Instructions for use

Title
FURTHER OBSERVATIONS ON THE TRANSMISSION OF EQUINE INFECTIOUS ANEMIA VIRUS TO SHEEP

Author(s)
MIURA, Shiro; SATO, Gihei; MIYAMAE, Takeo

Citation
Japanese Journal of Veterinary Research, 3(3): 136-139

Issue Date
1955-09-30

DOI
10.14943/jjvr.3.3.136

Doc URL
http://hdl.handle.net/2115/1675

Type
bulletin

File Information
KJ00002372950.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
FURTHER OBSERVATIONS ON THE TRANSMISSION OF EQUINE INFECTIOUS ANEMIA VIRUS TO SHEEP*

Shiro Miura, Gihei Sato and Takeo Miyamae

Laboratory of Epizootiology,
Faculty of Veterinary Medicine, Hokkaido University,
Sapporo, Japan

(Received for Publication, August 2, 1955)

In the previous paper, Miura et al. described some interesting facts concerning the appearance of the virus in circulating blood and the persistence of the virus in tissues of lambs that were subcutaneously inoculated with equine infectious anemia (E.I.A.) virus.

The present report deals with attempts to trace the later fate of E.I.A. virus in tissues of experimental lambs and with some discussion on the susceptibility of sheep to this virus.

EXPERIMENT

In as much as the blood sample which was collected from the lambs on the 14th, 21st and 28th days after the inoculation of E.I.A. virus was proved free from this virus, further experiment on the virulence of the lamb blood was left over from the previous experiments. To search for the persistence of E.I.A. virus in lamb body, 400 ml of the organ emulsion added with 1,000 uts. of penicillin and 500 uts. of streptomycin per ml was injected subcutaneously into a horse numbered No. 9 (foal) that was ascertained not infected with E.I.A. prior to the experiment. The organ emulsion was prepared in the same way as recorded in the previous paper after storage at -30°C for 281 days, from lamb No. 4 slaughtered on the 77th day after the administration of E.I.A. virus.

Horse No. 9, as indicated in chart 1, developed a temperature higher than 39°C lasting for about a week. Erythrocytes diminished in number from 6~7 million to 5 million or less and a small number of siderocytes was demonstrated in jugular vein blood on the days succeeding the febrile attack. At that time, anemic and icteric discolorations of mucosae appeared and petechiae also developed on the sublingual mucosa and gums; furthermore cardiac disturbances, such as cloudiness and stippling of the 2nd sound, were recognized. Though biopsies were conducted 3 times during the period of the 14th~21st days of the test, neither the histological findings in liver nor splenograms suggested the infection of E.I.A. On the 32nd day, the horse was subjected to post-mortem examinations, however, histopathological findings did not show the changes indicative of this disease. Bacterio-

* The present work was supported by grant of the Hokkaido Prefectural Government and a Grant in Aid for Miscellaneous Scientific Research of the Ministry of Education.
logical examinations on the several organs of the animal resulted negative so far as common aerobes were concerned.

Chart 1. Horse No. 9

<table>
<thead>
<tr>
<th>DAYS ELAPSED AFTER INJECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Note: R.: Erythrocyte number in million
T.: Body temperature
Siderocyte: Siderocyte number in 10,000 leucocytes

The present workers diagnosed horse No. 9 as E.I.A. from the clinical and hematological findings in spite of the absence of histopathological evidence. Thus, it is confirmed that the E.I.A. virus was contained in the lamb organ as long as 77 days after inoculation apart from the questions whether the viruses multiplied or merely harboured therein.

Discussion

While a number of reports in regard to negative results on transmission of E.I.A. virus to sheep have been published, the Japanese Commission considered sheep slightly susceptible on the basis of certain experimental results showing some clinical responses and appearance of E.I.A. virus in blood in the animal subsequent to exposure to the virus. Theiler et Kehoe and Balozet also detected the virus in blood of the animals receiving E.I.A. virus. Auerman and Haring also reported the slight susceptibility of lambs from their clinical responses after subcutaneous inoculation with virulent blood. However, none of the previous investigators has sought E.I.A. virus either in circulating blood of sheep day by day after the administration of the virus or in tissues at all. Moreover, none of them investigated the relations between the clinical responses and the appearance of the virus in blood. In addition to these facts, the recent advances in experimental virology seem to require a reinvestigation of the views based upon the results of earlier experiments.

As previously reported, the authors detected E.I.A. virus in organs of each of the lambs sacrificed on the 3rd, 10th or 28th days subsequent to subcutaneous inoculation with the virulent serum. The virus was also found in the circulating...
blood of the lamb within the period of the 5~10th days after the administration of the virus. Moreover, histopathological changes analogical with those of E.I.A. observed in 1 out of 5 experimental lambs suggested infection of this animal with E.I.A. However, the blood collected on the 14th, 21st and 28th days was proved avirulent, and there was failure to certify the virulence of blood withdrawn on the 1st~3rd days. On the other hand, some clinical findings, such as fever increase and erythrocyte diminution, were recognized not only in experimental lambs but also in control animal.

In the present experiments it was confirmed that the emulsion prepared from several organs of the lamb on the 77th day of the test contained the active virus. Among these experimental results, the appearance of the E.I.A. virus in circulating blood within the period of the 5~10th days of test would be considered as a suggestive fact for the occurrence of transient viremia. In addition to this, some histopathological changes analogous with those of chronic E.I.A. and the persistence of the virus for as long as 77 days in lamb tissues, may indicate the possible propagation of the virus in the animal body.

SUMMARY AND CONCLUSION

In order to supplement the previous work, the authors performed some experiments. The result obtained is as follows: Equine infectious anemia (E.I.A.) virus was demonstrated in the mixed emulsion prepared from several organs of a test lamb (No. 4) that was slaughtered on the 77th day after subcutaneous inoculation with the serum virus.

Basing their consideration on the results of the previous and present experiments, the authors discussed the susceptibility of the sheep. It was concluded that it may be possible to cause a subclinical infection in lamb with E.I.A. virus.

APPENDIX

According to DONATIEN et LESTOQUARD and GERLACH, artificial inoculation with ovine infectious anemia (O.I.A.) virus induces, in soliped, a disease which is closely similar to E.I.A. so far as symptoms, blood and pathological changes are concerned; subclinically infected sheep may also be encountered in infected area. As previously reported, the present authors observed some temperature increases and erythrocyte diminutions in test lambs. Therefore, in spite of no reports on the occurrence of O.I.A. in Japan, it seems desirable to ascertain whether the causative agent with which the experimental horses were infected is none other than E.I.A. virus administered to lambs for inoculum or O.I.A. virus, contaminant, originated from the animals.

In order to solve this question, as far as possible, some investigations were conducted as briefly described in the following:

(1) Lamb No. 8 (10-month-old Corriedale) was injected subcutaneously with 50 ml of
Transmission of Equine Infectious Anemia Virus to Sheep

defibrinated blood bled at the febrile stage of experiment horse No. 4 that was surely infected with E.I.A. virus contained in the organ emulsion of test lamb No. 2. Thereafter, lamb No. 8 ran normally for 31 days without showing any post-mortem changes indicative of O.I.A.

(2) Goat No. 1 (Saanen kid) received subcutaneously 40 ml of defibrinated blood withdrawn in the febrile stage of experiment horse No. 9. The kid revealed no signs of sickness suggesting the infection of O.I.A. throughout the observation period of 55 days.

From the above-mentioned data and from the epizootiological fact that nobody has recognized the O.I.A. among any sheep or goat flock in Japan, the virus demonstrated from lambs in above transmission experiments is surely identical with those of E.I.A., not with O.I.A.

Authors would like to express their thanks to Prof. YAMAGIWA, Prof. NAKAMURA and to their co-workers for hearty support in the histopathological and clinical investigations. The writers are also indebted to Prof. HIRATO for his kind advice.

REFERENCES

6) Japanese Commission (Horse Administration Bureau) (1914): Report on the Results Obtained by the Special Committee for Investigation of Infectious Anemia of the Horse, Tokyo.