<table>
<thead>
<tr>
<th>Title</th>
<th>An ultra-high-energy collimator for small animal imaging in dual-isotope study of 18F and 99mTc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kubo, Naoki; Zhao, Songji; Kinda, Akiyoshi; Motomura, Nobutoku; Katoh, Chietsugu; Kuge, Yuji; Tamaki, Nagara</td>
</tr>
<tr>
<td>Citation</td>
<td>International Congress Series, 1264: 275-279</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-03</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/14713</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>ICS2004-1264.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
An ultra-high-energy collimator for small animal imaging in dual-isotope study of 18F and 99mTc.

Naoki Kubo*, Songji Zhao, Akiyoshi Kinda, Nobutoku Motomura, Chietsugu Katoh, Yuji Kuge and Nagara Tamaki

Hokkaido University, Sapporo, Japan; Toshiba, Tochigi, Japan; Kyoto University, Kyoto, Japan.

single photon emission computed tomography; pinhole collimator; small animal imaging; Fluorine-18 deoxyglucose; dual-isotope imaging

Abstract. We have developed a pinhole collimator for small animal imaging using dual-isotopes such as gamma and positron emitters. A lead cylinder containing a pinhole was placed around the subject (a small animal). The cylinder was equipped with a non-collimator gamma camera and dual-isotope (99mTc-MIBI and 18F-FDG) SPECT was performed on a Wistar King Aptekman/hok (WK AH) rat. System planar sensitivity and Full-Width at Half-Maximum (FWHM) were measured for each radionuclide. System planar sensitivities for 99mTc and 18F SPECT were 2 and 7 cps/MBq, respectively. FWHMs for 99mTc and 18F SPECT were 2.0 ± 0.5 and 2.7 ± 0.5 mm, respectively. The collimator is relatively light (23 kg) and thus SPECT projection data could be acquired by rotating the gamma camera while the object remained stationary. The pinhole collimator can be used with a conventional rotating gamma camera. The present study demonstrated that it is possible to image organs in vivo in sufficient detail using the newly developed pinhole collimator. Further refinements to the experimental procedure may provide simultaneous high-resolution imaging of small animals using positron and gamma emitters with this collimator.

1. Introduction

Recently, small animal imaging research has focused on basic nuclear medicine techniques [1-5]. One technique, dual-isotope imaging, traces two different radiopharmaceuticals (a positron emitter and a gamma emitter) under the same experimental conditions [6-8]. We have developed a pinhole collimator suitable for small animal imaging in such studies.

2. Materials and methods
Collimator design. A lead cylinder was placed around the subject (a small animal). The cylinder contained a pinhole (Fig. 1). The pinhole diameter of this knife-edge aperture was 0.6 mm. The acceptance angle was 13°. The thickness of the lead shielding was 30 mm. This cylinder was equipped with a non-collimator gamma camera at a distance of 30.5 cm (Fig. 2). The radius of rotation was 6 cm. The magnification was 5.1 times.

Collimator weight. The collimator was relatively light (23 kg), thus enabling SPECT projection data to be acquired by rotating the gamma camera while the object remained stationary.

Sensitivity. The system planar sensitivities for 99mTc and 18F were measured individually using point sources.

Spatial resolution of SPECT. SPECT acquisitions (128×128 matrix, 90 projections) were reconstructed using the Feldkamp method. FWHMs for 99mTc and 18F were measured individually using line sources.

In vivo SPECT study. Dual-isotope SPECT was performed on a Wistar King Aptekman/hok (WKAH) rat (weight: 67 g) injected 99mTc-MIBI (83 MBq) and 18F-FDG (11 MBq). SPECT data were acquired using a 128×128 matrix. SPECT was performed with repeated acquisition (10 min/rotation ×3 times). Down scatter correction for 99mTc was performed using a line-spread function subtraction method. Attenuation and scatter corrections were not performed. SPECT images were reconstructed using the Feldkamp method. The trans-axial images were reoriented into coronal images. The matrix size was 0.5 mm and the coronal slice thickness was 4 mm.

3. Results

Sensitivity. System planar sensitivities of 99mTc and 18F were 2 and 7 cps/MBq, respectively.

Spatial resolution of SPECT. FWHMs of 99mTc and 18F-SPECT were 2.0 ± 0.5 and 2.7 ± 0.5 mm, respectively.

In vivo SPECT study. The present study showed that it is possible to image organs in vivo in sufficient detail using the pinhole collimator developed by the authors (Fig.3).

4. Discussion

We developed a pinhole collimator for use in small animal imaging with dual-isotope sources of positron and gamma emitters. The subject is restrained in the system, thus allowing procedures such as blood sampling and respiration monitoring to be easily performed on the animal.
FWHM for 99mTc was greater than the pinhole diameter. The probable cause for this was incomplete center of rotation (COR) correction.

5. Conclusions

We developed a pinhole collimator for small animal imaging in a dual-isotope system using gamma and positron emitters. The collimator is suitable for use with a conventional rotating gamma camera.

Acknowledgment

This study was supported in part by a Grant-in-Aid for Scientific Research (B) 13557073, from the Japan Society for the Promotion of Science (JSPS).

References

21(10):1085-1093.

Fig. 1.
Front view of pinhole collimator.

Fig. 2.
Side view of pinhole collimator.

Fig. 3.
Simultaneous dual-isotope SPECT images of a rat.
Fig. 1. Front view of pinhole collimator.
Fig. 2. Side view of pinhole collimator.
Fig. 3. Simultaneous dual-isotope SPECT images of rat.