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Strongly nonlinear waves and streaming in the near field
of a circular piston?®

Takeru Yano and Yoshinori Inoue
Department of Engineering Science, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

(Received 13 April 1995; accepted for publication 30 January 1996

The propagation of nonlinear waves radiated by a circular piston mounted in an infinite plane rigid
wall is numerically studied without the restriction of weak nonlinearity, in the case that the radius
of piston is comparable with a typical wavelength of the radiated wave. The piston executes
harmonic oscillations and the wave is thereby emitted into an ideal gas of semi-infinite extent, in
which the dissipation effect is supposed to be negligible everywhere except for the discontinuous
shock front. The wave phenomenon in the near field caused by the strongly nonlinear effect
combined with the diffraction effect is clarified by solving the Euler equations with the upwind finite
difference scheme. Owing to the strong nonlinearity, not only the waves emitted directly from the
piston face but also the diffraction waves from the edge of the source are distorted and developed
into the shock waves. This can lead to a multiple interference of shock waves in the near field. The
separation phenomenon at the edge is also shown. Another remarkable phenomenon is the excitation
of strong streaminga mean mass floywhich forms a vortex-ring-like flow pattern and rarefies the

gas near the source during the several periods of oscillation of the piston. By using a regular
perturbation expansion, acoustic streaming in the weakly nonlinear problem is also analyzed, which
does not show such a vortex-ring-like flow pattern and never rarefies the gas near the source.
© 1996 Acoustical Society of America.

PACS numbers: 43.25.Vt, 43.25.Nm, 43.25.Cb, 43.25.Jh

INTRODUCTION turbed gasa and w are an amplitude and an angular fre-

gquency of harmonic oscillation of the pistopjs the ratio of

We shall consider the nonlinear propagation of soundy,eific heats for the ideal gas, astlis the diffusivity of

waves .ra.diated by a circular piston mounte.d in an infinitesoun&)_ The first conditiorM = O(1) means that the wave is
plane rigid wall. Most analyses for the nonlinear effect on

. X . . a strongly nonlinear one, i.e., its profile is rapidly distorted
such a diffractive wave radiated by a piston source have S8nd this leads to the shock formation near the piston. The

far been confined to the weakly nonlinear and slightly dif-
fractive acoustic beam, i.e., to the case that the wave ampl
tude is finite but sufficiently small and the source radius is

sufficiently large compared with a typical wavelengtA.n

this paper, we shall numerically investigate the propagation
of the nonlinear waves emitted into an ideal gas from a har

monically oscillating circular piston without imposing the

restriction of weak nonlinearity, in the case that the piston

radius is comparable with a typical wavelength.
Precisely speaking, we shall consider the wave motio
characterized by the conditions

_aw (y+1)cpa
|v|=c—0—0(1), Re= ———>1,
and 1
k ok
R=-—=0(1),

second condition Rel means that we can regard the shock
s a discontinuity, and may ignore the dissipation effect ev-
erywhere except for the discontinuifyThe third condition
R=0(1) means that the diffraction effect cannot be ne-
glected so that the wave cannot, even in the near fiel,
regarded as a collimated beam.

Recently, we have investigated the propagation of the

strongly nonlinear plane wave &l =0(1) radiated by an

A’nfinite plate oscillating harmonically,and the propagation

of the strongly nonlinear spherical wave lff=0(1) emit-

ted from a harmonically pulsating sphéfeln the present
paper, we shall take up a piston problem. By applying a
numerical method based on a high-resolution upwind finite
difference scheme by Osher and Chakravartf$to the Eu-

ler equations(mass, momentum, and energy conservation
laws), we shall clarify the wave phenomenon in the near field
caused by the strongly nonlinear effect combined with the
diffraction effect. We here remark that most of the relevant

where M is the acoustic Mach number, Re is the acousticstudies in the past have been focused on the far-field prob-

Reynolds number, and is the ratio of the piston radiuR*
to a typical wavelength of the radiated
27mlk=2mcylw (Cqis the speed of sound in an initial undis-

3A part of the work reported here is found Advances in Nonlinear Acous-
tics, edited by H. Hokek (World Scientific, Singapore, 1993pp. 583—
588.
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lems ofM <1, Re>1, andR>1 (large transducgywhere the

sound parabolic approximation has often been utiliZéd® In the

present problem oM=0(1), Re>1, and R=0(1), not
only the waves emitted directly from the piston face but also
the diffraction waves from the edge of the source are dis-
torted and developed into the shock waves near the source.
This leads to a complex phenomenon including a multiple

© 1996 Acoustical Society of America 3353



interference(intersection of shock waves in the near field 2*
(see Fig. 11 in Sec. )l

Furthermore, we examine acoustic stream{agmean
mass flow. We shall show that streaming forms a vortex-
ring-like flow pattern in the near field, and that a time-
averaged density of the gas near the source is reduced by the
streaming during the several periods of oscillation of the
piston. Such a vortex-ring-like mass flow as is excited in the
strongly nonlinear case does not appear in the steady state of
the weakly nonlinear case M <1 and Re>1; this is verified
by using a regular perturbation expansiorMn(see Appen-
dices A-D. It is also shown that the gas near the source is
not rarefied by the weakly nonlinear streaming. We empha-
size here that the weakly nonlinear streaming occurs without

any dissipation process, as streaming analyzed in Refs. 13— piston face @"’”\\
16. The maximum valuémaximum velocity of streaming in o »e

the strongly nonlinear case is considerably large compared _,&9‘”

with that of streaming caused by the strongly nonlinear plane xo““‘

waves with the samit.®

In Ref. 17, Lighthill pointed out that the strong stream-
ing motion in the far field generated by a powerful narrow
sound beam becomes a turbulent jet. Although we don't exgiG. 1. Cutaway view: circular piston with a planar face of radRisis
amine the far-field behavior of streaming, the turbulentmounted in an infinite plane rigid wall. The piston executes a harmonic
streaming jet may not be formed in the far field of the oscillatio*n such that the displacement of its face from the wall at tifris
present problem, because the wave motion concerned ?écosm .
highly diffractive [R=0(1)] andhence the wave in the far
field may rather be a spherically diverging one than a narrovient of the Reynolds number and the edge can be a source of
beam. Another important remark was made in Ref. 17: the/orticity. The Euler equations admit vortex sheets as weak
strong streaming motidf should be analyzed without ne- solutions, so that vortex sheets can be “captured” in the
glecting the inertia term{nonlinear term in the governing Same sense that shocks can be captured and a Kutta condi-
equations of streaming, which are the equations of viscouion need not be enforced explicitly. In the solution of the
incompressible flow with the driving force being determinedEuler equations, the separation is signified by the vortex
from the sound field” In the present paper, we shall not use Sheet being shed from the edifeThe numerical result
the equations of streaming but numerically solve the fundashown in Sec. Ill C seems _to be correct at least qualitatively,
mental equations of gas dynamics, i.e., the Euler equationg/though the vortex sheet is smeared out over mesh cells by
This procedure is allowed by the condition Re. the numerical dissipation. _

We here comment on a difficulty inherent in the problem !N Sec. |, the problem is formulated mathematically. In
of a circular piston of planar face mounted in a plane rigidsec- I, the. fam|l|§1r results for the Ilm_aar wave are recglled
wall; the difficulty does not seem to have been discussed©’ comparison with the strongly nonlinear wave examined

The edge of the source forms a convex right-angled corner iff! Sec. lll. The flow pattern for weakly nonlinear streaming
the (x*,r*) plane(see Fig. 1 In inviscid potential flows, IS also shown. In Sec. lll, we shall present the results of the

the fluid velocity becomes infinity at such a corA®and in numerical computation for the strongly nonlinear waves. The

high Reynolds number viscous flows the vertex of the corneProfiles are contrasted with those of the linear solution, and
is a separation point of boundary lay8\We shall show that, the on-axis profiles are compared with thg profile; of the
in the linear problem of Rel (potential flow, the radial strongly nonlinear plane wave. The evolution and interfer-

component of the fluid velocity logarithmically diverges at €Nce ©Of shock waves are demonstrated. The excitation of
the edge(see Sec. Il and Appendix)BIn the analytical strong streaming and production of vorticity at the shock

treatment for the linear case and the weakly nonlinear case &font are also analyzed In this section. The numerical solu-
M<1 and Re-1, instead of eliminating the singularity, we tion displays the sepgratlon phgnomenon at the edge. In.Sec.
can confirm that the obtained result is correct except for thév’ we shall summarize the main results. The reformulation

small neighborhood of the singular poifgee Appendices of _the problem_ for the weakly nonl_inear waves_and an ana-
A-D). The numerical results for the strongly nonlinear casdYtical expression for weakly nonlinear acoustic streaming

of M=0O(1) and Re-1 show the separation phenomenonare presented in Appendices A—D. The numerical method is

and formation of vortex. Although the viscous effect is notb”e'(Iy explained in Appendix E.

included in the Euler equations, solutions containing separa-

tion at sharp trailing edge are obtained in many COMPUta; EORMULATION OF THE PROBLEM

tional researches;?? without invoking a Kutta conditioR®

which states that for high Reynolds number flow past a sharp  In order to formulate the problem, we shall introduce the
trailing edge the flow leaves the body at the edge indeperfollowing nondimensional variables:
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t=wt*,  x= o= Cou=—, Ty [(Ei+p) ]+ [(E:tp) ]+( t+p) o,
Co Co Co at X ar r
U* p* p* (2) (6)
v=—1, p=—, p=—3p, where E,=p(u®+v?)/2+p/(y—1) is the normalized total
Co Po PoCo

energy of the ideal gas per unit volume. Once a shock is
wherex* is the distance from the walt* is the distance formed, the energy dissipation can no longer be ignored,
from the axis of the piston, i.e., thé axis (see Fig. 1, u*
andv* are, respectively, th&* andr* components of the
fluid velocity, p* is the density of the gas, amg is the
pressurepg is an initial undisturbed density 1 %
The condition Re-1 allows neglecting the energy dissi- —
pation effect due to viscosity and thermal conductivity of the © %ﬁw@‘ 7

S

gas until a shock wave emerges in the wave field. Hence, at , %%%@I/}///ﬁ%

)

least until the time of shock formation, we can use the sys- o 1%@%@
. . . . X ,{;f‘/\/\_/_\\\\//:\%
tem of Euler equations for the flow with cylindrical symme- PAE=—
try around thex axis: T
27 4
dp d(pu) d(pv) pv
o —=0, 3
ot X ar r
dpu) d(p+pu® d(puv) puv =z
+ + +—= 4 2
at X ar r 0, @
2 2 FIG. 3. Radial component of the fluid velocity f&=3 att=11.5r in the
d(pv) n I(puv) + J(p+pv°) + ﬂ =0 (5) linear case oM —0. A small closed circle denotes the singular poixt §
ot X ar r ' =(0,27R).
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FIG. 4. Pressure contour &t127 in the linear case o1 —0. The normal-
ized pressur@; is plotted in steps of 0.2. The dashed curve is the boundary
between the steady and transient stéagR=1, (b) R=2, and(c) R=3.

i M X

which must in reality be produced at least at the shock front.  We shall take up the case that the planar piston is
As is generally known, however, a shock solution can bemounted in the plane rigid wall. The instantaneous location
represented as a discontinuity in the system of equaf®)rs  of the piston faceX(t), is given by

(6), owing to the condition Rel. We can thus employ this

system even after the shock formation time. We shall nu-  X(t)=M(cost—1) (t>0) (8)

merically obtain such a discontinuous solution by using the
high-resolution upwind finite difference scherfe? under (€€ Fig. 1 The boundary conditions on the piston surface

the initial and boundary conditions described below. and on the wall may therefore be expressed as follows:

The gas is supposed to be uniform and at rest fo0.
The initial conditions at=0 are therefore

u=v=0, p=1, p=1ly (x=0). (7 at x=H(27R—r)H(r)X(t) (t>0), 9

u=—-—H27R—r)H(r)M sint
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v=0 at r=27R for X(t)<x<0 (t>0), (100  Applying a regular perturbation expansionih, we can ob-
tain analytical results to a certain extent for the near field

whereH(r) is the Heaviside unit step function defined as (Appendices B—D

1 (r>0), . . '
=10 (r<0). (12) A. Linear propagation in the near field
In the near field of the weakly nonlinear waves, the dis-

In addition, owing FO the continuity and axial symmetry, tortion of wave profile due to the nonlinear effect may be
we letv =0 on thex axis. . . o
neglected, i.e., the propagation process is linear at least to the
leading order of approximation. We therefore take up the
linear propagation, which has been well examined by many
Il. WEAKLY NONLINEAR PROBLEM IN THE NEAR authors, and the propagation property of which is now famil-
FIELD iar (for the review of representative contributions, see Refs.

Before proceeding to the strongly nonlinear waves, we2> and 26. One of the most important phenomena in the

shall discuss some essential properties of the weakly nonlirf€ar field of the linear wave is the diffraction and the inter-
ear wave oM <1, Re>1, andR=0(1) in the near field. For ference resulting from it, which we demonstrate here for
the case of the weakly nonlinear waves, we reformulate theomparison with the strongly nonlinear waves examined in
problem in terms of the velocity potentiedee Appendix A Sec. lll.
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FIG. 6. Pressure profile &&127 in the strongly nonlinear casé@) R=1 andM =0.1, (b) R=1 andM =0.4,(c) R=2 andM =0.1,(d) R=2 andM =0.4, (e)
R=3 andM =0.1, and(f) R=3 andM =0.4.

In Appendix B, the linear solution is expressed in the(B11) and (B14) in Appendix B is plotted(the subscript 1
form of summation of a plane wave and a wave originatingsignifies the first-order term in a regular perturbation expan-
from the edge of the sourda diffraction wave. The linear sion in M, see Appendix A With increase inR, the com-
wave forms shown in Figs. 2—4 are obtained by numericaplexity of the wave field due to interference increases in a
integrations for Eqs(B11), (B13), (B14), and(B16) in Ap- region 0<x and O<r<2#R as demonstrated in Refs. 25 and
pendix B. 27.

The pressure profile of the linear wave tat127 is In Fig. 3, we depict the profile of the radial component
shown in Fig. 2, where a normalized sound pressuref the fluid velocity v/M=v; (in the limit as M—0) at
(yp—1)/yM=p; (in the limit as M—0) given by Eqgs. t=11.5x7, which is given by Eqs(B13) and(B16) in Appen-
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FIG. 7. Radial velocity at=11.57 in the strongly nonlinear case &=3

andM =0.4.
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(b)

FIG. 8. Pressure profile on the axistat12s. The strongly nonlinear wave
of R=2 andM =0.1 denoted by a bold solid curve is compared withthe
linear wave ofR=2 denoted by a thin solid curve, and with) the strongly
nonlinear plane wave dfl =0.1 denoted by a dashed curia. Ref. 9.
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(@

27

FIG. 9. Pressure profile on the axistat12s. The strongly nonlinear wave
of R=2 andM =0.4 denoted by a bold solid curve is compared wihthe
linear wave ofR=2 denoted by a thin solid curve, and with) the strongly
nonlinear plane wave df1 =0.4 denoted by a dashed curie. Ref. 9.

dix B. As shown in Appendix By, diverges logarithmically

at (x,r)=(0,27R), so thatv is not plotted at the point in
Fig. 3. However, as can be seen from Figu3,remains of

the order of unity everywhere except for a neighborhood of
the singular point, because the rate of divergence is very
slow. Owing to this fact, we may regard the solution as the
correct one except for the very small neighborhood of the
singular point.

Figure 4 shows the contour of the presspieatt =12,
plotted in steps of 0.2. The dashed curve denotes the bound-
ary between a steady-state region and a transient region at
t=12m, i.e., pi(X,r,t)=pi(X,r,t+27) for t=127 in the re-
gion enclosed with the dashed cur@ppendix B. As R
increases, the complicated interference pattern is formed
within a region G<x and O<r=<2=R. The diffraction wave

T. Yano and Y. Inoue: Nonlinear waves 3359
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FIG. 10. Pressure contour in the strongly nonlinear case. The normalized pregguré )/ yM is plotted in steps of 0.2a) R=1 andM =0.1, (b) R=1 and
M=0.4,(c) R=2 andM=0.1, (d) R=2 andM =0.4, (¢) R=3 andM =0.1, and(f) R=3 andM =0.4.
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FIG. 10. (Continued.

3361 J. Acoust. Soc. Am., Vol. 99, No. 6, June 1996

outside the region looks like a spherical wave emitted from a
source located atx(r)=(0,27R).

B. Weakly nonlinear acoustic streaming

We shall examine weakly nonlinear acoustic streaming,
in line with the method used in Refs. 13—-16. To do so, we
shall define a time-averaged mass flux density veetor
= (pu,pv) as

t

p_U(X,I’,t;T)=$f Tp(x,r,r)u(x,r,r)dr, (123

ﬁ(x,r,t;T)=% ftt_Tp(X,r,T)U(X,r,T)dT, (12b)

whereT is an interval for time average.

Fort > x>+ (27R+r)? for a given point &,r), the
linear wave motion becomes periodical with period/@
(Appendix B. In what follows, we assume thatis suffi-
ciently large, and we leT=27. To the approximation of
O(M?), Eq. (12 can then be reduced to

Vs=M2(p1Us+Uy,p1Us+0y), (13

where the bar denotes the mean value in the sense of Eq.
(12), and the subscript 2 signifies the second-order term in a
regular perturbation expansion i (see Appendix A Con-
sequently,v, is independent ot to the approximation of
O(M?). In the strongly nonlinear case, howeveg,weakly
depends on bothandT (see Sec. Il B.

The explicit representations far, andv, are given by
Egs.(C8) and(C9) in Appendix C, and those fgs,u; and
p1vq are given by Eqs(D1)—(D4) in Appendix D. The flow
patterns are shown by arrows in Fig. 5, which are obtained
by numerical integrations. We have numerically confirmed
that the mean mass flow is divergence-free vector fielgs
incompressible floy and that the total net mass flow across
the mean surface of the piston face is zésee Appendix €
Clearly, such a “steady” flow cannot rarefy the gas in the
field.

Figure 5 shows that the mean mass floyvmeanders
and locally flows backward, which forms a contrast to the
well-known Eckart streamirf§ (note that the large scale vor-
texes in Eckart streaming are ascribed to the viscosity and
the fact that the medium is contained in a cylinder of finite
length. With increase inR, such a fine “structure” of the
flow pattern becomes conspicuous in front of the piston face
[Fig. 5(b) and(c)]. We shall emphasize that the weakly non-
linear streaming occurs without any dissipation process, con-
trary to Eckart streamingsee also Refs. 13-16

Ill. STRONGLY NONLINEAR WAVES AND STRONG
STREAMING

In this section, we shall present some typical humerical
results for the strongly nonlinear wavesMf=0(1), Re>1,
andR=0(1). Thenumerical method used here is based on a
high-resolution upwind finite difference scheme by Osher
and Chakravarthy*'2 which has recently been applied by
the present authors to the problems of the strongly nonlinear
plane waveSand spherical wave’d. The computations were

T. Yano and Y. Inoue: Nonlinear waves 3361
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(b)

FIG. 11. The magnification of Fig. 10, emphasizing the intersection of
shocks in the vicinity of the sourcéa) R=1 and M =0.4, (b) R=2 and
M=0.4, and(c) R=3 andM =0.4.

performed on the supercomputer HITAC S-820 at Hokkaidoable decay of the wave amplitufleig. 6(b), (d), and(f)]. For
University. The numerical implementation is briefly shown R=2, the strong nonlinearity appreciably distorts the diffrac-
in Appendix E. The ratio of specific heajds fixed aty=1.4  tion waveg[see Fig. 6c)—(f)]. WhenM increases to 0.4, the
(air) for all computations. shock front has a rugged crest with spiky buffiig. 6(d)
and (f)], and the profile is entirely different from the linear
one(cf. Fig. 2. It can be seen from Fig.(é) and(f) that, on

A. Evolution and interference of shock waves

The pressure profiles at=127 are shown in Fig. 6, in
which one can see that, as in the linear case, the strongly
nonlinear Wa\{e field Ca_n also be regar(_jed as the Summat'on\BLE I. The maximum value of the time-averaged mass flux density.
of the wave directly radiated from the piston and the diffrac

tion wave, i.e., the wave emitted from the edge of the piston Acoustic Present result

(see also Fig. 10 0wing to the strongly nonlinear effect, the ~Mach number 1 R 3 Strongly nonlinear
wave directly radiated from the piston is immediately dis- - ~ - plane wave
torted and develops into the shock in the near field. For 0.1 0.037 0.018 0.018 0.002

M =0.1, an anomalous positive pressure peak emerges on the 8-2 8-521 8-(1)% 8-1;2 8-822
axis near the pistofFig. 6a), (c), and(e)]. As M increases, 0.293 0.234 0.240 0.033

the shock becomes strong and hence the energy dissipation_at
the shock front also increases, which results in the considefReference 9.
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FIG. 12. Strongly nonlinear acoustic streaming. Arrows signify the time-averaged mass flux densitywecforeference arrow, the size of which
corresponds tiv¢/M? =1, is shown on the top of each figure. A closed circle signifies the point whgiteas the maximum valu¢a) R=1 andM =0.1, (b)
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FIG. 13. Contour of the time-averaged densityat t=127 is plotted in
steps of 0.01 in the neighborhood of the piston. A small closed circle de-
notes the point where the mean density is minim@R=1 andM =0.4.

The minimum value is 0.795 ak(r)=(8.17, Q. (b) R=2 andM =0.4. The
minimum value is 0.816 atx(r)=(5.03, 0. (c) R=3 and M=0.4. The
minimum value is 0.816 atx(r)=(3.14, 2.5).

the axis, a new peak is producedxat25.8 in the case of problem of the strongly nonlinear plane wavesigures gb)
R=2, and two new peaks are producedxat19.6 and 27.8 and 9b) display the strong nonlinearity of the wave on the
in the case oR=3 [cf. Fig. 20¢)]. axis, as compared with the plane wave with the saie

In Fig. 7, the radial velocity in the case &=3 and Figure 10 shows the pressure contour, where the shock
M=0.4 is plotted. It suggests that there is no singularity infront is indicated by the contour lines distributed densely.
the field, while in the linear case the radial velocity becomedrigure 11a)—(c) are the magnifications of Fig. i), (d),
infinity at the point &,r)=(0,27R) (see Fig. 3 and Sec. and(f), respectively. In these figures, in addition to shocks,
I C). the compression waves with steepened fronts are indicated

The pressure profile on the axis in the caseRef2 is by the folding contour lines, and sparse contour curves sig-
compared with that of the linear wave with the saRién nify the expansion waves. The diffraction waves emanating
Figs. §a) and 9a), and is compared with that of the strongly from the edge of the source propagate “spherically,” with
nonlinear plane wave with the sarikin Figs. 8b) and 9b). being distorted by the nonlinear effect. As the wave ap-
In the case ofM =0.1 andR=2, the nonlinear wave has proaches the axis, owing to the geometrical converging ef-
positive spiky peakssee Fig. 8 In the case oM =0.4 and fect, the nonlinear effect becomes strong and hence the wave
R=2, the amplitude of the shock wave is reduced by theevolves into the shock. Consequently, the main shocks emit-
dissipation of energy at the shock frotgee Fig. 9 The ted from the piston face intersect with the shocks developed
shock in the first wave cycle swallows the negative phasérom the diffraction waves from the edge of source. That is,
ahead of it, because the shock speed is larger than the souadnultiple interferencéintersection of shock waves occurs
speed. The same phenomenon has already been found in tteme Fig. 1L
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(2) ()

(b)

FIG. 14. Contour of the magnitude of time-averaged vorti€itatt =127 is
plotted in steps of 0.01 in the neighborhood of the pist@):R=1 and
7 M =0.4. The maximum is 0.30 41.26, 5.6% and the minimum is-0.67 at
(1.26, 4.40. (b) R=2 andM =0.4. The maximum is 0.43 4f..26, 11.94
and the minimum is—0.52 at(0.63, 10.05%. (c) R=3 and M =0.4. The
maximum is 0.27 at(1.26, 18.22 and the minimum is—0.56 at(0.63,

i 16.34.
4
27
B. Excitation of streaming and production of vorticity change for the duration of computatidgfrom the time of
at the intersection of shocks formation of the vortex ring to the time=127). With in-

crease ilM, the core of the vortex-ring-like flow approaches

he edge of the piston. Note that, in the casevo#0.1 and
=3, the maximum value df/{| is attained at a point outside

the frame of the graphx(r)=(28.3, 0. In Table I, the maxi-

Acoustic streaming is one of the most interesting phe
nomena in the propagation process of the strongly nonlined
waves. In the previous works of the strongly nonlinear plan
wave and spherical wav® we have shown that streaming _ :
gradually rarefies the gas in the vicinity of the source. Notd"um value ofiv¢| is compared with that of the strongly non-

that in these problems streaming disappears in the weakljnear plane wavé The streaming excited in the piston prob-
nonlinear limit in the near fieldsee Refs. 9 and 29 em is much stronger than that in the plane wave problem,

In the strongly nonlinear case, contrary to the weakly2!though the region where, is strong is small as shown in

nonlinear case treated in Sec. Il, the mean mass flgw Fig. 12. , . .

= (pu,pv) weakly depends off andt, because the wave 'We also examine a time-averaged density of the gas
motion is not in a steady state but in a quasi-steady 4te. defined as

The results presented in the following are calculated in terms 1 [t

of T=2m, as in Refs. 9 and 10. p(X,r,t;T)= T f TP(X,V.T)dT- (14)

Figure 12 shows that streaming forms a circulatory flow
pattern in front of the piston face, which is a cross section ofAs can be seen in Fig. 13, the gas in the neighborhood of the
a vortex-ring-like flow, superposed on the fine structure ofpiston is rarefied by the streaming. Since the streaming is
weakly nonlinear streamin@f. Fig. 5. For a fixedM andR, strong, the rarefaction of the gas occurs during several peri-
the location of the core of the vortex-ring-like flow does notods of oscillation of the piston; the rate of the rarefaction is

3365 J. Acoust. Soc. Am., Vol. 99, No. 6, June 1996 T. Yano and Y. Inoue: Nonlinear waves 3365



where the mean mass flow shown in Fig. 12 is strong.
In the strongly nonlinear case, as is seen from Fig. 12,
streaming can be regarded as the superposition of a vortex-

ring-like strong flow and a weak flow similar to that shown
in Sec. Il. The excitation of strong flow with intense rarefac-
tion effect is attributed to the formation of moderately strong
shocks which propagate with entraining the gas. Further-
more, the mutual interference of moderately strong shocks
results in the production of vorticity which leads to the
vortex-ring-like flow. In the weakly nonlinear case, the
shock is too weak to entrain the gas appreciably, and hence
the gas is not rarefiedlat least to the approximation of
O(M?)]. The shock interference does not occur because the
nonlinear effect is too weak to transform a diffraction wave
into a shock. Therefore, the vorticity produced at shock
fronts is negligibly small. Accordingly, as the nonlinearity is
reduced from the strongly nonlinear case, the vortex-ring-
like flow disappears, while the weak streaming motion re-
mains, whose generation mechanism is not relevant to any
dissipation processsee, e.g., Ref. 25We demonstrate in
Figs. 15 and 16 that the shock interference is weakened and
vortex-ring-like flow vanishes when the acoustic Mach num-
ber is reduced tdv =0.05. Clearly, the numerical result for
M=0.05 shown in Fig. 16 supports the validity of the
weakly nonlinear analysis presented in the Appendices.

C. Separation and generation of vortex at the edge

FIG. 15. Pressure contour in the caseévbf0.05 andR=3 att=16x. The
shock interference phenomenon almost disappedrs-ig. 1Qf)].

During a half period fromt=2ns to t=(2n+1), the
piston is drawn back from=0 tox=—2M, when the gas is

sucked into the hole in the walee Fig. 1L At that time, the
almost twice as large as that in the plane wave proflem. flow separates at the edge and a vortex is generated. The
Even if the gas is initially uniform and at rest, and the vectors of computed velocity near the edge of the source at
viscosity of the gas is negligible except for the shock front,t=11 are plotted in Fig. 17, where the isovorticity contours

once a nonplanar shock wave of nonuniform strength is
formed, the flow behind the shock may become rotational. In
the case of a weak and steady shock, however, since the
production of vorticity across the shock front is of the third
order of the shock strength, the flow behind the shock can
continue to be regarded as the irrotational Shdowever, in

the problem concerned, the vorticity production at the shock
front may not be negligible. In Fig. 14, we shall show the
magnitude of time-averaged vorticify defined as

— 1t |dv ou
Q(x,r,t;T)z? ft_T (?_x(x’r’T)_(?_r(X'r’T) dr.

(19

The vorticity is mainly produced at the intersection point
of the shock from the piston face and the shock developed
from the diffraction wave. Roughly speaking, owing to the
assumption of Re 1, the generated vorticity is not diffused
but convected and strengthened by local compresg&ion
weakened by local expansipit Since the flow field can, to
a very rough approximation, be regarded as periodic, the
effects of convection and local compression and expansion
may be cancelled by time average. As a result, the time-
averaged vorticity is localized in a narrow region along the
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FIG. 16. Streaming without vortex-ring-like flow in the case M#=0.05

locus of the imerseCtion poir.1t.of shocks. The narrow r‘:—'g_ioncmd R=3 att=16m. At this time, the initial transient effect still remains in
of concentration of the vorticity corresponds to the regionthe shadowed regiofef. Fig. 5c)].
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(v)  The strong streaming forms a vortex-ring-like flow
pattern, in addition to a fine structure which appears
in the weakly nonlinear streaming. The core of the
vortex-ring-like flow approaches the piston face with
increase inM.

(vi)  The vorticity produced behind the shock is localized
in a narrow region along the locus of the intersection
point of shocks. The region of concentration of the

b vorticity corresponds to that where the mean mass
flow is strong.

(vii) In the solution of the linear potential flow, the radial
velocity diverges at the edge of the source, because
the potential flow does not admit the generation of
vortex sheet, i.e., separation. The numerical solution

o o for the strongly nonlinear wave can make clear the

F]G. 17. Snapshot of.the velocity field in the vicinity o_f the edge_ of the feature of separation and formation of vortex at the

piston and the isovorticity contours &t11m, when the piston face is lo-

cated atx=—2M=-0.8 (M =0.4). The flow separates at the edge and the edge.
circulatory flow occurs.

6.1257

5.875m

5.75m

o
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Fig. 17, the vortex sheet is smeared out over mesh cells by

the numerical dissipation The vortex sheet rolls up into a ApPPENDIX A: REFORMULATION OF THE PROBLEM
vortex (circulatory flow. Note that we have not fixed the |N THE WEAKLY NONLINEAR CASE

point of separation in any way and the circulating region ) i

develops spontaneously in the course of computation. The 1he purposes of Appendices A-D ali¢ to show that
vorticity originated from the vortex sheet does not considern€ Well-known linear solution has a singularity at the edge
ably affect the mean vorticity field outside the neighborhood®f the source, i.e., the radial component of fluid velocity

of the source for the same reason as stated in Sec.(8eg  diverges at the edge, ariil) to examine acoustic streaming
Fig. 14. in the weakly nonlinear case M <1 and Re>1. The singu-

larity is originated from the assumption of irrotational flow.
In fact, the numerical solution presented in Sec. Il demon-
strates the generation of vorticity at the edge and the fluid
In Sec. Ill, we have exhibited several interesting phe-velocity never diverges. In spite of the singularity, the linear
nomena caused by the strongly nonlinear effect combinedolution is widely accepted to be plausible. In the following
with the diffraction effect in the piston problem of Appendices, we shall confirm that the linear solution may be
M=0(1), Re>1, andR=0(1), although the numerical re- regarded as the correct solution except for a small neighbor-
sult has been confined in the near field and in an initial stagbood of the edge.
of evolution of the wave. We have also revealed the property  For these purposes, we shall formulate the weakly non-
of weakly nonlinear acoustic streaming in Sec. Il B. In thelinear problem oM <1, Re>1, andR=0(1) in terms of the
following, we shall briefly summarize the main results. nondimensional velocity potentidh(x,r,t), which is related
to the normalized fluid velocity as

IV. CONCLUSION

(i) The strongly nonlinear effect rapidly distorts the pro-
file of the wave radiated directly from the source, and od o
this leads to the shock formation near the source. u=—_, and v=—-. (AD)
(i)  The strongly nonlinear effect also distorts the profile

of the diffraction wave emanating from the edge of The governing equation fab can be written in the form

the piston, and the wave also evolves into the shock 2 92 1 9 32 a[[oP\? [od)\?
wave near the axis. Combined wih), this leads to a WJF a2 tr o ot2) T ot ax + or
multiple interference of shock waves. X
(iii) Both the weakly and the strongly nonlinear waves ex- y—1 @ (A2)
cite acoustic streaming in the near field. In particular, 2 ot |

the weakly nonlinear streaming is induced without
any dissipation process.
(iv)  Streaming produced in the caseMf=0(1) is con-

where cubic and higher-order termsdnare neglected. The
normalized pressurp and densityp are then expressed as

siderably strong as compared with that in the strongly (y=D)ly— y—1_ ab 1 [od)\2
nonlinear plane waves with the sarie The strong 7 =p7 =1 Dt 5 o
streaming reduces a mean density of the gas in the

vicinity of the piston, during the several periods of } (@) 2} (A3)
harmonic oscillation of the piston. 2\ or
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r is therefore not connected with it. If it were not for the delta
function term, the mass conservation law could not be satis-
fied in the second order of approximatisee Appendix €
In other words, the difference of EGA6) from the boundary
conditions(9) and (10) is inevitable for obtaining the solu-
tion to the second order under the assumption of irrotational
flow, which may be appropriate only outside a small region
near the edge. If one takes another apprdéod method of
lorr matched asymptotic expansigribat he separately treats the
small region with a Kutta condition and matches this “inner
solution” with an irrotational “outer solution,” then the
modified geometry described by EGA\5) is not necessary
and the velocity may not diverge. However, in order to ob-
tain a steady-state acoustic streaming valid outside the small
region, we only require the first-order solution and the steady
component of second-order velocity which are correct every-
Xt O where except for the small neighborhood of the edge. To this
end, the present simple approach is sufficient.

In order to solve the problem formulated above, we shall

FIG. Al. Geometry of the smoothed boundary. The geometry shown in Figexpand the dependent variables in power$/of
1 can be obtained in the limit as—0.

2xR + €

27R — €

) D, D,
L . u Uq us
Note that the defln!tmns of the varlabl_ésxcept ford_b) are v M| vy | +M2| v, | +OM3). (A7)
the same as those in the strongly nonlinear case given by Eq. —(1/
. p—(1/y) P1 P2
(2) in Sec. I. 1
The initial condition(7) in Sec. | can be rewritten into p P1 P2
Substituting expansiofA7) into Egs.(A1l)—(A6) and equat-
P ; . ) .
d=—=0 at t=0 for x>0. (A4)  ing coefficients of like powers df1, we can obtain the suc-
ot cessive systems of equations fby and ®, (see below.
We consider the geometry of the boundary prescribed by
an equation APPENDIX B: LINEAR SOLUTION

In the leading order of approximation in the near field,
(t>0), (A5)  the weakly nonlinear problem formulated in Appendix A is

_ _ _ o reduced to the initial- and boundary-value problem for the
where € is a nondimensional parameter sufficiently smalljinear wave equation:

compared with unity(see Fig. A}, and erfc denotes the

M r
X= > (cost— 1)erfo(

complementary error function, LA AR LA
w2t g )00 BD
2 (x
erfax)=1—- — f e ¢ dé. D,
Ja Jo ®iio=—| =0 (x>0), (B2)
Note that Eq(A5) is reduced to Eq8) in Sec. | ase—0. By =0
using Egs.(Al) and (A5), the boundary condition can be P4 )
expressed as x =—H(2mR—r)H(r)sint
x=0
M erfo(f—ZWR) — M(cost—1) 1 (t>0) (in the limit as e—0). (B3)
X 2 € eV The fundamental expression of the solution is the so-called
;{ (r_z,n_R)Z} ob Rayleigh surface integral,
Xexg — — .
€ ar 1 (= 27R sinit—u)o do
Gy=— f d@f H(t—u) M, (B4)
M Derid 2| for t>0. (A6 i :
at x=- (cost—1ljer or t>0. (A6) whereu = X2+ 12+ ¢?— 2ro coseg.
We shall remark that, in the limit as—0, Eq. (A6) differs Introducing a new variablé,
from Egs.(9) and (10) by a term including the Dirac delta o COSp—T
function (see Appendix € As shown in Appendices B and ¢=arcco 707210 cose)’ (BS)

C, the delta function term does not appear in the lowest order
(linear approximationand it is included in the secon@nd and changing the variables of integratiGne) to (u,6), we
higher order approximation. The divergence ofat the edge can carried out the integral with respectitoAs a result, we
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obtain a useful representatidhfor r <27R,

1 T
== fo H(t—um)lcogt—puy)—1]d6

—H({t—x)[cogt—x)—1]; (B6)

and forr=2nR,

1 T
(I’l:; L {H(t—upm)[cogt—uy)—1]

—H(t—pum)[cogt— pum) —1]}d6, (B7)

where u,, and u,,, are functions ok, r, and 6, defined as

pm=\x2+[(2aR)?=(r sin 6)>+r cos6)>,  (B8)

um=\x2+[(27R)2—(r sin 6)2—r cos6]?, (B9
and 6, is given by
0.= m—arcsin27R/r). (B10)

A significant physical interpretation for Eq&6) and (B7)
has been given in Ref. 26.

The pressure and the velocity components are then given

as follows: forr <2#«R,

b
P1=p1= __1:_f H(t—um)sin(t—uy)do
—H(t—x)sin(t—x), (B11
b t )
e L R
—H(t—x)sin(t—x), (B12
&:_J — pm)ay sint—uy)do; (B13)
and forr=2=R,
0P
p1=p1= ——1=—f [H(t— py)sin(t—y)
—H(t— pm)sin(t—um)1dé6, (B14)
od X (7 sin(t—uy)
=gt = ), ) =
—H(t— ) sm(tﬂ;“m)}da, (B15)
od
v1= _1:—f [H(t—um)ap sin(t—uy)
—H(t— pm) @y sin(t— uy,)1d06, (B16)

where
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C!M:étt;—er m r cos
[2(r sin 0)?>— (2wR)?]cos 0)
, (B1
V(27R)?—(r sin )? (B17)
1
am=%= — | rcos
oar Mm
[2(r sin §)2— (27R)?]cos 9)
— . (B18
V(27wR)?—(r sin 6)? (619

Note that the Heaviside unit step function in the integrand is
related to a transient effect caused by the initial condition
(B2). If t > x?+(2wR+r)? for a given field point k,r),
then the Heaviside step function can be replaced by unity.
That is, the phenomenon at the point becomes periodic for
t> X2+ (27R+r)2.

As is readily verified®; andp, (and alsop,) are con-
tinuous atr =2=7R. However, the axial velocity component
u, is discontinuous at the edge of the piston, ixe=0 and
r=27R, because boundary conditi¢B3) is in itself discon-
tinuous. Furthermore, we can show that the radial component
v, has a logarithmic singularity at the edge, namely,

1
Vst ——=In X

Ul(X,ZWR): 472R

sint+ V. cost

(B19

Here,V, andV, are constants depending &) defined as

+0(1) as x—0.

2 3 3 -
VSZE—H1(47TR)+2R oF3 1,1;5, 5,2;—477 R,
(B20)
1 (4=R
Vc:zf Jo(2)dz—J,(47R), (B21)
0

whereH, is the Struve function of the first orded,, is the
Bessel function ofith order, andF ; signifies a generalized
hypergeometric functiof® In deriving Egs.(B19)—(B21),
we have used EdB16) and have assumed-47R, for sim-
plicity.

The solution forv, thus becomes invalid at the edge of
the piston. Howeverp,; remains ofO(1) outside a small
region including the singular point, because the divergence
of logarithm is very slow(cf. Fig. 3.

APPENDIX C: TIME-INDEPENDENT PART OF THE
SECOND-ORDER SOLUTION

We suppose thatis sufficiently large so that the steady-
state wave motion is realized in the near field. The second-
order velocity potentiald, may then consist of a time-
independent par, and the second harmonic. Clearly, the
time-independent part is governed by Laplace equation

PD, Pb, 19D,

2 T T O €D
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Substituting expansiofA7) into Eq. (A6) yields the bound-
ary condition for®,,

Id,
X
X

—H(@mR=r)H(r)(cost—1)—=

X

=0 =0

—8(r—2wR)(cost—1)v|4—¢

(in the limit as e—0), (C2

where §(r) is the Dirac delta function. Substituting Egs.
(B12) and (B13) into the right-hand side of EqC2) and
averaging the result with respectttonve obtain the boundary
condition for the time-independent pabt,,

1
2m

oD, 1

ox
X

m S|n Um

)

=H(27-rR—r)H(r)( »
M

=0

— 3 V(r—27R)

=f(r)— 3 Vco(r—27R), (C3
where, is the function ofr and 6,
vm=(27R)%2—(r sin #)?>—r cos¥, (C4)

andV, is the constant given by E§B21) in Appendix B.
Using the method of Green’s function gives the solution
of Laplace equation as

_ 1 T o
®=- f d@fo

(9472‘ odo

X | _o XZ+1%+ 02— 2ro COS @

(CH
Substituting Eq(C3) into Eq. (C5), we have
(ITZ:_EJ'%R of(a) Kl|= Aot 5|do
mJo Xt (r+o)? X +(+o)
.\ 2RV, K 87Rr 1 o
U+ (r+27R)2 [ X°+(r+27R)
whereK[m] is the complete elliptic integral of the first kind,
w2 dy
K[m]= . m (C?

Differentiating ®, with respect tox and r, we obtain the
steady components of the second-order fluid velocity as fol
lows:

__(9CI>2_2X 27R of(o)
oax o m o o)+ (1-0)?]
<E 4ot g
X+(r+o0)2"7
2RV x
WEF (r+27R) X%+ (r—27R)?]
E 87Rr c8
B e T 2R (9
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2R 4or

X2+ (r + o)?

U2

b, 1
o mr o

of(o)
X+ (r+o)?

4ot
X2+ (r+o)?

«
o

K 8mwRr
X2+ (r+27R)?

2_y2_ 2

r X g

+
X2+ (r—o)?

RV,
X%+ (r+2mR)?

. r2—x2—(2mwR)?
x>+ (r—2mR)?

|

8m7Rr
] ,  (C9Y

X2+ (r+27R)?

where E[m] is the complete elliptic integral of the second
kind,

E[m]= JOW/Z\/l—m Sir? ¢ dy.

Clearly, the mass conservation law requires that the net
mean mass flow across thke=0 plane must be zero, i.e.,

(C10

e . 27R -
fo (p1Ug+Uz)|x=or d":fo (paUp+Up)|x—or dr

=0, (C1)

althoughp;u; + U, is not necessarily zero at each point on
the surfacex=0 and O<r<2#R (cf. Fig. 5, because it is a
mean surface of the oscillating piston face. By the detailed
numerical analysigsee Appendix [ we have confirmed
that Eq.(C11) is satisfied and that the vectes = M?(pyu;
+ U,,piv7 + v,) is divergence-free throughout the near field.
That is, the mass conservation law holds to the approxima-
tion of O(M?) [if the delta function term is not included in
Eqg. (C3), Eq. (C1)) is not satisfiedl

The time-independent components of the second-order
velocity, u, andv,, diverge at the edge of the piston. How-
ever, as in the case of;, the divergence o, is slow and
the result shown in Fig. 5 may be valid except for the singu-
lar point (we have numerically confirmed that, and v,
diverge logarithmically ax approaches 0 with=2#R be-
ing fixed.

APPENDIX D: EXPLICIT REPRESENTATIONS FOR
p1U; and p;v;

The explicit representations fpru; andp v, are given
as follows: forr <2#«R,

1(1 (=

=5|= —COoSsX
p1U; 2(7-rf0 cosuy dé—cos )
X fwcos,uM
T Jo Mm

L i o 00

il Sin wp sin x
f‘”Sin,u,M
0 MM
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X

de—cosx)

1
2

|

v

d#—sin x), (D1)
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ow of 9g h

1 /(1 (=
plvl=ﬁ<—f COS um da—cosx) W+(9_§+&_r i (ED

7 Jo
” h
0
1 /1 ' fU_P
T . pu puc+p—pu
+5— = sin do—sinx = =
2 (17 Jo Am ) w pv |’ f puv — pu ’
- E (Et+p)u—E;
0 pv pv
for r>27R, g= puv he puv
pv’+p |’ pv?
X W 7 COS
plul:ﬁ J’H (CosﬂM_COSMm)dafe ( Km (Et+p)v (Et+p)v
c c

MM
The left-hand side of Eq(E1) is discretized by using the
)d0+ lz Jw(sin i high—r_esolut.ion upwind finite fjifference s_cheme for spatially
27 Jo, two-dimensional flow. The right-hand side is evaluated at
. . every mesh point, as is usually done for the inhomogeneous
—sin )dof”< SN fm SN '“m) do (D3) conservation laws. A mesh of constant intervals, A¢, and
Mm ) . . .. .
6\ MM Mm Ar, is employed, for simplicity of construction of the
1 . . scheme. The time steft is taken to be sufficiently small so
plvl:_zf (COSMM—COSMm)dﬁf (ay COS as to stabilize the computation, typicallyt/A&=At/Ar
27 Jo, Oc =0.05. The numerical results presented in Sec. Il are, ex-

COS i
Mm

1 . cept for Figs. 15-17, computed withé=27/120 andAr
— @yCOS py)d o+ 52 J (sin =27/120. Figures 15—-17 are the results of computation with
T Jo A&=27/160 andAr =27/160.
- Since the constant intervalAt, Ar, andA¢, are used,
—sin Mm)daf (apm Sin uy—am Sin wy,)dé, the boundary, namely, the surface composed of the piston
Oc and the wall, is not always coincident with a mesh point
(D4) (kA&,jAr,nAt), wherek, j, andn are integergsee Ref. 10
We therefore apply the quadratic interpolation to determine
the velocity at the nearest mesh point to the boundary. On
the other hand, to determine the density and pressure on the
boundary and at the nearest point to the boundary, we use the
APPENDIX E: SUPPLEMENT TO THE NUMERICAL quadratic gxtrapola_tion usi_ng the values at inner mesh points.
METHOD On the axis, wherg=0, v is set to be zero, and the other
quantities,p, p, andu, are interpolated by using symmetry

The numerical approach adopted in this paper is baserklations. In the region of computation, there exist two right-
on an explicit upwind finite difference scheme of the third-angled corners, i.e.x(r)=(0,27R) and (x,r)=(X(t),27R)
order accuracy in space and the first-order accuracy ificf. Fig. 1). In order to determing, p, u, andv at these
time 1**2which is known as one of the most successful andpoints, we apply the quadratic interpolation using adjacent
reliable schemes that has the capability of calculating the@oints.
solutions for complicated flow field including discontinuous The region of computation inx(r) plane is a rectangle
shocks. We do not need to give the algorithm to construct théarger thant X (t+2#7R) at timet (maximum mesh size is
scheme in this paper, since it is formulated in Refs. 11 andarger than 9681440 att=12 for the case ofAé=27/160
12 at some length. In the following, we shall briefly describeand Ar =27/160 andR=3). As a result, we need not intro-
the numerical implementation for the present probl@®e duce any artificiaknonreflecting boundary condition at the
Ref. 10 for detail of the treatment of boundary condilion  outer boundary of region of computation.

As noted in Ref. 11, upwind schemes have a tendency to  For a test of the numerical method, we have calculated a
give a smeared numerical result for the discontinuitiesveakly nonlinear case d1=0.01 and compared the result
(shockg rapidly moving relative to the spatial coordinate of normalized byM with the linear solution, because, as long as
the mesh of computation. In order to obtain the high resoluwe confine ourselves in a region near the piston, the weakly
tion for shocks, we shall introduce the new “spatial”’ coor- nonlinear wave behaves as the linear wave. The error is less
dinate £&=x—t, which moves with the normalized sound than 3% almost everywhere in the vicinity of the piston ex-
speed in the positive direction, because in the present prob- cept for the neighborhood of the edge when a mesh &f
lem the shock speed is comparable with the speed of soundAr=27/120 is used.
in the initial undisturbed state,. Hence, the systel8)—(6) In order to obtain the correct results for the mean mass
is rewritten into flow, we have carried out the computations carefully, con-

where uy , um, and 6, are defined by Eq9B8)—(B10) in
Appendix B, and it is assumed thiats sufficiently large.
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