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Strongly nonlinear waves and streaming in the near field
of a circular pistona)

Takeru Yano and Yoshinori Inoue
Department of Engineering Science, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

~Received 13 April 1995; accepted for publication 30 January 1996!

The propagation of nonlinear waves radiated by a circular piston mounted in an infinite plane rigid
wall is numerically studied without the restriction of weak nonlinearity, in the case that the radius
of piston is comparable with a typical wavelength of the radiated wave. The piston executes
harmonic oscillations and the wave is thereby emitted into an ideal gas of semi-infinite extent, in
which the dissipation effect is supposed to be negligible everywhere except for the discontinuous
shock front. The wave phenomenon in the near field caused by the strongly nonlinear effect
combined with the diffraction effect is clarified by solving the Euler equations with the upwind finite
difference scheme. Owing to the strong nonlinearity, not only the waves emitted directly from the
piston face but also the diffraction waves from the edge of the source are distorted and developed
into the shock waves. This can lead to a multiple interference of shock waves in the near field. The
separation phenomenon at the edge is also shown. Another remarkable phenomenon is the excitation
of strong streaming~a mean mass flow!, which forms a vortex-ring-like flow pattern and rarefies the
gas near the source during the several periods of oscillation of the piston. By using a regular
perturbation expansion, acoustic streaming in the weakly nonlinear problem is also analyzed, which
does not show such a vortex-ring-like flow pattern and never rarefies the gas near the source.
© 1996 Acoustical Society of America.

PACS numbers: 43.25.Vt, 43.25.Nm, 43.25.Cb, 43.25.Jh

INTRODUCTION

We shall consider the nonlinear propagation of sound
waves radiated by a circular piston mounted in an infinite
plane rigid wall. Most analyses for the nonlinear effect on
such a diffractive wave radiated by a piston source have so
far been confined to the weakly nonlinear and slightly dif-
fractive acoustic beam, i.e., to the case that the wave ampli-
tude is finite but sufficiently small and the source radius is
sufficiently large compared with a typical wavelength.1–5 In
this paper, we shall numerically investigate the propagation
of the nonlinear waves emitted into an ideal gas from a har-
monically oscillating circular piston without imposing the
restriction of weak nonlinearity, in the case that the piston
radius is comparable with a typical wavelength.

Precisely speaking, we shall consider the wave motion
characterized by the conditions
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whereM is the acoustic Mach number, Re is the acoustic
Reynolds number, andR is the ratio of the piston radiusR*
to a typical wavelength of the radiated sound
2p/k52pc0/v ~c0 is the speed of sound in an initial undis-

turbed gas,a and v are an amplitude and an angular fre-
quency of harmonic oscillation of the piston,g is the ratio of
specific heats for the ideal gas, andd* is the diffusivity of
sound6!. The first conditionM5O(1) means that the wave is
a strongly nonlinear one, i.e., its profile is rapidly distorted
and this leads to the shock formation near the piston. The
second condition Re@1 means that we can regard the shock
as a discontinuity, and may ignore the dissipation effect ev-
erywhere except for the discontinuity.7 The third condition
R5O(1) means that the diffraction effect cannot be ne-
glected so that the wave cannot, even in the near field,8 be
regarded as a collimated beam.

Recently, we have investigated the propagation of the
strongly nonlinear plane wave ofM5O(1) radiated by an
infinite plate oscillating harmonically,9 and the propagation
of the strongly nonlinear spherical wave ofM5O(1) emit-
ted from a harmonically pulsating sphere.10 In the present
paper, we shall take up a piston problem. By applying a
numerical method based on a high-resolution upwind finite
difference scheme by Osher and Chakravarthy11,12 to the Eu-
ler equations~mass, momentum, and energy conservation
laws!, we shall clarify the wave phenomenon in the near field
caused by the strongly nonlinear effect combined with the
diffraction effect. We here remark that most of the relevant
studies in the past have been focused on the far-field prob-
lems ofM!1, Re@1, andR@1 ~large transducer!, where the
parabolic approximation has often been utilized.1,3–5 In the
present problem ofM5O(1), Re@1, and R5O(1), not
only the waves emitted directly from the piston face but also
the diffraction waves from the edge of the source are dis-
torted and developed into the shock waves near the source.
This leads to a complex phenomenon including a multiple

a!A part of the work reported here is found inAdvances in Nonlinear Acous-
tics, edited by H. Hob,k ~World Scientific, Singapore, 1993!, pp. 583–
588.
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interference~intersection! of shock waves in the near field
~see Fig. 11 in Sec. III!.

Furthermore, we examine acoustic streaming~a mean
mass flow!. We shall show that streaming forms a vortex-
ring-like flow pattern in the near field, and that a time-
averaged density of the gas near the source is reduced by the
streaming during the several periods of oscillation of the
piston. Such a vortex-ring-like mass flow as is excited in the
strongly nonlinear case does not appear in the steady state of
the weakly nonlinear case ofM!1 and Re@1; this is verified
by using a regular perturbation expansion inM ~see Appen-
dices A–D!. It is also shown that the gas near the source is
not rarefied by the weakly nonlinear streaming. We empha-
size here that the weakly nonlinear streaming occurs without
any dissipation process, as streaming analyzed in Refs. 13–
16. The maximum value~maximum velocity! of streaming in
the strongly nonlinear case is considerably large compared
with that of streaming caused by the strongly nonlinear plane
waves with the sameM .9

In Ref. 17, Lighthill pointed out that the strong stream-
ing motion in the far field generated by a powerful narrow
sound beam becomes a turbulent jet. Although we don’t ex-
amine the far-field behavior of streaming, the turbulent
streaming jet may not be formed in the far field of the
present problem, because the wave motion concerned is
highly diffractive [R5O(1)] andhence the wave in the far
field may rather be a spherically diverging one than a narrow
beam. Another important remark was made in Ref. 17: the
strong streaming motion18 should be analyzed without ne-
glecting the inertia term~nonlinear term! in the governing
equations of streaming, which are the equations of viscous
incompressible flow with the driving force being determined
from the sound field.17 In the present paper, we shall not use
the equations of streaming but numerically solve the funda-
mental equations of gas dynamics, i.e., the Euler equations.
This procedure is allowed by the condition Re@1.

We here comment on a difficulty inherent in the problem
of a circular piston of planar face mounted in a plane rigid
wall; the difficulty does not seem to have been discussed.
The edge of the source forms a convex right-angled corner in
the (x* ,r * ) plane ~see Fig. 1!. In inviscid potential flows,
the fluid velocity becomes infinity at such a corner,19 and in
high Reynolds number viscous flows the vertex of the corner
is a separation point of boundary layer.20We shall show that,
in the linear problem of Re@1 ~potential flow!, the radial
component of the fluid velocity logarithmically diverges at
the edge~see Sec. II and Appendix B!. In the analytical
treatment for the linear case and the weakly nonlinear case of
M!1 and Re@1, instead of eliminating the singularity, we
can confirm that the obtained result is correct except for the
small neighborhood of the singular point~see Appendices
A–D!. The numerical results for the strongly nonlinear case
of M5O(1) and Re@1 show the separation phenomenon
and formation of vortex. Although the viscous effect is not
included in the Euler equations, solutions containing separa-
tion at sharp trailing edge are obtained in many computa-
tional researches,21,22 without invoking a Kutta condition,23

which states that for high Reynolds number flow past a sharp
trailing edge the flow leaves the body at the edge indepen-

dent of the Reynolds number and the edge can be a source of
vorticity. The Euler equations admit vortex sheets as weak
solutions, so that vortex sheets can be ‘‘captured’’ in the
same sense that shocks can be captured and a Kutta condi-
tion need not be enforced explicitly. In the solution of the
Euler equations, the separation is signified by the vortex
sheet being shed from the edge.24 The numerical result
shown in Sec. III C seems to be correct at least qualitatively,
although the vortex sheet is smeared out over mesh cells by
the numerical dissipation.

In Sec. I, the problem is formulated mathematically. In
Sec. II, the familiar results for the linear wave are recalled
for comparison with the strongly nonlinear wave examined
in Sec. III. The flow pattern for weakly nonlinear streaming
is also shown. In Sec. III, we shall present the results of the
numerical computation for the strongly nonlinear waves. The
profiles are contrasted with those of the linear solution, and
the on-axis profiles are compared with the profiles of the
strongly nonlinear plane wave. The evolution and interfer-
ence of shock waves are demonstrated. The excitation of
strong streaming and production of vorticity at the shock
front are also analyzed in this section. The numerical solu-
tion displays the separation phenomenon at the edge. In Sec.
IV, we shall summarize the main results. The reformulation
of the problem for the weakly nonlinear waves and an ana-
lytical expression for weakly nonlinear acoustic streaming
are presented in Appendices A–D. The numerical method is
briefly explained in Appendix E.

I. FORMULATION OF THE PROBLEM

In order to formulate the problem, we shall introduce the
following nondimensional variables:

FIG. 1. Cutaway view: circular piston with a planar face of radiusR* is
mounted in an infinite plane rigid wall. The piston executes a harmonic
oscillation such that the displacement of its face from the wall at timet* is
a~cosvt*21!.
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wherex* is the distance from the wall,r * is the distance
from the axis of the piston, i.e., thex* axis ~see Fig. 1!, u*
and v* are, respectively, thex* and r * components of the
fluid velocity, r* is the density of the gas, andp* is the
pressure~r0 is an initial undisturbed density!.

The condition Re@1 allows neglecting the energy dissi-
pation effect due to viscosity and thermal conductivity of the
gas until a shock wave emerges in the wave field. Hence, at
least until the time of shock formation, we can use the sys-
tem of Euler equations for the flow with cylindrical symme-
try around thex axis:
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whereEt5r(u21v2)/21p/(g21) is the normalized total
energy of the ideal gas per unit volume. Once a shock is
formed, the energy dissipation can no longer be ignored,

FIG. 2. Profile of the pressure att512p in the linear case ofM→0: ~a!
R51, ~b! R52, and~c! R53.

FIG. 3. Radial component of the fluid velocity forR53 at t511.5p in the
linear case ofM→0. A small closed circle denotes the singular point (x,r )
5(0,2pR).
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which must in reality be produced at least at the shock front.
As is generally known, however, a shock solution can be
represented as a discontinuity in the system of equations~3!–
~6!, owing to the condition Re@1. We can thus employ this
system even after the shock formation time. We shall nu-
merically obtain such a discontinuous solution by using the
high-resolution upwind finite difference scheme,11,12 under
the initial and boundary conditions described below.

The gas is supposed to be uniform and at rest fort<0.
The initial conditions att50 are therefore

u5v50, r51, p51/g ~x>0!. ~7!

We shall take up the case that the planar piston is
mounted in the plane rigid wall. The instantaneous location
of the piston face,X(t), is given by

X~ t !5M ~cos t21! ~ t.0! ~8!

~see Fig. 1!. The boundary conditions on the piston surface
and on the wall may therefore be expressed as follows:

u52H~2pR2r !H~r !M sin t

at x5H~2pR2r !H~r !X~ t ! ~ t.0!, ~9!

FIG. 4. Pressure contour att512p in the linear case ofM→0. The normal-
ized pressurep1 is plotted in steps of 0.2. The dashed curve is the boundary
between the steady and transient state:~a! R51, ~b! R52, and~c! R53.
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v50 at r52pR for X~ t !,x,0 ~ t.0!, ~10!

whereH(r ) is the Heaviside unit step function defined as

Hr5 H10 ~r.0!,
~r,0!. ~11!

In addition, owing to the continuity and axial symmetry,
we let v50 on thex axis.

II. WEAKLY NONLINEAR PROBLEM IN THE NEAR
FIELD

Before proceeding to the strongly nonlinear waves, we
shall discuss some essential properties of the weakly nonlin-
ear wave ofM!1, Re@1, andR5O(1) in the near field. For
the case of the weakly nonlinear waves, we reformulate the
problem in terms of the velocity potential~see Appendix A!.

Applying a regular perturbation expansion inM , we can ob-
tain analytical results to a certain extent for the near field
~Appendices B–D!.

A. Linear propagation in the near field

In the near field of the weakly nonlinear waves, the dis-
tortion of wave profile due to the nonlinear effect may be
neglected, i.e., the propagation process is linear at least to the
leading order of approximation. We therefore take up the
linear propagation, which has been well examined by many
authors, and the propagation property of which is now famil-
iar ~for the review of representative contributions, see Refs.
25 and 26!. One of the most important phenomena in the
near field of the linear wave is the diffraction and the inter-
ference resulting from it, which we demonstrate here for
comparison with the strongly nonlinear waves examined in
Sec. III.

FIG. 5. Weakly nonlinear acoustic streaming. Arrows signify the time-
averaged mass flux density vectorvs to the approximation ofO(M 2). The
singular point, (x,r )5(0,2pR), is marked with a small open circle. A ref-
erence arrow, the size of which corresponds touvs/M2u51, is shown on the
top of each figure:~a! R51, ~b! R52, and~c! R53.
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In Appendix B, the linear solution is expressed in the
form of summation of a plane wave and a wave originating
from the edge of the source~a diffraction wave!. The linear
wave forms shown in Figs. 2–4 are obtained by numerical
integrations for Eqs.~B11!, ~B13!, ~B14!, and~B16! in Ap-
pendix B.

The pressure profile of the linear wave att512p is
shown in Fig. 2, where a normalized sound pressure
(gp21)/gM5p1 ~in the limit as M→0! given by Eqs.

~B11! and ~B14! in Appendix B is plotted~the subscript 1
signifies the first-order term in a regular perturbation expan-
sion inM , see Appendix A!. With increase inR, the com-
plexity of the wave field due to interference increases in a
region 0,x and 0<r<2pR as demonstrated in Refs. 25 and
27.

In Fig. 3, we depict the profile of the radial component
of the fluid velocity v/M5v1 ~in the limit asM→0! at
t511.5p, which is given by Eqs.~B13! and~B16! in Appen-

FIG. 6. Pressure profile att512p in the strongly nonlinear case:~a! R51 andM50.1, ~b! R51 andM50.4, ~c! R52 andM50.1, ~d! R52 andM50.4, ~e!
R53 andM50.1, and~f! R53 andM50.4.
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dix B. As shown in Appendix B,v1 diverges logarithmically
at (x,r )5(0,2pR), so thatv1 is not plotted at the point in
Fig. 3. However, as can be seen from Fig. 3,v1 remains of
the order of unity everywhere except for a neighborhood of
the singular point, because the rate of divergence is very
slow. Owing to this fact, we may regard the solution as the
correct one except for the very small neighborhood of the
singular point.

Figure 4 shows the contour of the pressurep1 at t512p,
plotted in steps of 0.2. The dashed curve denotes the bound-
ary between a steady-state region and a transient region at
t512p, i.e.,p1(x,r ,t)5p1(x,r ,t12p) for t>12p in the re-
gion enclosed with the dashed curve~Appendix B!. As R
increases, the complicated interference pattern is formed
within a region 0,x and 0<r<2pR. The diffraction wave

FIG. 7. Radial velocity att511.5p in the strongly nonlinear case ofR53
andM50.4.

FIG. 8. Pressure profile on the axis att512p. The strongly nonlinear wave
of R52 andM50.1 denoted by a bold solid curve is compared with~a! the
linear wave ofR52 denoted by a thin solid curve, and with~b! the strongly
nonlinear plane wave ofM50.1 denoted by a dashed curve~cf. Ref. 9!.

FIG. 9. Pressure profile on the axis att512p. The strongly nonlinear wave
of R52 andM50.4 denoted by a bold solid curve is compared with~a! the
linear wave ofR52 denoted by a thin solid curve, and with~b! the strongly
nonlinear plane wave ofM50.4 denoted by a dashed curve~cf. Ref. 9!.
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FIG. 10. Pressure contour in the strongly nonlinear case. The normalized pressure (gp21)/gM is plotted in steps of 0.2:~a! R51 andM50.1, ~b! R51 and
M50.4, ~c! R52 andM50.1, ~d! R52 andM50.4, ~e! R53 andM50.1, and~f! R53 andM50.4.
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outside the region looks like a spherical wave emitted from a
source located at (x,r )5(0,2pR).

B. Weakly nonlinear acoustic streaming

We shall examine weakly nonlinear acoustic streaming,
in line with the method used in Refs. 13–16. To do so, we
shall define a time-averaged mass flux density vectorvs
[ (ru,rv) as

ru~x,r ,t;T!5
1

T E
t2T

t

r~x,r ,t!u~x,r ,t!dt, ~12a!

rv~x,r ,t;T!5
1

T E
t2T

t

r~x,r ,t!v~x,r ,t!dt, ~12b!

whereT is an interval for time average.
For t . Ax21(2pR1r )2 for a given point (x,r ), the

linear wave motion becomes periodical with period 2p/v
~Appendix B!. In what follows, we assume thatt is suffi-
ciently large, and we letT52p. To the approximation of
O(M2), Eq. ~12! can then be reduced to

vs5M2~r1u11ū2 ,r1u11 v̄2!, ~13!

where the bar denotes the mean value in the sense of Eq.
~12!, and the subscript 2 signifies the second-order term in a
regular perturbation expansion inM ~see Appendix A!. Con-
sequently,vs is independent oft to the approximation of
O(M2). In the strongly nonlinear case, however,vs weakly
depends on botht andT ~see Sec. III B!.

The explicit representations forū2 and v̄2 are given by
Eqs. ~C8! and ~C9! in Appendix C, and those forr1u1 and
r1v1 are given by Eqs.~D1!–~D4! in Appendix D. The flow
patterns are shown by arrows in Fig. 5, which are obtained
by numerical integrations. We have numerically confirmed
that the mean mass flowvs is divergence-free vector field~as
incompressible flow!, and that the total net mass flow across
the mean surface of the piston face is zero~see Appendix C!.
Clearly, such a ‘‘steady’’ flow cannot rarefy the gas in the
field.

Figure 5 shows that the mean mass flowvs meanders
and locally flows backward, which forms a contrast to the
well-known Eckart streaming28 ~note that the large scale vor-
texes in Eckart streaming are ascribed to the viscosity and
the fact that the medium is contained in a cylinder of finite
length!. With increase inR, such a fine ‘‘structure’’ of the
flow pattern becomes conspicuous in front of the piston face
@Fig. 5~b! and~c!#. We shall emphasize that the weakly non-
linear streaming occurs without any dissipation process, con-
trary to Eckart streaming~see also Refs. 13–16!.

III. STRONGLY NONLINEAR WAVES AND STRONG
STREAMING

In this section, we shall present some typical numerical
results for the strongly nonlinear waves ofM5O(1), Re@1,
andR5O(1). Thenumerical method used here is based on a
high-resolution upwind finite difference scheme by Osher
and Chakravarthy,11,12 which has recently been applied by
the present authors to the problems of the strongly nonlinear
plane waves9 and spherical waves.10 The computations wereFIG. 10. ~Continued.!
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performed on the supercomputer HITAC S-820 at Hokkaido
University. The numerical implementation is briefly shown
in Appendix E. The ratio of specific heatsg is fixed atg51.4
~air! for all computations.

A. Evolution and interference of shock waves

The pressure profiles att512p are shown in Fig. 6, in
which one can see that, as in the linear case, the strongly
nonlinear wave field can also be regarded as the summation
of the wave directly radiated from the piston and the diffrac-
tion wave, i.e., the wave emitted from the edge of the piston
~see also Fig. 10!. Owing to the strongly nonlinear effect, the
wave directly radiated from the piston is immediately dis-
torted and develops into the shock in the near field. For
M50.1, an anomalous positive pressure peak emerges on the
axis near the piston@Fig. 6~a!, ~c!, and~e!#. AsM increases,
the shock becomes strong and hence the energy dissipation at
the shock front also increases, which results in the consider-

able decay of the wave amplitude@Fig. 6~b!, ~d!, and~f!#. For
R>2, the strong nonlinearity appreciably distorts the diffrac-
tion waves@see Fig. 6~c!–~f!#. WhenM increases to 0.4, the
shock front has a rugged crest with spiky bump@Fig. 6~d!
and ~f!#, and the profile is entirely different from the linear
one~cf. Fig. 2!. It can be seen from Fig. 6~e! and~f! that, on

FIG. 11. The magnification of Fig. 10, emphasizing the intersection of
shocks in the vicinity of the source:~a! R51 andM50.4, ~b! R52 and
M50.4, and~c! R53 andM50.4.

TABLE I. The maximum value of the time-averaged mass flux density.

Acoustic
Mach number

M

Present result
Strongly nonlinear

plane waveaR51 R52 R53

0.1 0.037 0.018 0.018 0.002
0.2 0.207 0.067 0.113 0.009
0.3 0.311 0.140 0.186 0.018
0.4 0.393 0.234 0.240 0.033

aReference 9.
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FIG. 12. Strongly nonlinear acoustic streaming. Arrows signify the time-averaged mass flux density vectorvs . A reference arrow, the size of which
corresponds touvs/M2u51, is shown on the top of each figure. A closed circle signifies the point whereuvsu has the maximum value:~a! R51 andM50.1, ~b!
R51 andM50.4, ~c! R52 andM50.1, ~d! R52 andM50.4, ~e! R53 andM50.1 and~f! R53 andM50.4.
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the axis, a new peak is produced atx525.8 in the case of
R52, and two new peaks are produced atx519.6 and 27.8
in the case ofR53 @cf. Fig. 2~c!#.

In Fig. 7, the radial velocity in the case ofR53 and
M50.4 is plotted. It suggests that there is no singularity in
the field, while in the linear case the radial velocity becomes
infinity at the point (x,r )5(0,2pR) ~see Fig. 3 and Sec.
III C !.

The pressure profile on the axis in the case ofR52 is
compared with that of the linear wave with the sameR in
Figs. 8~a! and 9~a!, and is compared with that of the strongly
nonlinear plane wave with the sameM in Figs. 8~b! and 9~b!.
In the case ofM50.1 andR52, the nonlinear wave has
positive spiky peaks~see Fig. 8!. In the case ofM50.4 and
R52, the amplitude of the shock wave is reduced by the
dissipation of energy at the shock front~see Fig. 9!. The
shock in the first wave cycle swallows the negative phase
ahead of it, because the shock speed is larger than the sound
speed. The same phenomenon has already been found in the

problem of the strongly nonlinear plane waves.9 Figures 8~b!
and 9~b! display the strong nonlinearity of the wave on the
axis, as compared with the plane wave with the sameM .

Figure 10 shows the pressure contour, where the shock
front is indicated by the contour lines distributed densely.
Figure 11~a!–~c! are the magnifications of Fig. 10~b!, ~d!,
and ~f!, respectively. In these figures, in addition to shocks,
the compression waves with steepened fronts are indicated
by the folding contour lines, and sparse contour curves sig-
nify the expansion waves. The diffraction waves emanating
from the edge of the source propagate ‘‘spherically,’’ with
being distorted by the nonlinear effect. As the wave ap-
proaches the axis, owing to the geometrical converging ef-
fect, the nonlinear effect becomes strong and hence the wave
evolves into the shock. Consequently, the main shocks emit-
ted from the piston face intersect with the shocks developed
from the diffraction waves from the edge of source. That is,
a multiple interference~intersection! of shock waves occurs
~see Fig. 11!.

FIG. 13. Contour of the time-averaged densityr̄ at t512p is plotted in
steps of 0.01 in the neighborhood of the piston. A small closed circle de-
notes the point where the mean density is minimum:~a! R51 andM50.4.
The minimum value is 0.795 at (x,r )5~8.17, 0!. ~b! R52 andM50.4. The
minimum value is 0.816 at (x,r )5~5.03, 0!. ~c! R53 andM50.4. The
minimum value is 0.816 at (x,r )5~3.14, 2.51!.
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B. Excitation of streaming and production of vorticity
at the intersection of shocks

Acoustic streaming is one of the most interesting phe-
nomena in the propagation process of the strongly nonlinear
waves. In the previous works of the strongly nonlinear plane
wave9 and spherical wave,10 we have shown that streaming
gradually rarefies the gas in the vicinity of the source. Note
that in these problems streaming disappears in the weakly
nonlinear limit in the near field~see Refs. 9 and 29!.

In the strongly nonlinear case, contrary to the weakly
nonlinear case treated in Sec. II, the mean mass flowvs
5 (ru,rv) weakly depends onT and t, because the wave
motion is not in a steady state but in a quasi-steady state.9,10

The results presented in the following are calculated in terms
of T52p, as in Refs. 9 and 10.

Figure 12 shows that streaming forms a circulatory flow
pattern in front of the piston face, which is a cross section of
a vortex-ring-like flow, superposed on the fine structure of
weakly nonlinear streaming~cf. Fig. 5!. For a fixedM andR,
the location of the core of the vortex-ring-like flow does not

change for the duration of computation~from the time of
formation of the vortex ring to the timet512p!. With in-
crease inM , the core of the vortex-ring-like flow approaches
the edge of the piston. Note that, in the case ofM50.1 and
R53, the maximum value ofuvsu is attained at a point outside
the frame of the graph, (x,r )5~28.3, 0!. In Table I, the maxi-
mum value ofuvsu is compared with that of the strongly non-
linear plane wave.9 The streaming excited in the piston prob-
lem is much stronger than that in the plane wave problem,
although the region wherevs is strong is small as shown in
Fig. 12.

We also examine a time-averaged density of the gas
defined as

r̄ ~x,r ,t;T!5
1

T E
t2T

t

r~x,r ,t!dt. ~14!

As can be seen in Fig. 13, the gas in the neighborhood of the
piston is rarefied by the streaming. Since the streaming is
strong, the rarefaction of the gas occurs during several peri-
ods of oscillation of the piston; the rate of the rarefaction is

FIG. 14. Contour of the magnitude of time-averaged vorticityV̄ at t512p is
plotted in steps of 0.01 in the neighborhood of the piston:~a! R51 and
M50.4. The maximum is 0.30 at~1.26, 5.65! and the minimum is20.67 at
~1.26, 4.40!. ~b! R52 andM50.4. The maximum is 0.43 at~1.26, 11.94!
and the minimum is20.52 at ~0.63, 10.05!. ~c! R53 andM50.4. The
maximum is 0.27 at~1.26, 18.22! and the minimum is20.56 at ~0.63,
16.34!.
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almost twice as large as that in the plane wave problem.9

Even if the gas is initially uniform and at rest, and the
viscosity of the gas is negligible except for the shock front,
once a nonplanar shock wave of nonuniform strength is
formed, the flow behind the shock may become rotational. In
the case of a weak and steady shock, however, since the
production of vorticity across the shock front is of the third
order of the shock strength, the flow behind the shock can
continue to be regarded as the irrotational one.30 However, in
the problem concerned, the vorticity production at the shock
front may not be negligible. In Fig. 14, we shall show the
magnitude of time-averaged vorticityV̄ defined as

V̄~x,r ,t;T!5
1

T E
t2T

t F]v]x ~x,r ,t!2
]u

]r
~x,r ,t!Gdt.

~15!

The vorticity is mainly produced at the intersection point
of the shock from the piston face and the shock developed
from the diffraction wave. Roughly speaking, owing to the
assumption of Re@1, the generated vorticity is not diffused
but convected and strengthened by local compression~or
weakened by local expansion!.31 Since the flow field can, to
a very rough approximation, be regarded as periodic, the
effects of convection and local compression and expansion
may be cancelled by time average. As a result, the time-
averaged vorticity is localized in a narrow region along the
locus of the intersection point of shocks. The narrow region
of concentration of the vorticity corresponds to the region

where the mean mass flow shown in Fig. 12 is strong.
In the strongly nonlinear case, as is seen from Fig. 12,

streaming can be regarded as the superposition of a vortex-
ring-like strong flow and a weak flow similar to that shown
in Sec. II. The excitation of strong flow with intense rarefac-
tion effect is attributed to the formation of moderately strong
shocks which propagate with entraining the gas. Further-
more, the mutual interference of moderately strong shocks
results in the production of vorticity which leads to the
vortex-ring-like flow. In the weakly nonlinear case, the
shock is too weak to entrain the gas appreciably, and hence
the gas is not rarefied@at least to the approximation of
O(M2)#. The shock interference does not occur because the
nonlinear effect is too weak to transform a diffraction wave
into a shock. Therefore, the vorticity produced at shock
fronts is negligibly small. Accordingly, as the nonlinearity is
reduced from the strongly nonlinear case, the vortex-ring-
like flow disappears, while the weak streaming motion re-
mains, whose generation mechanism is not relevant to any
dissipation process~see, e.g., Ref. 15!. We demonstrate in
Figs. 15 and 16 that the shock interference is weakened and
vortex-ring-like flow vanishes when the acoustic Mach num-
ber is reduced toM50.05. Clearly, the numerical result for
M50.05 shown in Fig. 16 supports the validity of the
weakly nonlinear analysis presented in the Appendices.

C. Separation and generation of vortex at the edge

During a half period fromt52np to t5(2n11)p, the
piston is drawn back fromx50 to x522M , when the gas is
sucked into the hole in the wall~see Fig. 1!. At that time, the
flow separates at the edge and a vortex is generated. The
vectors of computed velocity near the edge of the source at
t511p are plotted in Fig. 17, where the isovorticity contours

FIG. 15. Pressure contour in the case ofM50.05 andR53 at t516p. The
shock interference phenomenon almost disappears@cf. Fig. 10~f!#.

FIG. 16. Streaming without vortex-ring-like flow in the case ofM50.05
andR53 at t516p. At this time, the initial transient effect still remains in
the shadowed region@cf. Fig. 5~c!#.
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are superimposed. The separation introduces a vortex sheet
~the surface of tangential discontinuity! in the flow field ~in
Fig. 17, the vortex sheet is smeared out over mesh cells by
the numerical dissipation!. The vortex sheet rolls up into a
vortex ~circulatory flow!. Note that we have not fixed the
point of separation in any way and the circulating region
develops spontaneously in the course of computation. The
vorticity originated from the vortex sheet does not consider-
ably affect the mean vorticity field outside the neighborhood
of the source for the same reason as stated in Sec. III B~see
Fig. 14!.

IV. CONCLUSION

In Sec. III, we have exhibited several interesting phe-
nomena caused by the strongly nonlinear effect combined
with the diffraction effect in the piston problem of
M5O(1), Re@1, andR5O(1), although the numerical re-
sult has been confined in the near field and in an initial stage
of evolution of the wave. We have also revealed the property
of weakly nonlinear acoustic streaming in Sec. II B. In the
following, we shall briefly summarize the main results.

~i! The strongly nonlinear effect rapidly distorts the pro-
file of the wave radiated directly from the source, and
this leads to the shock formation near the source.

~ii ! The strongly nonlinear effect also distorts the profile
of the diffraction wave emanating from the edge of
the piston, and the wave also evolves into the shock
wave near the axis. Combined with~i!, this leads to a
multiple interference of shock waves.

~iii ! Both the weakly and the strongly nonlinear waves ex-
cite acoustic streaming in the near field. In particular,
the weakly nonlinear streaming is induced without
any dissipation process.

~iv! Streaming produced in the case ofM5O(1) is con-
siderably strong as compared with that in the strongly
nonlinear plane waves with the sameM . The strong
streaming reduces a mean density of the gas in the
vicinity of the piston, during the several periods of
harmonic oscillation of the piston.

~v! The strong streaming forms a vortex-ring-like flow
pattern, in addition to a fine structure which appears
in the weakly nonlinear streaming. The core of the
vortex-ring-like flow approaches the piston face with
increase inM .

~vi! The vorticity produced behind the shock is localized
in a narrow region along the locus of the intersection
point of shocks. The region of concentration of the
vorticity corresponds to that where the mean mass
flow is strong.

~vii ! In the solution of the linear potential flow, the radial
velocity diverges at the edge of the source, because
the potential flow does not admit the generation of
vortex sheet, i.e., separation. The numerical solution
for the strongly nonlinear wave can make clear the
feature of separation and formation of vortex at the
edge.
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APPENDIX A: REFORMULATION OF THE PROBLEM
IN THE WEAKLY NONLINEAR CASE

The purposes of Appendices A–D are~i! to show that
the well-known linear solution has a singularity at the edge
of the source, i.e., the radial component of fluid velocity
diverges at the edge, and~ii ! to examine acoustic streaming
in the weakly nonlinear case ofM!1 and Re@1. The singu-
larity is originated from the assumption of irrotational flow.
In fact, the numerical solution presented in Sec. III demon-
strates the generation of vorticity at the edge and the fluid
velocity never diverges. In spite of the singularity, the linear
solution is widely accepted to be plausible. In the following
Appendices, we shall confirm that the linear solution may be
regarded as the correct solution except for a small neighbor-
hood of the edge.

For these purposes, we shall formulate the weakly non-
linear problem ofM!1, Re@1, andR5O(1) in terms of the
nondimensional velocity potentialF(x,r ,t), which is related
to the normalized fluid velocity as

u5
]F

]x
and v5

]F

]r
. ~A1!

The governing equation forF can be written in the form

S ]2

]x2
1

]2

]r 2
1
1

r

]

]r
2

]2

]t2DF5
]

]t F S ]F

]x D 21S ]F

]r D 2
1

g21

2 S ]F

]t D 2G , ~A2!

where cubic and higher-order terms inF are neglected. The
normalized pressurep and densityr are then expressed as

~gp!~g21!/g5rg21512~g21!F]F

]t
1
1

2 S ]F

]x D 2
1
1

2 S ]F

]r D 2G . ~A3!

FIG. 17. Snapshot of the velocity field in the vicinity of the edge of the
piston and the isovorticity contours att511p, when the piston face is lo-
cated atx522M520.8 ~M50.4!. The flow separates at the edge and the
circulatory flow occurs.
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Note that the definitions of the variables~except forF! are
the same as those in the strongly nonlinear case given by Eq.
~2! in Sec. I.

The initial condition~7! in Sec. I can be rewritten into

F5
]F

]t
50 at t50 for x.0. ~A4!

We consider the geometry of the boundary prescribed by
an equation

x5
M

2
~cos t21!erfcS r22pR

e D ~ t.0!, ~A5!

where e is a nondimensional parameter sufficiently small
compared with unity~see Fig. A1!, and erfc denotes the
complementary error function,

erfc~x!512
2

Ap
E
0

x

e2j2 dj.

Note that Eq.~A5! is reduced to Eq.~8! in Sec. I ase→0. By
using Eqs.~A1! and ~A5!, the boundary condition can be
expressed as

]F

]x
52

M

2
sin t erfcS r22pR

e D2M ~cos t21!
1

eAp

3expF2S r22pR

e D 2G ]F

]r

at x5
M

2
~cos t21!erfcS r22pR

e D for t.0. ~A6!

We shall remark that, in the limit ase→0, Eq. ~A6! differs
from Eqs.~9! and ~10! by a term including the Dirac delta
function ~see Appendix C!. As shown in Appendices B and
C, the delta function term does not appear in the lowest order
~linear approximation! and it is included in the second~and
higher order! approximation. The divergence ofv at the edge

is therefore not connected with it. If it were not for the delta
function term, the mass conservation law could not be satis-
fied in the second order of approximation~see Appendix C!.
In other words, the difference of Eq.~A6! from the boundary
conditions~9! and ~10! is inevitable for obtaining the solu-
tion to the second order under the assumption of irrotational
flow, which may be appropriate only outside a small region
near the edge. If one takes another approach~the method of
matched asymptotic expansions! that he separately treats the
small region with a Kutta condition and matches this ‘‘inner
solution’’ with an irrotational ‘‘outer solution,’’ then the
modified geometry described by Eq.~A5! is not necessary
and the velocity may not diverge. However, in order to ob-
tain a steady-state acoustic streaming valid outside the small
region, we only require the first-order solution and the steady
component of second-order velocity which are correct every-
where except for the small neighborhood of the edge. To this
end, the present simple approach is sufficient.

In order to solve the problem formulated above, we shall
expand the dependent variables in powers ofM :

S F
u
v

p2~1/g!

r21

D 5MS F1

u1
v1
p1
r1

D 1M2S F2

u2
v2
p2
r2

D 1O~M3!. ~A7!

Substituting expansion~A7! into Eqs.~A1!–~A6! and equat-
ing coefficients of like powers ofM , we can obtain the suc-
cessive systems of equations forF1 andF2 ~see below!.

APPENDIX B: LINEAR SOLUTION

In the leading order of approximation in the near field,
the weakly nonlinear problem formulated in Appendix A is
reduced to the initial- and boundary-value problem for the
linear wave equation:

S ]2

]x2
1

]2

]r 2
1
1

r

]

]r
2

]2

]t2DF150, ~B1!

F1u t505
]F1

]t U
t50

50 ~x.0!, ~B2!

]F1

]x U
x50

52H~2pR2r !H~r !sin t

~ t.0! ~ in the limit as e→0!. ~B3!

The fundamental expression of the solution is the so-called
Rayleigh surface integral,

F15
1

p E
0

p

dwE
0

2pR

H~ t2m!
sin~ t2m!s ds

m
, ~B4!

wherem 5 Ax21r 21s222rs cosw.
Introducing a new variableu,

u5arccosS s cosw2r

Ar 21s222rs cosw
D , ~B5!

and changing the variables of integration~s,w! to ~m,u!, we
can carried out the integral with respect tom. As a result, we

FIG. A1. Geometry of the smoothed boundary. The geometry shown in Fig.
1 can be obtained in the limit ase→0.
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obtain a useful representation:32 for r,2pR,

F15
1

p E
0

p

H~ t2mM !@cos~ t2mM !21#du

2H~ t2x!@cos~ t2x!21#; ~B6!

and for r>2pR,

F15
1

p E
uc

p

$H~ t2mM !@cos~ t2mM !21#

2H~ t2mm!@cos~ t2mm!21#%du, ~B7!

wheremM andmm are functions ofx, r , andu, defined as

mm5Ax21@A~2pR!22~r sin u!21r cosu#2, ~B8!

mM5Ax21@A~2pR!22~r sin u!22r cosu#2, ~B9!

anduc is given by

uc5p2arcsin~2pR/r !. ~B10!

A significant physical interpretation for Eqs.~B6! and ~B7!
has been given in Ref. 26.

The pressure and the velocity components are then given
as follows: forr,2pR,

p15r152
]F1

]t
5
1

p E
0

p

H~ t2mM !sin~ t2mM !du

2H~ t2x!sin~ t2x!, ~B11!

u15
]F1

]x
5

x

p E
0

p

H~ t2mM !
sin~ t2mM !

mM
du

2H~ t2x!sin~ t2x!, ~B12!

v15
]F1

]r
5
1

p E
0

p

H~ t2mM !aM sin~ t2mM !du; ~B13!

and for r>2pR,

p15r152
]F1

]t
5
1

p E
uc

p

@H~ t2mM !sin~ t2mM !

2H~ t2mm!sin~ t2mm!#du, ~B14!

u15
]F1

]x
5

x

p E
uc

pFH~ t2mM !
sin~ t2mM !

mM

2H~ t2mm!
sin~ t2mm!

mm
Gdu, ~B15!

v15
]F1

]r
5
1

p E
uc

p

@H~ t2mM !aM sin~ t2mM !

2H~ t2mm!am sin~ t2mm!#du, ~B16!

where

aM5
]mM

]r
5

1

mM
S r cos 2u

1
@2~r sin u!22~2pR!2#cosu

A~2pR!22~r sin u!2
D , ~B17!

am5
]mm

]r
5

1

mm
S r cos 2u

2
@2~r sin u!22~2pR!2#cosu

A~2pR!22~r sin u!2
D . ~B18!

Note that the Heaviside unit step function in the integrand is
related to a transient effect caused by the initial condition
~B2!. If t . Ax21(2pR1r )2 for a given field point (x,r ),
then the Heaviside step function can be replaced by unity.
That is, the phenomenon at the point becomes periodic for
t.Ax21(2pR1r )2.

As is readily verified,F1 andp1 ~and alsor1! are con-
tinuous atr52pR. However, the axial velocity component
u1 is discontinuous at the edge of the piston, i.e.,x50 and
r52pR, because boundary condition~B3! is in itself discon-
tinuous. Furthermore, we can show that the radial component
v1 has a logarithmic singularity at the edge, namely,

v1~x,2pR!5SVs1
1

4p2R
ln xD sin t1Vc cos t

1o~1! as x→0. ~B19!

Here,Vs andVc are constants depending onR, defined as

Vs5
2

p
2H1~4pR!12R 2F3S 1,1; 32 , 32,2;24p2R2D ,

~B20!

Vc5
1

2 E
0

4pR

J0~z!dz2J1~4pR!, ~B21!

whereH1 is the Struve function of the first order,Jn is the
Bessel function ofnth order, and2F3 signifies a generalized
hypergeometric function.33 In deriving Eqs.~B19!–~B21!,
we have used Eq.~B16! and have assumedt.4pR, for sim-
plicity.

The solution forv1 thus becomes invalid at the edge of
the piston. However,v1 remains ofO~1! outside a small
region including the singular point, because the divergence
of logarithm is very slow~cf. Fig. 3!.

APPENDIX C: TIME-INDEPENDENT PART OF THE
SECOND-ORDER SOLUTION

We suppose thatt is sufficiently large so that the steady-
state wave motion is realized in the near field. The second-
order velocity potentialF2 may then consist of a time-
independent partF̄2 and the second harmonic. Clearly, the
time-independent part is governed by Laplace equation

]2F̄2

]x2
1

]2F̄2

]r 2
1
1

r

]F̄2

]r
50. ~C1!
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Substituting expansion~A7! into Eq. ~A6! yields the bound-
ary condition forF2,

]F2

]x U
x50

52H~2pR2r !H~r !~cos t21!
]u1
]x U

x50

2d~r22pR!~cos t21!v1ux50

~ in the limit as e→0!, ~C2!

where d(r ) is the Dirac delta function. Substituting Eqs.
~B12! and ~B13! into the right-hand side of Eq.~C2! and
averaging the result with respect tot, we obtain the boundary
condition for the time-independent partF̄2,

]F̄2

]x
U
x50

5H~2pR2r !H~r !S 1

2p E
0

p sin nM

nM
du2

1

2D
2 1

2 Vcd~r22pR!

[ f ~r !2 1
2 Vcd~r22pR!, ~C3!

wherenM is the function ofr andu,

nM5A~2pR!22~r sin u!22r cosu, ~C4!

andVc is the constant given by Eq.~B21! in Appendix B.
Using the method of Green’s function gives the solution

of Laplace equation as

F̄252
1

p E
0

p

dwE
0

` ]F̄2

]x
U
x50

s ds

Ax21r 21s222rs cosw
.

~C5!

Substituting Eq.~C3! into Eq. ~C5!, we have

F̄252
2

p E
0

2pR s f ~s!

Ax21~r1s!2
KF 4sr

x21~r1s!2Gds

1
2RVc

Ax21~r12pR!2
KF 8pRr

x21~r12pR!2G , ~C6!

whereK[m] is the complete elliptic integral of the first kind,

K@m#5E
0

p/2 dc

A12m sin2 c
. ~C7!

Differentiating F̄2 with respect tox and r , we obtain the
steady components of the second-order fluid velocity as fol-
lows:

ū25
]F̄2

]x
5
2x

p E
0

2pR s f ~s!

Ax21~r1s!2@x21~r2s!2#

3EF 4sr

x21~r1s!2Gds

2
2RVcx

Ax21~r12pR!2@x21~r22pR!2#

3EF 8pRr

x21~r12pR!2G , ~C8!

v̄ 25
]F̄2

]r
5

1

pr E0
2pR s f ~s!

Ax21~r1s!2
HKF 4sr

x21~r1s!2G
1

r 22x22s2

x21~r2s!2
EF 4sr

x21~r1s!2G J ds

2
RVc

rAx21~r12pR!2
HKF 8pRr

x21~r12pR!2G
1
r 22x22~2pR!2

x21~r22pR!2
EF 8pRr

x21~r12pR!2G J , ~C9!

whereE[m] is the complete elliptic integral of the second
kind,

E@m#5E
0

p/2
A12m sin2 c dc. ~C10!

Clearly, the mass conservation law requires that the net
mean mass flow across thex50 plane must be zero, i.e.,

E
0

`

~r1u11ū2!ux50r dr5E
0

2pR

~r1u11ū2!ux50r dr

50, ~C11!

althoughr1u1 1 ū2 is not necessarily zero at each point on
the surfacex50 and 0<r<2pR ~cf. Fig. 5!, because it is a
mean surface of the oscillating piston face. By the detailed
numerical analysis~see Appendix D!, we have confirmed
that Eq.~C11! is satisfied and that the vectorvs 5 M2(r1u1
1 ū2 ,r1v1 1 v̄2) is divergence-free throughout the near field.
That is, the mass conservation law holds to the approxima-
tion of O(M2) @if the delta function term is not included in
Eq. ~C3!, Eq. ~C11! is not satisfied#.

The time-independent components of the second-order
velocity, ū2 and v̄2, diverge at the edge of the piston. How-
ever, as in the case ofv1, the divergence ofvs is slow and
the result shown in Fig. 5 may be valid except for the singu-
lar point ~we have numerically confirmed thatū2 and v̄2
diverge logarithmically asx approaches 0 withr52pR be-
ing fixed!.

APPENDIX D: EXPLICIT REPRESENTATIONS FOR
r1u 1 and r1v 1

The explicit representations forr1u1 andr1v1 are given
as follows: forr,2pR,

r1u15
1

2 S 1p E
0

p

cosmM du2cosxD
3S xp E

0

p cosmM

mM
du2cosxD

1
1

2 S 1p E
0

p

sin mM du2sin xD
3S xp E

0

p sin mM

mM
du2sin xD , ~D1!
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r1v15
1

2p S 1p E
0

p

cosmM du2cosxD
3S E

0

p

aM cosmM du D
1

1

2p S 1p E
0

p

sin mM du2sin xD
3S E

0

p

aM sin mM du D ; ~D2!

for r.2pR,

r1u15
x

2p2 E
uc

p

~cosmM2cosmm!duE
uc

pS cosmM

mM

2
cosmm

mm
Ddu1

x

2p2 E
uc

p

~sin mM

2sin mm!duE
uc

pS sin mM

mM
2
sin mm

mm
Ddu, ~D3!

r1v15
1

2p2 E
uc

p

~cosmM2cosmm!duE
uc

p

~aM cosmM

2amcosmm!du1
1

2p2 E
uc

p

~sin mM

2sin mm!duE
uc

p

~aM sin mM2am sin mm!du,

~D4!

wheremM , mm , anduc are defined by Eqs.~B8!–~B10! in
Appendix B, and it is assumed thatt is sufficiently large.

APPENDIX E: SUPPLEMENT TO THE NUMERICAL
METHOD

The numerical approach adopted in this paper is based
on an explicit upwind finite difference scheme of the third-
order accuracy in space and the first-order accuracy in
time,11,12which is known as one of the most successful and
reliable schemes that has the capability of calculating the
solutions for complicated flow field including discontinuous
shocks. We do not need to give the algorithm to construct the
scheme in this paper, since it is formulated in Refs. 11 and
12 at some length. In the following, we shall briefly describe
the numerical implementation for the present problem~see
Ref. 10 for detail of the treatment of boundary condition!.

As noted in Ref. 11, upwind schemes have a tendency to
give a smeared numerical result for the discontinuities
~shocks! rapidly moving relative to the spatial coordinate of
the mesh of computation. In order to obtain the high resolu-
tion for shocks, we shall introduce the new ‘‘spatial’’ coor-
dinate j5x2t, which moves with the normalized sound
speed in the positivex direction, because in the present prob-
lem the shock speed is comparable with the speed of sound
in the initial undisturbed state,c0. Hence, the system~3!–~6!
is rewritten into

]w

]t
1

] f

]j
1

]g

]r
52

h

r
, ~E1!

where

w5S r
ru
rv
Et

D , f5S ru2r
ru21p2ru

ruv2rv
~Et1p!u2Et

D ,

~E2!

g5S rv
ruv

rv21p
~Et1p!v

D , h5S rv
ruv
rv2

~Et1p!v
D .

The left-hand side of Eq.~E1! is discretized by using the
high-resolution upwind finite difference scheme for spatially
two-dimensional flow. The right-hand side is evaluated at
every mesh point, as is usually done for the inhomogeneous
conservation laws. A mesh of constant intervals,Dt, Dj, and
Dr , is employed, for simplicity of construction of the
scheme. The time stepDt is taken to be sufficiently small so
as to stabilize the computation, typicallyDt/Dj5Dt/Dr
50.05. The numerical results presented in Sec. III are, ex-
cept for Figs. 15–17, computed withDj52p/120 andDr
52p/120. Figures 15–17 are the results of computation with
Dj52p/160 andDr52p/160.

Since the constant intervals,Dt, Dr , andDj, are used,
the boundary, namely, the surface composed of the piston
and the wall, is not always coincident with a mesh point
(kDj, jDr ,nDt), wherek, j , andn are integers~see Ref. 10!.
We therefore apply the quadratic interpolation to determine
the velocity at the nearest mesh point to the boundary. On
the other hand, to determine the density and pressure on the
boundary and at the nearest point to the boundary, we use the
quadratic extrapolation using the values at inner mesh points.
On the axis, wherej50, v is set to be zero, and the other
quantities,p, r, andu, are interpolated by using symmetry
relations. In the region of computation, there exist two right-
angled corners, i.e., (x,r )5(0,2pR) and (x,r )5„X(t),2pR…
~cf. Fig. 1!. In order to determinep, r, u, and v at these
points, we apply the quadratic interpolation using adjacent
points.

The region of computation in (x,r ) plane is a rectangle
larger thant3(t12pR) at time t ~maximum mesh size is
larger than 96031440 att512p for the case ofDj52p/160
andDr52p/160 andR53!. As a result, we need not intro-
duce any artificial~nonreflecting! boundary condition at the
outer boundary of region of computation.

For a test of the numerical method, we have calculated a
weakly nonlinear case ofM50.01 and compared the result
normalized byM with the linear solution, because, as long as
we confine ourselves in a region near the piston, the weakly
nonlinear wave behaves as the linear wave. The error is less
than 3% almost everywhere in the vicinity of the piston ex-
cept for the neighborhood of the edge when a mesh ofDj
5Dr52p/120 is used.

In order to obtain the correct results for the mean mass
flow, we have carried out the computations carefully, con-
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firming that the whole mass of the gas from the boundary to
the head of the wave is conserved within a permissible nu-
merical error.
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