E=N = 56:6 Td) crosses over that for 200 Pa. Considering

that the drift velocity in CF4 at B = 0 has the negative diãerential dependence on E=N

at 20{60 Td (Bordage et al 1999), it is suggested that W has such a dependence also

in E ÇB åelds.

6. Conclusions

We calculated the electron drift velocity vector W in F2 and CF4 in crossed electric

and magnetic åelds (E ÇB åelds). The dependence of W on the reduced electric and

magnetic åelds, E=N and B=N , was depicted as the vector loci of W . The behaviour

of W was characterized through a comparison with constant-collision-frequency (CCF)

models. The vector loci of the CCF model are right semicircles under an electron-

conservative condition, and its analytical expression was extended to the case in the

presence of ionization and attachment. The tendency of W in F2 is close to the CCF

models. In contrast, the vector loci in CF4 has çattened shapes. A kind of negative

diãerential conductivity was indicated in CF4 in EÇB åelds, as well as for the case of

B = 0.
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Figure 2. Trajectories of electrons in velocity space. The electrons round on the center
(vx; vz) = (E=B; 0) with a common angular velocity ! during free çight.



vz

vx

−E

E×B

Figure 3. Electron dropout due to collision during collective çight. The electron
population decays exponentially keeping the velocity distribution shape isotropic around
its center.

WE×B

WE

θ
W

B = 0

B = ∞
N = 0N = ∞

E/ν' const.

E/B const.

eE
mν'

B
E

Figure 4. Schematic of the behavior of the drift velocity vector under constant-collision-
frequency condition.
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qe4, electronic excitation; and qt, total.
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Figure 8. The electron drift velocity vector in F2. BE, Boltzmann equation analysis;
MC, Monte Carlo; and theory, WEÇB = E=B for collisionless çight. Semicircles are to
guide the eye.
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Figure 9. The electron collision cross sections of CF4 (Bordage et al 1999); qm, mo-
mentum transfer; qi, ionization; qdis, dissociation; qa, attachment; qv;i, indirect vibrational
excitation; qv3 and qv4, vibrational excitation to modes 3 and 4; and qt, total.
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Figure 10. The electron drift velocity vector in CF4. BE, Boltzmann equation analysis;
MC, Monte Carlo; and theory, WEÇB = E=B for collisionless çight.




