Instructions for use

Title
Stereoselective synthesis of (Z)-β-fluoro-α,β-unsaturated esters from (Z)-2-fluoro-1-alkenyliodonium salts

Author(s)
Yoshida, Masanori; Komata, Ayumu; Hara, Shoji

Citation
Journal of Fluorine Chemistry, 125(4): 527-529

Issue Date
2004-04

Doc URL
http://hdl.handle.net/2115/15854

Type
article (author version)

File Information
JFC125-4.pdf

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Stereoselective synthesis of (Z)-β-fluoro-α,β-unsaturated esters from (Z)-2-fluoro-1-alkenyliodonium salts

Masanori Yoshida, Ayumu Komata, Shoji Hara*
Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Abstract

(Z)-β-Fluoro-α,β-unsaturated esters were stereoselectively synthesized from (Z)-2-fluoro-1-alkenyliodonium salts by the Pd-catalyzed methoxycarbonylation reaction. The reaction proceeded at room temperature and various functional groups on the substrate can tolerate the reaction conditions.

Keywords: (Z)-2-fluoro-1-alkenyliodonium salts, (Z)-β-fluoro-α,β-unsaturated esters, Methoxycarbonylation reaction, Pd catalyst

1. Introduction

α-Fluoro-α,β-unsaturated esters have been used as building blocks or key intermediates for the synthesis of the fluorinated analogs of natural compounds having a fluorine atom on their double bonds because they can be stereoselectively prepared by the Horner-Wadsworth-Emmons reaction using ethyl 2-fluorodiethylphosphonoacetate [1-8]. On the other hand, only few methods had been reported for the stereoselective synthesis of β-fluoro-α,β-unsaturated esters [9]. Recently, we reported the stereoselective synthesis of (E)-isomer of β-fluoro-α,β-unsaturated esters by methoxycarbonylation of (E)-2-fluoro-1-alkenyliodonium salts obtained from 1-alkynes and iodotoluene difluoride [10,11]. However, the stereoselective synthesis of the (Z)-isomer of β-fluoro-α,β-unsaturated esters still remained undeveloped. Quite recently, we found that (Z)-2-fluoro-1-alkenyliodonium salts (1) can be stereoselectively prepared from 1-alkynyl(phenyl)iodonium salts [12]. We now report here the stereoselective synthesis of the (Z)-isomer of β-fluoro-α,β-unsaturated esters (2) from

*Corresponding author. Fax: +81-11-706-6556
e-mail address: hara@org-mc.eng.hokudai.ac.jp
the (Z)-2-fluoro-1-alkenyliodonium salts (1) (Eq. (1)).

(eq 1)

2. Results and discussion

The methoxycarbonylation reaction of (Z)-2-fluoro-1-dodecenyl(phenyl)iodonium tetrafluoroborate (1a) was carried out using PdCl$_2$ as a catalyst and Et$_3$N as base which were used in the reaction of (E)-isomers [11]. The reaction was completed in 2 h at room temperature and the desired methyl (Z)-2-fluoro-2-tridecenoate (2a) could be obtained in 70% yield based on 1a with high stereoselectivity (Z>98%). The yield of 2a could be slightly improved (73%) by the use of NaHCO$_3$ instead of Et$_3$N, but application of other Pd catalyst could not improve the results. The stereochemistry of the double bond in 2a was determined from NMR. A coupling constant value between F and H at C 2 is 31.1 Hz in 2a which is larger than that of (E)-isomer (J = 19.1 Hz) [9] and support that F and H are in trans-relationship on double bond [9]. Under the reaction conditions, functional groups such as an ester, ketone, chloride remained unchanged and various (Z)-β-fluoro-α,β-unsaturated esters could be synthesized in good yields as shown in Table 1.

(Table 1)

3. Conclusion

We succeeded to synthesize (Z)-β-fluoro-α,β-unsaturated esters (2) stereoselectively by the Pd catalyzed methoxycarbonylation reaction of the (Z)-2-fluoro-1-alkenyliodonium salts (1). As we previously succeeded in the stereoselective synthesis of (E)-β-fluoro-α,β-unsaturated esters, now both (E)- and (Z)-isomers of β-fluoro-α,β-unsaturated esters can be stereoselectively prepared.

4. Experimental

4.1. General methods
The IR spectra were recorded using a JASCO FT/IR-410. The 1H-NMR (400 MHz), 19F-NMR (376 MHz) and 13C-NMR (100 MHz) spectra were recorded in CDCl$_3$ on a JEOL JNM-A400II FT NMR and the chemical shifts, δ, are referred to TMS (1H, 13C) and CFCl$_3$ (19F). The EI or FAB low- and high-resolution mass spectra was measured on a JEOL JMS-700TZ, JMS-FAB mate or JMS-HX110. The elemental microanalysis was done using a Yanagimoto CHN Corder MT-5. Hydrofluoric acid of 46% in water was purchased from Wako Chemical Co., Inc., and diluted to 20% with distilled water. The 1-alkynyl(phenyl)iodonium tetrafluoroborates 1 were prepared from the corresponding alkynes [13].

4.2. Preparation of (Z)-2-fluoro-1-dodecenyl(phenyl)iodonium tetrafluoroborate (1a).

In a Teflon$^{\text{TM}}$ PFA vessel were placed 1-dodecynyl(phenyl)iodonium tetrafluoroborate (228 mg, 0.5 mmol) [13], a 20% hydrofluoric acid (500 mg, 5 mmol), and CHCl$_3$ (2 ml) and the mixture was vigorously stirred for 6 h at 60 °C. The reaction mixture was poured into a 5% aqueous solution of NaBF$_4$ (20 ml) and extracted with CH$_2$Cl$_2$ (10 ml) four times. The combined organic phase was dried over MgSO$_4$ and concentrated under reduced pressure. The crude product was purified by recrystallization from CH$_2$Cl$_2$-hexane and dried in vacuo to give 1a in 84% yield (200 mg, 0.42 mmol): mp 27-28 °C. IR (KBr): ν 3061, 3048, 2956 cm$^{-1}$. 1H NMR δ 0.88 (t, 3H, J=7.3 Hz), 1.19-1.31 (m, 14H), 1.52-1.60 (m, 2H), 2.57 (dt, 2H, 3J$_{H,F}$=17.3, J=7.6 Hz), 6.52 (d, 1H, 3J$_{H,F(olefin)}$=33.2 Hz), 7.45-8.02 (m, 5H). 19F NMR δ -63.90 (d, 3J$_{H,F(olefin)}$=33.2 Hz). 13C NMR δ 14.11, 22.67, 25.48, 28.69, 29.03, 29.26, 29.35, 29.47, 31.86, 32.26 (d, 2J$_{C,F}$=23.2 Hz), 74.20 (d, 2J$_{C,F}$=21.5 Hz), 111.40, 132.28 (2C), 132.64, 135.27 (2C), 174.19 (d, 1J$_{C,F}$=280.0 Hz). Anal. calcd. for C$_{18}$H$_{27}$BF$_5$I: C, 45.41; H, 5.72. Found: C, 45.48; H, 5.85.

4.3.1. Synthesis of methyl (Z)-3-fluoro-2-tridecenoate (2a).

In a flask fitted with a balloon (3 L) were placed PdCl$_2$ (1.8 mg, 0.01 mmol), NaHCO$_3$ (42 mg, 0.5 mmol) and MeOH (4 ml). After the complete replacement of the atmosphere in the flask with CO, the balloon was filled with CO. Then a solution of 1a (238 mg, 0.5 mmol) in MeOH (1 ml) was added. After stirring for 2 h at room
temperature, the reaction mixture was poured into 15% aq. NH₄Cl (15 ml), and extracted with diethyl ether (10 ml) three times. The combined organic phase was dried over MgSO₄, and concentrated under reduced pressure. Purification by column chromatography (silica gel/hexane-diethyl ether) gave 2a in 73% yield (89 mg, Z/E > 98/2). IR: (neat) ν 2926, 1735, 1685, 1217 cm⁻¹. ¹H NMR δ 0.88 (t, 3H, J = 7.1 Hz), 1.21-1.37 (m, 14H), 1.52-1.59 (m, 2H), 2.26 (dt, 2H, ³J_H-F = 17.3, J = 7.6 Hz), 3.72 (s, 3H), 5.18 (d, 1H, ³J_H-F(olefin) = 33.1 Hz); ¹⁹F NMR δ -79.53 (dt, 1F, ³J_H-F = 17.3, ³J_H-F(olefin) = 33.1 Hz). ¹³C NMR δ 14.11, 22.68, 25.54, 28.80, 29.21, 29.29, 29.42, 29.53, 31.88, 32.98 (d, ²J_C-F = 24.1 Hz), 51.33, 98.38 (d, ²J_C-F = 6.0 Hz), 164.30, 172.40 (d, ¹J_C-F = 281.1 Hz). HRMS (EI) calc. for C₁₃H₂₂FO (M+OMe): 213.1655. found: 213.1648.

4.3.2. Methyl (Z)-4-cyclohexyl-3-fluoro-2-propenoate (2b).

Yield 64% (Z/E > 98/2). IR: (neat) ν 1726, 1662, 1166 cm⁻¹. ¹H NMR δ 3.80 (s, 3H), 5.92 (d, 1H, ³J_H-F(olefin) = 33.4 Hz), 7.42-7.68 (m, 5H). ¹⁹F NMR δ -96.25 (d, ³J_H-F(olefin) = 33.4 Hz). ¹³C NMR δ 51.59, 96.75 (d, ²J_C-F = 7.4 Hz), 125.61 (d, 2C, ³J_C-F = 8.2 Hz), 128.86 (2C), 130.51 (d, ²J_C-F = 25.6 Hz), 131.55, 164.48, 166.41 (d, ¹J_C-F = 277.6 Hz). HRMS (EI): calc. for C₁₀H₉FO₂: 180.0586 found: 180.0586.

4.3.3. Methyl (Z)-3-fluoro-3-phenylpropenoate (2c).

Yield 70% (Z/E > 98/2). IR: (neat) ν 2926, 1732, 1683, 1218 cm⁻¹. ¹H NMR δ 0.91-1.00 (m, 2H), 1.09-1.31 (m, 3H), 1.59-1.77 (m, 6H), 2.14 (dd, 2H, ³J_H-F = 20.9, J = 7.1 Hz), 3.72 (s, 3H), 5.16 (d, 1H, ³J_H-F(olefin) = 32.9 Hz). ¹⁹F NMR δ -78.63 (dt, ³J_H-F = 20.9, ³J_H-F(olefin) = 32.9 Hz). ¹³C NMR δ 25.93 (2C), 26.09, 32.82 (2C), 34.87, 40.85 (d, ²J_C-F = 23.1 Hz), 51.27, 99.45 (d, ²J_C-F = 5.7 Hz), 164.18, 171.26 (d, ¹J_C-F = 286.6 Hz). HRMS (EI): calc. for C₁₁H₁₇FO₂: 200.1213 found: 200.1214.

4.3.4. Methyl (Z)-12-chloro-3-fluoro-2-dodecenoate (2d).

Yield 67% (Z/E > 98/2). IR: (neat) ν 2931, 1732, 1685, 1218 cm⁻¹. ¹H NMR δ 1.30-1.44 (m, 10H), 1.52-1.60 (m, 2H), 1.73-1.80 (m, 2H), 2.27 (dt, 2H, ³J_H-F = 17.3, J = 7.6 Hz), 3.53 (t, 2H, J = 6.8 Hz), 3.72 (s, 3H), 5.18 (d, 1H, ³J_H-F(olefin) = 33.1 Hz). ¹⁹F NMR δ -79.61 (dt, ³J_H-F = 17.3, ³J_H-F(olefin) = 33.1 Hz). ¹³C NMR δ 25.50, 26.79, 28.70, 28.76, 29.05, 29.19, 32.57, 32.93 (d, ²J_C-F = 23.1 Hz), 45.10, 51.30, 98.42 (d, ²J_C-F = 4.9
Hz), 164.24, 172.29 (d, $^1J_{C-F} = 285.8$ Hz). HRMS (FAB) calc. for C$_{13}$H$_{23}$ClFO$_2$ ($M^+ + H$): 265.1371 found: 265.1390.

4.3.5. Methyl (Z)-3-fluoro-11-(2-propoxycarbonyl)-2-undecenoate (2e).
Yield 66% ($Z/E > 98 / 2$). IR: (neat) ν 2933, 1731, 1684, 1218 cm$^{-1}$. 1H NMR δ 1.19-1.27 (m, 14H), 1.49-1.59 (m, 4H), 2.19-2.27 (m, 4H), 3.69 (s, 3H), 4.92-5.02 (m, 1H), 5.15 (d, 1H, $^3J_{H-F$(olefin)} = 32.2$ Hz). 19F NMR δ -79.60 (dt, $^3J_{H-F} = 17.7$, $^3J_{H-F$(olefin)} = 33.2$ Hz). 13C NMR δ 21.82 (2C), 24.92, 25.49, 28.68, 28.97 (2C), 29.00, 32.92 (d, $^2J_{C-F} = 23.9$ Hz), 34.63, 51.28, 67.32, 98.39 (d, $^2J_{C-F} = 5.7$ Hz), 164.24, 172.28 (d, $^1J_{C-F} = 286.6$ Hz), 173.32. HRMS (EI): calc. for C$_{16}$H$_{27}$FO$_4$: 302.1893 found: 302.1878.

4.3.6. Methyl (Z)-3-fluoro-13,13-dimethyl-12-oxo-2-tetradecenoate (2f).
Yield 68% ($Z/E > 98 / 2$). IR: (neat) ν 2932, 1734, 1704, 1685, 1219 cm$^{-1}$. 1H NMR δ 1.10 (s, 9H), 1.20-1.32 (m, 8H), 1.47-1.56 (m, 4H), 2.23 (dt, 2H $^3J_{H-F} = 17.3$, $J = 7.8$ Hz), 2.43 (t, 2H, $J = 7.3$ Hz), 3.69 (s, 3H), 5.15 (d, 1H, $^3J_{H-F$(olefin)} = 33.4$ Hz). 19F NMR δ -79.59 (dt, $^3J_{H-F} = 17.3$, $^3J_{H-F$(olefin)} = 33.4$ Hz). 13C NMR δ 23.82, 25.50, 26.38 (3C), 28.70, 29.02, 29.18, 29.26, 32.92 (d, $^2J_{C-F} = 23.9$ Hz), 36.34, 44.06, 51.28, 98.39 (d, $^2J_{C-F} = 4.9$ Hz), 164.24, 172.33 (d, $^1J_{C-F} = 283.3$ Hz), 216.04. HRMS (EI): calc. for C$_{17}$H$_{29}$FO$_3$: 300.2101 found: 300.2109.

References

\[
\text{R} \quad \overset{\text{\text{CO}, MeOH}}{\text{Pd-cat., base}} \quad \overset{\text{\text{Pd-cat., base}}}{\text{\text{Pd-cat., base}}} \quad \text{R} \\
\text{1} \quad \overset{\text{\text{Ph)BF}_4}{\text{F}} \quad \text{COOMe} \\
\text{2} \quad \overset{\text{\text{F}}}{\text{COOMe}}
\]
Table 1 Stereoselective synthesis of (Z)-β-fluoro-α,β-unsaturated esters from (Z)-2-fluoro-1-alkenyliodonium saltsa

<table>
<thead>
<tr>
<th>Entry</th>
<th>React. Time, h</th>
<th>Product</th>
<th>Yield, %b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>C${10}$H${21}$F COOMe</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(CH$_2$)$_9$Cl F COOMe</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>Ph F COOMe</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Cl-(CH$_2$)$_9$ F COOMe</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>iPrOOC-(CH$_2$)$_8$ F COOMe</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>tBu-C-(CH$_2$)$_8$ F COOMe</td>
<td>68</td>
</tr>
</tbody>
</table>

a The reaction was carried out as shown in an experimental part. b Isolated yields based on alkyne used.
Stereoselective synthesis of (Z)-β-fluoro-α,β-unsaturated esters from (Z)-2-fluoro-1-alkenyliodonium salts

Masanori Yoshida, Ayumu Komata, Shoji Hara
Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

(Z)-β-Fluoro-α,β-unsaturated esters can be stereoselectively prepared by the methoxycarbonylation of (Z)-2-fluoro-1-alkenyliodonium salts.

\[
\begin{align*}
\text{R} & \quad \text{I(Ph)BF}_4 & \quad (\text{CO, MeOH, Pd-cat., base}) & \quad \text{R} & \quad \text{COOMe}
\end{align*}
\]