Protective effect of lutein on ischemia-reperfusion injury in rat small intestine.

Ogura, Wakako; Itagaki, Shirou; Kurokawa, Toshimitsu; Noda, Toshihiro; Hirano, Takeshi; Mizuno, Satoshi; Iseki, Ken

Biological & Pharmaceutical Bulletin, 29(8), 1764-1766

https://doi.org/10.1248/bpb.29.1764

2006-08

B&PB29-8.pdf
Protective Effect of Lutein on Ischemia-Reperfusion Injury in Rat Small Intestine

Wakako Ogura,a Shirou Itagaki,a Toshimitsu Kurokawa,a Toshihiro Noda,a Takeshi Hirano,a Satoshi Mizuno,b and Ken Iseki*a

a Department of Clinical Pharmaceutics and Therapeutics, Graduate School of Pharmaceutical Sciences, Hokkaido University; Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan; and b Kemin Foods Asia; Toranomon 34MT Bldg., IF, 1F, 1-25-5 Toranomon, Minato-ku, Tokyo 105-0001, Japan.

Received May 25, 2006; accepted May 29, 2006; published online June 5, 2006

Lutein is a carotenoid and it has antioxidant effects. Lutein may have a protective effect on ischemia reperfusion (I/R) injury induced by free radical species. However, little is known about the protective effect of lutein on I/R injury in vivo. The present study was undertaken to clarify the protective effects of lutein on I/R injuries in the rat small intestine. Administration of lutein before intestinal I/R attenuated the damage to villi and deciliation of enterocytes and suppressed the increase in lipid peroxide.

Key words lutein; ischemia-reperfusion; carotenoid; antioxidant

Lutein is a carotenoid that is present in deep-yellow vegetables such as spinach and kale. It has a structure similar to that of beta-carotene, which is the forerunner material of vitamin A.1–4 Vitamin C and vitamin E have received much attention recently due to their antioxidant activities.5–9 It has been reported that lutein modulates cellular oxidative status. Since lutein has maximum absorption at 445 nm, it can act as a blue-light filter (400–460 nm).5–7 It is well known that carotenoids, such as lutein and zeaxanthin, are macular pigments that are located in the macula lutea, yellow spots, between incoming photons and photoreceptors. Since yellow spots contribute to eyesight, the lack of the macular pigments brings age-related macular degeneration (ARMD).8–10 Lutein has been shown to play an important role in the prevention of ARMD, cataract and other blinding disorders. It has been reported that lutein improves visual function in ARMD patients, according to the results of the randomized, double-masked Lutein Antioxidant Supplementation Trial (LAST).11 Recently, it has been revealed that reactive oxygen is responsible for ARMD. The protective effects of the carotenoids on ARMD have been extensively studied.12–14 Besides ARMD, it has been shown that free radical species contribute to the development of ischemia-reperfusion (I/R) injuries, cataract, glaucoma and cancer. In this study, we focused on the protective effect of lutein on intestinal I/R injury.

Since a large amount of oxygen flows in tissue at reperfusion, reactive oxygen is thought to play a major role in I/R failure. Reactive oxygen participated in the I/R failure have received attention.12–19 It has been shown that oxidation can be prevented by pretreatment with an antioxidant such as allopurinol or N1-nitro-L-arginine methyl ester.20–22 Disruption of the intestinal mucosal barrier predisposes to extraluminal egress of potentially harmful bacteria and/or their toxins. Attention has been focused on the role of the gastrointestinal tract as a source of pathogens that may cross a disrupted mucosal barrier initiating a septic process and perpetuating multiorgan failure.22,23

The present study was undertaken to clarify the protective effects of lutein on I/R injury of rat small intestine.

MATERIALS AND METHODS

Chemicals Lutein was kindly supplied by Kemin Foods, L.C. (Tokyo, Japan) and by Koyo Mercantile Co., Ltd. (Kyoto, Japan). All other reagents were of the highest grade available and used without further purification.

Animals Male Wistar rats, aged 7 to 9 weeks (250–350 g in weight), were obtained from NRC Haruna (Gunma, Japan). The housing conditions were the same as those described previously.23 The experimental protocols were reviewed and approved by the Hokkaido University Animal Care Committee in accordance with the “Guide for the Care and Use of Laboratory Animals”.

Intestinal I/R Model Surgical procedures were carried out as described in a previous report with some modification.20 Rats were not fed for 16 h prior to the experiments but were allowed free access to water. The animals were anesthetized with sodium pentobarbital (30 mg/kg body weight, i.p. injection). Through a midline laparotomy, each rat was subjected to 30 min of ischemia by occluding the superior mesenteric artery (SMA), and reperfusion was produced by removing the clamp. The abdomen was then covered with a sterile plastic wrap. Experimental rats were killed at 1 h after reperfusion, at this time tissue samples were excised. Lutein was administered in emulsion as a 0.2% liquid solution (0.5 mg/kg body weight).

Tissue Sampling The 15-cm-long portion of the intestine was excised to measure the protein and lipid peroxide contents and the amounts of lutein that accumulated in the intestine. The intestine was cleansed in ice-cold saline and then homogenized in 2.0 ml distilled water using a glass Teflon homogenizer with 20 strokes. Protein content was measured by the method of Lowry et al.24

TBA Analysis The amount of lipid peroxide in the intestine was determined as that of malondialdehyde (MDA) by the method of Ohkawa et al. with some modification.25 Thiobarbituric acid (TBA) solution consisted of 2.6 mm TBA, 918 mm trichloroacetic acid, 0.3 mm HCl, and 1.8 mm 2,6-di-tert-butyl-4-methylphenol (BHT) in 22% ethanol. The reaction mixture contained 0.2 ml of tissue homogenate, 0.2 ml of 8.1% sodium dodecyl sulfate (SDS), 1.5 ml of 20%
In this study, we investigated the antioxidative activity of lutein using a rat I/R injury model.
To study, pretreatment with lutein could not prevent the loss of villi but could prevent I/R injury of crypt layers. Since intestinal mucosa has an extremely high reproduction ability, pretreatment with lutein advances the regeneration of intestine, and decreases the tissue injury from I/R.

Acknowledgements We thank Kemin Foods, L.C. and Koyo Mercantile Co., Ltd. for providing lutein and supporting this study.

REFERENCES AND NOTES


