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Weakly nonlinear waves radiated by pulsations of a cylinder 
Takeru Yano and Yoshinori Inoue 

Department of Engineering Science, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan 

(Received 24 March 1992; accepted for publication 25 August 1992 ) 

A cylindrical sound wave is radiated into an unbounded ideal gas by an infinite circular 
cylinder that executes a sinusoidal pulsation uniformly along its axis with small amplitude and 
moderate frequency for only one period. In the leading order of approximation, the weakly 
nonlinear propagation of the wave is studied for the case of sufficiently large acoustic Reynolds 
number up to the stage that its profile develops into a cylindrical N wave with a tail. In the 
near field, solving the linear wave equation gives the near-field solution, which has a tail 
following the body part of the wave. The tail of the velocity profile decreases asymptotically in 
proportion to t * - 4 as t * -• o• at a fixed point in the near field and to t * - 5/2 at a fixed point in 
the far field (t * is the time from the beginning of the pulsation). The tail vanishes in a high 
frequency limit with an acoustic Mach number being fixed. In the far field, an exact solution, 
which matches with the near-field solution, is obtained for a far-field equation by the method 
of strained coordinates. The evolution of the two shocks and the tail are then examined by 
making use of the equal-areas rule. At large distances from the cylinder, the whole profile of 
the wave approaches to an N wave with a long tail. 

PACS numbers: 43.25.Cb, 43.28.Mv, 43.30.Qd 

INTRODUCTION 

The weakly nonlinear propagation of cylindrical waves 
has been studied as a problem of fundamental importance in 
nonlinear acoustics. 14 We shall consider a nonperiodic 
problem, where an infinite circular cylinder in an unbound- 
ed ideal gas executes a sinusoidal pulsation uniformly along 
its axis for only one period. The radiated sound wave consists 
of a sinusoidal body part and a tail. At large distances from 
the cylinder, the whole profile of the wave approaches to a 
cylindrical N wave with a tail. An analogous nonperiodic 
problem has recently been studied for a spherical wave by 
Inoue et al., • where the wave is radiated by a sphere's sinu- 
soidal pulsation for one period; the asymptotic profile is a 
spherical Nwave with a tail. In what follows we shall extend 
the analysis in Ref. 5 to the cylindrical wave with a tail. 

The propagation of the cylindrical N wave has been well 
examined, 3'6'7 so that its decay rate and an asymptote of the 
shock path are well known for an ordinary balanced Nwave 
with no tail (e.g., Landau and Lifshitz, 6 Whitham 7 ). On the 
other hand, in spite of the fact that a cylindrical sound wave 
radiated by a source of finite duration can have a tail, 8'9 the 
detailed picture has not been clarified for the process of 
transformation of the radiated sound wave with a tail into an 

N wave with a tail. We shall here investigate the propagation 
of the weakly nonlinear cylindrical wave in the leading order 
of approximation up to the stage that the wave profile devel- 
ops into an Nwave with a tail. The behavior of the tail is also 
examined in detail. The resulting wave phenomena are as a 
whole similar to those for the spherical wave, 5 with the ex- 
ception of the behavior of the tail. The solution is represent- 
ed by using not only the Bessel functions but also an integral 
of the modified Bessel functions, while for the spherical wave 
in Ref. 5 the solution can be expressed in terms of the expo- 
nential and trigonometric functions. 

The problem considered here pertains to the case of 
e-=a/•<l and ll=•co/c= O(1) (small amplitude and 
moderate frequency case),•ø where e is a normalized ampli- 
tude and II is a normalized angular frequency • (•: the 
mean radius of the cylinder; a: an amplitude of the sinusoidal 
pulsation of the cylinder; to: an angular frequency of the pul- 
sation; c: the speed of sound in an initial undisturbed gas). 
The radiated sound field is then composed of the near and far 
field. The condition II ---- O( 1 ) implies that the near field has 
the dimensions comparable with R, in which the linear theo- 
ry in acoustics is valid in the leading order of approximation. 
An acoustic Mach number M is then sufficiently small: 

M=aco/c = ell,• 1, (1) 

which means that the nonlinearity is weak. We also suppose 
that an acoustic Reynolds number R• is sufficiently large: 

R e ----ca/6*>• 1, (2) 

where 6' is the diffusivity of sound given as 
6*= [(4•/*/3) +•'*+ (?'-- 1)•c/cp]/po (•7': the shear 
viscosity; •' *: the bulk viscosity; •c: the thermal conductivity; 
?': the ratio of specific heats; cp: the specific heat at constant 
pressure; Po: the density in an initial undisturbed gas). •2 
Condition (2) allows neglecting the dissipation effect at 
least until a shock wave is formed. Once a shock is formed, 
we can regard it as a discontinuity under this condition, The 
equal-areas rule is accordingly available for analyzing the 
evolution of the shock. 6'7 In a great distant region, the cylin- 
drical shocks concerned may no longer be thin compared 
with the overall scale of the N wave.•3 Such an "old age" 
behavior is not discussed in this paper. 

In the high frequency limit of fl--o• with M = ell 
fixed, the near field substantially disappears and the overall 
acoustic field may be regarded as the far field. This limiting 
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case is, however, essentially embraced within the present 
case of e,• 1 and fl = O( 1 ) if we restrict ourselves to the 
lowest-order problem. 4'•4 In this limit, the tail vanishes, as in 
the spherical wave. 5 The problem treated by Sachdev and 
Seebass 3 pertains to the case of large fl = O(M •) (M• 1 ) 
and hence no tail has appeared. We shall examine the behav- 
ior of the tail in detail: in the velocity profile, it decreases 
asymptotically in proportion to t * - 4 as t * -, oo at a fixed 
point in the near field and to t * 5/2 at a fixed point in the far 
field (t *: the time from the beginning of the source motion), 
whereas, according to Ref. 5, the tail of the spherical wave 
decays as e '* at a fixed point in both the near and far field. 

The problem considered in this paper is relevant to that 
of a steady supersonic flow past a pointed slender body of 
revolution with finite length: the wave pattern received at 
large distances from the body is an fir wave with a tail (sonic 
boom). Whitham • has studied this problem; his result for 
the behavior of the tail far from the body is very similar to 
that in the present problem. The problem of the supersonic 
flow however corresponds to that of pulsating cylinder in the 
case of 6 = O( 1 ) and •,• 1 (large amplitude and low fre- 
quency case)•o rather than the present case, because fluid 
particles on the body "oscillate" between the pointed noses 
of the body along its surface (this means "large amplitude") 
and because the maximum radius of the body is very small 
compared with a typical wavelength (this means "low fre- 
quency"). Although here we are not concerned with the 
large amplitude and low frequency case, the result by Inoue 
and Gotoh ]6 may be worth noting: They have considered 
weakly nonlinear propagation of spherical waves radiated by 
a sphere executing a steady sinusoidal pulsation in the case of 
6 = O( 1 ) and fl ,• 1. According to the result, two shocks can 
be formed in each one wavelength, •7 while, in the small am- 
plitude case, only one shock is formed in one wavelength.18 
They have also shown that the shock formation distance is 
very large and hence the shock strength is very weak, com- 
pared with those in the case of 6,,• 1 and fl = O( 1 ) for a 
given M = 6fl. 

In Sec. I we shall formulate the problem mathematical- 
ly. The linear problem in the near field is solved in Sec. II. 
The near-field solution, i.e., the exact solution of the linear 
wave equation satisfying the boundary condition on the 
mean surface of the cylinder, is given so as to describe the 
three regions explicitly: region (I) is a constant state, and 
regions (II) and (III) correspond to a body part and a tail, 
respectively. The nonlinear propagation in the far field is 
examined in Sec. III. We shall apply the method of strained 
coordinates to obtain an explicit representation of an exact 
solution of a far-field equation. The shock formation dis- 
tances for two shocks are estimated from the far-field solu- 

tion. The evolution of the N wave with the tail is analyzed 
with the help of the equal-areas rule in Sec. IV. 

I. FORMULATION OF THE PROBLEM 

We shall consider the weakly nonlinear propagation of a 
cylindrical wave radiated in an unbounded ideal gas by a 
pulsation of an infinite circular cylinder. The cylinder is sup- 
posed to execute a sinusoidal pulsation which lasts for only 

one period, i.e., 0 < t * < 2re/w, where t * is the time and co is 
an angular frequency of the pulsation. The pulsation of the 
cylinder is also assumed to be uniform along its axis, in the 
case where there is no variation in the acoustic response in 
the axial direction. The particle velocity of the fluid has thus 
only the radial component u*(r*,t*), where r* is the dis- 
tance from the axis of the cylinder. The wave motion con- 
cerned can be described in terms of a velocity potential 
ß * (r*,t *) such that u* = c•*/c•r*. The following dimen- 
sionless quantities are introduced: 

ß * t *c r* u* _ p* q)= _, t= _ , r=•, u-- , p------l, 
cR R R c Po 

(3) 

where c is the speed of sound in an initial undisturbed gas, R 
is the mean radius of the cylinder, p* is the pressure, andpo is 
the initial undisturbed pressure. 

We shall assume that the acoustic Reynolds number R,, 
is sufficiently large compared with unity [see Eq. (2) ]. The 
dissipation effect can therefore be ignored at least until a 
shock wave is formed. The equation governing the wave mo- 
tion is then written as •8 

O•5--ot iX, Or/ +•Ot/ J 
+ (cubic terms in 40), (4) 

where ?' is the ratio of specific heats •ø and h is the Laplacian 
operator defined as 

c•r 2 r 

The normalized radial velocity u and the normalized pres- 
sure disturbance p can be expressed in terms of the nondi- 
mensional velocity potential q) as 

u = --, (6) 
8r 

L •t \0r/ ] 
(7) 

The gas is assumed to be uniform and at rest for t<0. 
The initial conditions for dp are therefore 

qb-- --0 at t=0. (8) 
o•t 

The boundary condition on the surface of the cylinder is 
c• dR (t) 
---- -- at r=R(t). (9) 
c•r dt 

Here, R (t), the instantaneous radius of the cylinder normal- 
ized by R, is given as 

R(t)={l-ecosflt, for O•;t<T, 6, for t < 0 and T.<< t, (10) 
where 6=a/R ( • 1 ) is the normalized amplitude of the pul- 
sation, fl=•w/c[ = O( 1)] is the normalized angular fre- 
quency, and T----2z-/fl is a normalized period (or a normal- 
ized wavelength). Since we are concerned with a weakly 
nonlinear problem, the acoustic Mach number M= 
should be sufficiently small compared with unity [see Eq. 
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( 1 ) ]. The radiation condition should be imposed on the ve- 
locity potential at infinity. 

II. LINEAR PROPAGATION IN THE NEAR FIELD 

Firstly, we shall determine the acoustic behavior in the 
lowest order for the near field. Neglecting the nonlinear 
terms in Eq. (4) leads to the linear wave equation: 

82(1) 1 8(I) 82(I) 
• ---0. (11) 

8r 2 r Or Ot 2 

The boundary condition (9) with (10) can be reduced to 

-ellsinfit[H(t)--H(t-T)] at r=l, (12) 
Or 

where H(t) is the Heaviside unit step function defined by 

0, for t<0, H(t) = 1, for t>0. (13) 
The initial and boundary value problem ( 8 ) and ( 11 )- ( 13 ) 
can be solved by applying the Laplace transform and the 
result is presented in Appendix A. 

The radial velocity u can be calculated by substituting 
Eq. (A6), (A7), or (A9) in Appendix A into Eq. (6). To 
determine the pressure disturbsneeR in the leading order, we 
should linearize Eq. (7) and substitute Eq. (A6), (A7), or 
(A9) into the result. We thus obtain the near-field solutions 
for u andœ as follows: (i) In region (I) 

u=0, p=0. (14) 

(ii) In region (II) 

U = eA l fi[JI (fir)sin(fit + 8• ) 

-- Yl (fir)cos(fit + a, ) ] + ell 2 (• e__ g_' 
I• (•)K l (•r) -- I• (•r)K• (•) 

X d•', (15) 
[K, (g)12 + (g)12 

p = yeA• 11[J o (fir)cos(fit + 61 ) 

+ Yo (fir)sin(fit + 6• ) ] 

the (r,t) plane, separated so as to describe the three regions: 
region (I) of constant state, region (II) pertaining to the 
body part of the wave, and region (III) pertaining to the tail. 
The boundaries between the three regions are the straight 
characteristic lines (see Fig. 1 ). The first terms on the right- 
hand sides of Eqs. ( 15 ) and (16) correspond to the solutions 
for a periodic problem where the cylinder pulsates steadily 
(see, e.g., Reft 4). The integral terms appearing in Eqs. 
( 15)-(18) represent a transient effect owing to the fact that 
the cylinder begins the pulsation at t = 0 and ceases it at 

The profiles of the wave in the near field are depicted in 
Fig. 2(a) and (b) by calculating Eqs. (15)-(18) numerical- 
ly. It is clear from these figures that the radial velocity u and 
the pressure disturbance p are positive in the tail. The pres- 
sure disturbance on the surface of the cylinder, i.e., p at 
r = 1, is always positive for t> T, and it monotonically van- 
ishes as t-• co [ see Eq. (18) ], while u at r = 1 is zero for t> T 
[see also Fig. 2(a) and (b) ]. Furthermore, the tail vanishes 
in the limit offi-• co for a fixed M = 6fi [see Eqs. (17) and 
(18)]. These features are qualitatively unchanged from 
those of the spherical wave radiated by a sphere's sinusoidal 
pulsation for one period (see Ref. 5). 

We shall derive an asymptotic representation for q) in 
the tail as t-. co at a fixed r = O( 1 ). Expanding the terms in 
curly brackets in Eq. (A9) in Appendix A in powers of• and 
integrating the result term by term, we obtain 

•= eT eT 2 eT [(3r2 31nr) t 2 q-7-t-• -- 

-- 11--- i- + 6 In 2t -- -- 
+O[(lnt)2t-5] as t-.co. (19) 

In Refs. 8 and 9, however, it has been shown that q) in the tail 
decays to zero in proportion to, in general, t - • as t--, co at a 
fixed r in the near field. The discrepancy is attributed to the 
boundary condition (12): because of the sinusoidal condi- 
tion, the coefficient of t - • in Eq. (19) vanishes. Expansion 

I 1 (•)K o (•r) + I o (•r)K l (•) 
X d•, (16) t 

[K, (;)]2 + (O12 

[ the definitions ofA 1 and 61 are given in Eq. (A8) in Appen- 
dix A]. (iii) In region (lid 

u = elf fo © e - or, - r) _ e - c, • 2 ..{_ •2 

I• (•r)K, (•) -- I• (•')K• (•r) 
• d•', (17) 

[f l(g)]2 q_7•[i,(•)12 

P •- •t/6fi 2 f0 © e - ;(t- T) _ e •t 
I l (•')K o (•r) + I o (•r)Kt (•) 

X d•'. (18) 
[K, (;)]2 q_ rr• [i, (;)]2 

That is, the expression of the solution in the near field is, in 

T 

FIG. 1. Three regions in the (r,t) plane in the near field. 
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t 

(a) 

(b) 

FIG. 2. The wave profiles from t = T to t = 2T ( 1 <r< I + 27') in the near 
field; • = 0.1, fl = 0.8, and y = 1.4. {a} The normalized velocity profiles, 
u(r,t). (b) The profiles of the normalized pressure disturbance, p(r,t). 

(19) shows that the pressure disturbance in the tail de- 
creases asymptotically in proportion to t - 3 and the velocity 
decreases in proportion to t n as t--, ca at a fixed r in the 
near field. On the other hand, in the case of the spherical 
wave, the tail decays exponentially in time at a fixed point. 5 

At large distances from the cylinder, we have the follow- 
ing asymptotic forms of u and p: 

efta 
u = F(q}, p = yu, (20) 

where 

q--=fl(t-- r+ 1), A=A• (2x/•7•), (21) 

and the functional form ofF(q) is defined as follows: (i) In 
region (I) (q<0) 

F(q) ---- • 

Xjo K• (•)e • } [K, (•)]2 + •,r• [i, (•.) ]2' 
(25) 

Expressions (23} and (25) have been obtained by using the 
asymptotic expansions of the Bessel functions and modified 
Bessel functions for large arguments, Eqs. (B1)-(B4) in 
Appendix B. We shall remark that the function F depends 
upon only one parameter •. A typical profile of F(q) is 
presented in Fig. 3 for • = 0.8 by using numerical calcula- 
tions. 

The decay of the tail can be derived as 

FOp) = Brp 5/2 + O(qv - 7/2) as cp• ca (r• 1), 
(26) 

where B is a constant given by 

B ----- (3rr/4A)0, (27) 

which shows that the tail decays almost in proportion to 
t •/2 at a fixed large r (a similar result has been derived by 
Whitham in the supersonic flow problem •s). Equations 
(26} and (27) can be obtained by expanding the terms in 
curly brackets in Eq. (25) in powers of•' and by integrating 
the result term by term. 

Note that F(q) defined by Eqs. (23) and (25) satisfies 
an equation 7 

•(• F(q)dq = 0. (28) 
The function F of the present unsteady cylindrical 

waves is comparable to Whitham's F function 7 pertaining to 
the steady supersonic flow around an axisymmetrical body, 
because in both problems the wave behavior in the far field is 
determined by a mathematically equivalent far-field equa- 
tion and such a function F. 

F(q) = 0. (22) 

(ii) In region (II) (0<q<2rr) 
•o F(q) = sin(q + 8) [+ 112 

-1 
(23) 

where 0 2n' 4•r 

g=-6, + l½r- 

(iii) In region (III) 

(24) phase function •o 

FIG. 3. Typical profile of the function F for f! -- 0.8. 
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III. NONLINEAR PROPAGATION IN THE FAR FIELD 

A. Exact solution of a far-field equation 

In the far field, the solution of the linear problem be- 
comes invalid. As is well known, a far-field equation is given 
as], 2 

c9W IV•IV= 0, (29) 

where the dependent variable IV and the independent vari- 
able Z is defined as 

IV= (u/eftA)x/•, Z=eft2A(y + 1)(,47-- 1). (30) 
In Reft 20, we have verified that a first-order far-field solu- 

tion, in which the velocity u is accurate up to O(e/x/•), can 
be obtained by solving Eq. (29) under the boundary condi- 
tion n 

IV=F(q0 at Z=0, (31) 

where the functional form of F(q•) is given by Eq. (23) or 
Eq. (25), according as 0<•0 < 2•r or q•>2m 

Since Eq. (29) has the solution, in implicit form, 

IV= IV(•p + ZkV), (32) 
the first-order far-field solution takes the form 

IV=F(&), & = ft(t-- •/+ 1), (33) 
where r/is determined as a function of r and t by a relation 

V = r- eftA(y+ 1)(•/•- I)F(•). (34) 
The new variable r/is the so-called strained coordinate? 
One may say that the effect of nonlinearity distorts the spa- 
tial coordinate in the phase function •0. The coordinate 
straining vanishes at r = 1, i.e., r = V = 1 there. It is obvious 
that the far-field solution, Eq. (33) with Eq. (34), matches 
with the asymptotic form of the near-field solution, Eq. 
(20). Accordingly, the profile of the wave in the far field 
also has no tail in the high-frequency limit offt--, oo with M 
being fixed. 

Note that the strained coordinate in the body part of the 
wave (0<• < 2•r) and that in the tail (•v>2•r) are distinct, as 
in the problem for the spherical wayeft 

The boundary between regions (I) and (II) is, at least 
until a shock wave is formed, defined by a straight character- 
istic line t -- r + 1 = 0, i.e., 

(35) 
The boundary between regions (II) and (III) is, however, 
not a straight line, although it is a characteristic curve, 

t--(r-- (y+ 1)(,f•- 1) eft2 
fo • l-e-7• KI (•)e½ 

+ 1 = T, (36) 

i.e., • = 2•r, until a shock crosses it (cf. Reft 5). 

B. Formation of two shock waves 

The wave profile described by Eqs. (33) and (34) is 
distorted, as it propagates, due to the nonlinear effect. The 

nonlinear distortion eventually produces two shock waves. 
The shock formation distance r s can readily be derived from 
the condition 18 

Or 
--=o. (37) 

Differentiating Eq. (34) with respect to V and substituting 
Eq. (37) into the result yields 

1 -- Z dF(•) = O. (38) 
The normalized shock formation distance Z• is the smallest 
value of Z satisfying Eq. (38). A shock wave is generated at 
c,o•, where dF(•)/d• attains a positive maximum. Since the 
function F defined by Eq. (25) decreases monotonically 
with increase in its argument, no shock wave is produced in 
the tail. On the contrary, two shock waves can be formed in 
the body part of the wave, because dF(•)/ci• estimated by 
using Eq. (23) has two positive maxima in 0<• < 2m The 
shock formation distance is thus given by 

Z• = I/G(q•) and r• = {1 + [Z•/eft2A(y+ I)]} •, 
(39) 

where the explicit form of G(•) ---dF(•)/d• is 

= cos($ +,5) + A24 
KI (•)e½ exp( -- • •)d•. x [K, tO) ]' + ]2 

(4O) 

Clearly, one shock wave is generated at the boundary 
between regions ( I ) and (II), i.e., at • = q• = 0; we shall call 
it the front shock. The shock formation distance is 

Zr• = l/G(0), (41) 

where the subscript fs indicates the front shock. 
Another shock, which is hereafter referred to as the rear 

shock, is generated at q•, where the subscript rs indicates 
the rear shock. Differentiating Eq. (40) with respect to 9, we 
have the equations from which q• is determined, 

G'(q• ) = - sin(q,• + õ) 

K, (•)e c 

[K, (•-) 1• + •r • [I, (•') ] • 

X exp( -- •- •')d•' = 0 
and G"•0•) <0, (42) 

where the primes denote the differentiation with respect to 
•. The shock formation distance is 

Z•, = 1/G(qA• ). (43) 

We have aumerically confirmed that the rear shock is gener- 
ated in the negative portion of the wave profile for an arbi- 
trary ft, i.e., Iv(•p• ) = F(•0• ) <0 [see also Fig. 5(b) ]. 
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In the high-frequency limit of 12 

A-• 1, •5-,0, (44) 

where Eqs. (B1) and (B2) in Appendix B have been used. 
Substituting Eq. (44) into Eqs. (40)-(43), we obtain 

Zc•--,I, qrs-•2•r, Zrs---,1 as12--,o•. (45) 

One can readily see from the second equation of Eqs. (39) 
and Eq. (45) that both of the front and rear shock formation 
distances approach the cylinder almost in proportion to 1/12 
as 12-, o• with the acoustic Mach number M = 612 being 
fixed. By detailed numerical calculations, we have found 
that Zf• < Zrs < 1 for 12 < I• c and that Zr• < Zf• < 1 for 
12c < 12, where 12c = 17.586. This dependence of the shock 
formation distances on 12 is very similar to that of the spheri- 
cal wave in Ref. 5. In Fig. 4, 1 - Zr, and 1 - Zr• are depicted 
for varying 12 by using numerical calculations, where the 
reversion noted above is evidently shown. Figure 4 also 
shows that Zrs monotonically approaches to unity with in- 
crease in 12, while Zrs has a minimum value at 12 = 1.324. 

IV. PROPAGATION OF AN NWAVE WITH A TAIL 

Since we are concerned with the case of sufficiently large 
Ro, the shock waves can be regarded as discontinuities. The 
propagation of the weakly nonlinear waves accompanied by 
such shocks can be analyzed with the help of the equal-areas 
rule. 6'7 A shock is hereby located in the phase so as to cut off 
equal areas of the triple-valued waveform satisfying the far- 
field equation (29). The formula can be written as 7 

q•s = q•91 -- ZW(•i ) = q02 - ZW((]92 ), (46) 

-{[W(•2)] 2-- [W(•,)]2} = W(•)d•, (47) 
where a discontinuity is supposed to exist at q = q.•, and 
subscripts 1 and 2 indicate the values of 9 immediately in 
front of and behind the discontinuity, respectively. 

10_l [ •shock 

10-a rear shock % 

10 -• 1 10 10 • 

normalized angular frequency 

FIG. 4. The difference between the normalized shock formation distance Z• 
and its limiting value 1. 

A. Evolution of the front shock 

For the front shock, it can be seen that, as Z(>Zc•) 
increases, 9• (<0) decreases monotonically and •2 ap- 
proaches to qo, where cpo is a constant depending upon 12 
defined by 

F(•o) =0 (0<•%<7r), (48) 

(see Fig. 3). The system (46) and (47) can therefore be 
reduced to 

• = •1 = •2 -- ZF(•2 ), (49) 

T : (50) 
since W(•) = F(•) and F(•) = 0 for • <0. With the help 
of the explicit form ofF, Eq. (23), we can solve Eq. (50) to 
obtain •2 as a function ofg. Substituting the result into Eq. 
(49) gives q• for any Z(•Zr• ). 

As Z• m, we have q2 •qo, and hence we have 
W(•2)•G(qo)(•2--qo) by means of the relations 
W(•) = F(•) and G(•) = [see also Eq. (40)]. 
Replacing •2 on the right-hand side of Eq. (50) by qo gives 
an asymptotic representation for W(•2 ) as 

W(&2 ) = F(•2 ) • (2•, (51) 
where S is a constant depending upon • defined by 

= •o F(•)d•. (52) 
Substituting Eq. (51 ) into the right-hand side of Eq. (49), 
we obtain an asymptotic formula of the location of the front 
shock, 

(53) 
Equations (51 )-(53) are the well-known results (see, e.g., 
Ref. 7). 

B. Evolution of the rear shock and the tail 

The rear shock, which emerges in region (II), crosses 
the boundary between regions (II) and (III) in an initial 
stage of its evolution. To determine the location of the rear 
shock by means of the equal-areas rule, one should replace q0 
in Eq. (23) by &• and substitute the result into W(9• ) in 
Eqs. (46) and (47). For W(&2 ) in Eqs. (46) and (47), one 
should use Eq. (23) or Eq. (25), according as 92 <2•r or 
•2 >2•r. The system (46) and (47) thus determines 91 and 
92 for any Z( >Zr• ), so that we can obtain the location of the 
rear shock. 

As Z-• •, it can readily be seen that &l approaches qo 
(see Fig. 3) and that 92 monotonically increases to infinity. 
We therefore have W(•] ) -- G(•vo ) (91 -- •QO ) and 

W(92 ) --B9 i 5/24 1, (54) 
where Eq. (26) has been used. The presence of the tail is 
reflected in Eq. (54). Clearly, in an ordinary balanced N 
wave, W(&2 ) = 0. Substituting Eq. (54) into Eq. (47) and 
replacing 9, on the right-hand side of Eq. (47) by q•o yields 

W(9] ) • -- x/(2S/Z). (55) 

Here we have used Eq. (28) and the fact that W(gl ) <0. 
From Eqs. (46) and (55), we can derive 
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(d) - 

4.2x 0 - 2x 

phase function 99 

FIG. 5. The nonlinear distortion of the waveform and formation of an N 

wave with a tail. The figures are depicted by using the far-field solution, Eqs. 
(33) and (34), with the help of the equal-areas rule for ß = 0.1, II = 0.8, 
and y = 1.4. (a) At the moment of formation of the front shock, t = 55.4; 
Zt• = 0.853. (b) At the moment of formation of the rear shock, t = 80.0; 

Z• =0.993. A black circle indicates the shock formation point; 
W= F(•v, ) = - 0.032, •v,• = 5.934. (c) At the moment when both of the 
two shocks attain the almost maximum strengths, t = 195. (d) The profile 
of Wgrows into an Nwave with a tail: t = 2188. 

+ sz. (56) 
Note that Eqs. (55) and (56) are the same results as in the 
case of the balanced N wave with no tail (see Ref. 7). It 

follows from Eqs. (54), (56), and (30) that the radial veloc- 

rear shock 

10 20 30 

normalized distance Z 

FIG. 6. The growth and attenuation of 
w(•_• (z)) - w(•, (z)); fi = 0.8. 

shock strength, 

lOO 

5o 

rear 

- 4x 0 4x 

phase function 

FIG. 7. The paths of the two shocks in the (•,Z) plane; tl = 0.8. 

ity u immediately behind the rear shock decays as r o/s as 
the wave propagates; a similar result has been obtained in the 
supersonic flow problem.'S 

Consequently, the whole profile at large distances from 
the cylinder is an N wave with a tail, 

w(qo,z) 

= 

[Bq• - •/2, 

for •<'•o - 

for •o - 2x/•Z<•<•o 

for q2o + 
(57) 

The tail immediately behind the rear shock decays as Z 5/4 
as the wave propagates, whereas the body part immediately 
in front of the rear shock decays as Z - ,/2. The whole profile 
accordingly approaches to the balanced N wave with no tail 
in the limit of Z-• oo. We shall remark that the decay rate of 
the tail is very low compared with that of the spherical wave 
treated in Ref. 5, where the tail immediately behind the rear 
shock decays as e ,'z as the wave propagates. 

The numerical results of the analysis by making use of 
the equal-areas rule are shown in Figs. 5-7. Figure 5 (a) and 
(b) give the wave profiles at the moment of the front and 
rear shock formation, respectively. At first each shock grows 
and attains the maximum strength; thereafter its strength 
diminishes. Figure 5(c) shows the wave profile of Wat the 
moment when both of the two shocks attain the almost maxi- 

mum strengths. The profile of a typical N wave with the tail 
is given in Fig. 5(d). 

In Fig. 6, the shock strength, W(•2 )- W(•, ), is 
shown as a function of Z. Owing to the presence of the posi- 
tive tail, the rear shock is stronger than the front one at any Z 
[see Eq. (28) ]. 

The shock path in the (•v,Z) plane, i.e., q• as a function 
of Z, is presented in Fig. 7; the asymptote is a parabola. 
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APPENDIX A: NEAR-FIELD SOLUTION FOR THE 
VELOCITY POTENTIAL 

Applying the Laplace transform to the wave equation 
( 11 ) and using the initial conditions (8) gives 

o•2q • 1 
-- + s2q • = O, (A1) 
•r 2 r •r 

where 

ß (r,s) = e "q•(r,t)dt. (A2) 

The boundary condition (12) can also be transformed into 

8q• E• • 
------(1-e ,r) at r=l. (A3) 
8r s • + 12• 

Solving Eq. (A1) under the boundary condition (A3) and 
the radiation condition at infinity, we have 

e12 • Ko (st) 
ß (r,s) -- -- (e ,r_ 1), (A4) 

s(s 2 + 122) K• (s) 

where K.denotes the modified Bessel function of the second 
kind of order n (see Reft 22 for the definition). The velocity 
potential <I> can then be given by the inverse transformation 
as 

4P(r,t) = l-•- ff +i• e• 2 Ko(sr) 2•ri -i• s(s 2+122 ) K•(s) 

X (e,(, n _ e.•)ds, (A5) 

where rr is a positive number such that the integral in Eq. 
(A2) absolutely converges for all s with Re[s] > rr. We can 
reduce the representation (A5) to the form more tractable 
for our purpose (see Appendix C): (i) In region (I) 
(t-- r+ I <0) 

dp= 0. (A6) 

(ii) In region (II) (0<t -- r + 1 < T) 

•P = 6A, [ Yo (12r)cos(12t + 6, ) -- Jo (12r)sin(12t + 6• ) ] 

I, (;)Ko (;r) +/o (;r)Kl 
X d;. (A7) 

IX, (;)]2 + rr: [I, (;)]2 
Here, J. and Y,, denote the Bessel functions of the first and 
the second kind of order n, respectively, and I.is the modi- 
fied Bessel function of the first kind of order n, and constants 

A: and 6• are defined by 

=([J1(12)']2_{._ [yl(12)]2) ,/2, 
tan • [ Y: (11)/J• (12) ] 

(A8) 

(see Reft 22 for the definitions of J. Y., and I.). (iii) In 
region (III) (T•<t--r+ 1) 

I, (•)Ko (;r) + Io (;r)K, (;) } • [K, (;)]2 + •[I, (;)1 • e (A9) 

APPENDIX B: FORMULAS RELATED TO THE BESSEL 
FUNCTIONS AND THE MODIFIED BESSEL FUNCTIONS 

Formulas related to the Bessel functions and the modi- 

fied Bessel functions are listed below (see Reft 22), which 
are used in Secs. II and III, and Appendix C. In this Appen- 
dix, n is an integer and z is a complex number. 

The asymptotic expansions for large arguments are giv- 
en as 

• COS Z (Z-, oc ), 
2 

Y,,(z)• 2 sin z . (z-•oc), 
2 

(B1) 

(B2) 

( I.(z)• 1 d Izl-•oo,largzl<•-, (B3) 

K,,(z)•ze' (Iz,-• oo,larg zl <--3 r0. (B4) 2 

The modified Bessel functions of the second kind are 

connected to the Bessel functions by the relations 

K,,(z) 

II ß nrri/2 (1) rri12 = :•'•e H.(ze ) (--rr<argz<rr/2), 
I ' - rtTrt/2 (2) [ -- 2Irle H. (ze rri/2) ( -- rr/2 <argz•<rr), 

(BS) 

where 

H(.'•(z) = J. (z) + iY. (z), H•,:)(z) = J,, (z) -- iY. (z). 
(B6) 

The following relation also holds for the modified Bessel 
functions: 

sinvm•- 
K. (ze '•) = K.(z)e .... • - •ri lim -- Iv (z), 

,,• - sinv•r 

(B7) 

where m is an integer. 

APPENDIX C: EVALUATION OF THE INVERSION 
INTEGRAL 

The inversion integral 

I fa+ i• q•( r,t) = -- e'• ( r,s)ds, (C1) 
2 rr i .J o i • 

signifies that the integration.is to be performed along a 
straight line s: a from rr - io, to •r + io,, in a complex 
number plane. Here, a is a positive constant such that the 
integral in Eq. (A2) in Appendix A absolutely converges for 
all s with Re[s] > a. In the following, we shall evaluate the 
integral in Eq. (C1) in terms of a contour integral in the s 
plane. 

The function •(r,s) given by Eq. (A4) in Appendix A 
can bc rewritten into 

ß (r,s) = EII•[•, (r,s) + gg2 (r,s) ], (C2) 
where 
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I Ko (st) ,• 
qq (r,s) - -- e , 

s(s 2 + 12 2) K• (s) (C3) 
1 K o (sr) 

ee2 (r,s) = -- 
s(s 2 + 112) K• (s) 

Clearly, both the functions q• and •2 have simple poles at 
s = + ill. The function (e -jr-- 1)/s(s 2 + 112) however is 
analytic at s = + ill since T= 2rr/ll. Both Ko (sr) and 
K• (s), each of which has a branch point at the origin, have 
no zeros and no poles in a region -- rr<arg s<rr and s•0 
(see the book by Watson 23 ). Accordingly, q• is single-valued 
and analytic in the region. We also need to examine an 
asymptotic behavior of e•'q • (r,s) as I sl --, c•. Using Eq. (B4) 
in Appendix B, we have 

e(t - r + I - T)• 
e•'Od • ( r,s ) 

s(s 2 + ll•)x{• ' (C4) 
e(t- r+ l)s 

eS'eft2 ( r,s ) 
s(s 2 + ll2)• 

as Isl- © and largsl <rr. 
We now evaluate the inversion integral (C1) in the fol- 

lowing way: (i) In the case of t - r + 1 < O, we shall consider 

re•'[ql• (r,s) + qJ2 (r,s) ]ds, (C5) t 

taken along the contour F• shown in Fig. C1, consisting of a 
semicircle of radius R and the straight line joining its end 
points. Since there are no poles of e'•'eff(r,s) inside F•, the 
contour integral is zero by Cauchy's theorem. In the limit of 
R --, o•, it follows from Eq. (C4) that the integral along the 
semicircle tends to zero, and hence we have 

d)(r,t) -= 0. (C6) 

(ii) In the case of 0 < t -- r + 1 < T, we shall consider the sum 
of the two contour integrals, 

fr, eS'•, ( r,s)ds + fr• e"q•2 ( r,s)ds. (C7) 

I' 1 

FIG. CI. The contour F, in the s plane. 
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FIG. C2. The contour F2 in the s plane. 

Here the contour F 2 is shown in Fig. C2, which is chosen so 
that it encloses no singularities except for simple poles 
s = _+ ill and that the integrand becomes single-valued 
within and on the contour F 2 . In the same manner as in the 
case (i), the first integral in Eq. (C7) is zero. The second 
integral can be evaluated with the help of the theorem of 
residues. Using the series expansions, 22 we have 

Ko(sr)•--lns, K•(s)--,1/s as s•0. (C8) 

The integral along a small circle of F2 therefore vanishes as 
its radius tends to zero. The integral along a large circle also 
vanishes as its radius tends to infinity [see the second of Eq. 
(C4) ]. Consequently qb is given by the sum of the residues 
and the integrals along the semi-infinite lines s = •e ñ • (• is 
a positive real number), i.e., 

ß ( Ko(llre,,/a) Ko(glr e ß (r,t) = •- d n' in, K1 ( lie "ri/2 ) + e K 1 (fie v.i/2 ) / 

1 fo © 2rri •.(•2 + 112) 

:o(rre (CO) X •k' •11 (;-•- • Ki(• e 

Using formulas (B5)-(B7) in Appendix B, we can trans- 
form Eq. (C9) to Eq. (A7) in Appendix A. (iii) In the case 
of T<t -- r + 1, we shall consider 

r• e"•( r,s)ds. (CIO) 
Since there are no poles of e"W(r,s) inside F2, the contour 
integral is zero by Cauchy's theorem. We thus obtain Eq. 
(A9) in Appendix A. 
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