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Nonlinear analysis of periodic modulation in resonances
of cylindrical and spherical acoustic standing waves
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Sapporo 060-8628, Japan
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The nonlinear resonance of cylindrical acoustic standing waves of an ideal gas contained between
two coaxial cylinders is theoretically investigated by the method of multiple scales. The wave
motion concerned is excited by a small-amplitude harmonic oscillation of the radius of the outer
cylinder, and the formulation of the problem includes the wave phenomenon in a hollow cylinder
without the inner one as a limiting case. The spherical standing wave in two concentric spheres is
also studied in parallel. The resonance occurs if the driving frequency falls in a narrow band around
the linear resonance frequency, and in the weakly nonlinear regime, no shock wave is formed in
contrast to the plane wave resonance. A cubic nonlinear equation for complex wave amplitude can
then be derived by the method of multiple scales. Using a first integral of the cubic nonlinear
equation, we shall demonstrate that the resonant oscillation is accompanied by a periodic
modulation of amplitude and phase when the dissipation effect due to viscosity and thermal
conductivity is negligible. The period of the modulation varies as the minus two-thirds power of the
acoustic Mach number defined at the outer cylinder or sphere and decreases with an increase in the
radius ratio of the inner and outer cylinders or spheres. When the dissipation effect is small but not
negligible, the modulation is slowly weakened and the resonant oscillation approaches a steady state
oscillation, which corresponds to the steady solution examined in earlier works. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2393437�

I. INTRODUCTION

Acoustic resonance in fluids has long been studied be-
cause a large amplitude sound, which has a wide potential
for application, can readily be produced as long as the dissi-
pation effect due to viscosity and thermal conductivity is
sufficiently small. The resonance of plane standing waves in
a closed tube continues to attract particular attention,1–9 lead-
ing to the development of the corresponding part of nonlin-
ear wave theory. Of primary concern in the nonlinear plane
wave resonance is, from both theoretical and application
points of view, the formation of shock waves, which causes
the energy dissipation at a shock front and restrains the
growth of wave amplitude. In the plane wave resonance with
shock waves, therefore, the maximum wave amplitude in the
quasisteady state oscillation is limited to O��M�,1–9 where M
is the acoustic Mach number defined at the sound source
and usually rather small compared with unity �typically
M �10−3�.

The weakly nonlinear resonances of cylindrical and
spherical standing waves are, on the other hand, shock free if
M is not too large.10–13 This is because the excitation of
higher harmonics required for shock formation is impeded
by the fact that the resonance frequency of each nth mode
�n=2,3 , . . . � is not equal to the n multiple of that of the
fundamental mode in cylindrical and spherical standing
waves, as sometimes called dissonant.14 As a result, the
maximum wave amplitude in the shock free resonances of
cylindrical and spherical standing waves attains
O�M1/3�,10–13 which can be considerably large for M �1

compared to the case of plane waves. The dissonant effect
has been utilized for realization of large amplitude and shock
free resonant oscillations.15,16

The steady state oscillations of shock free resonances in
a spherical shell and in an infinitely long cylinder were stud-
ied by Chester10 and Ellermeier,11,12 respectively. However,
since they started the analyses from assuming the steady
state, the temporal evolutions of wave motions were not
clarified. Recently, we have carried out the numerical analy-
sis of resonance of cylindrical standing waves in an ideal gas
between two coaxial cylinders, where the wave motion is
excited from an initial quiescent gas by a harmonic oscilla-
tion of the radius of outer cylinder.13 We have found that the
shock free resonance is accompanied by a periodic modula-
tion in amplitude and phase from the numerical solutions of
the systems of Euler and Navier-Stokes equations. We have
also shown that the period of modulation is approximately
proportional to M−2/3 and it is a decreasing function of the
radius ratio of the inner and outer cylinders.13 Furthermore, a
critical acoustic Mach number, above which a shock wave is
formed, has been determined numerically.13

In the present paper, we perform a theoretical analysis of
the modulation of shock free resonances of cylindrical stand-
ing waves in two coaxial cylinders and spherical standing
waves in two concentric spheres. The problem setup of two
coaxial cylinders and two concentric spheres effectively
works to address the geometrical effect on the resonances by
changing the radius ratio. Restricting ourselves to the weakly
nonlinear and shock free regime, we can apply an asymptotic
expansion in a small parameter � to the problem, where � is
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set as the maximum wave amplitude M1/3. In addition to a
characteristic time scale �−1, where � is an angular fre-
quency of oscillation of radius of the outer cylinder or
sphere, we introduce a slow time scale �−2�−1 inspired by the
result of the previous numerical study.13 Thus, the analysis is
accomplished with the method of multiple scales17,18 up to
the third order, and a cubic nonlinear equation for complex
wave amplitude is derived. Making use of the amplitude
equation and its first integral, we explore several features of
the modulation phenomenon.

We shall emphasize that the present study is not only a
confirmation of the previous numerical simulation. It is
known that the detuning can cause the amplitude modulation
in the plane standing waves.19,20 However, the modulation
resulting from detuning is essentially a linear wave phenom-
enon. This paper presents a mathematical evidence that the
modulation in cylindrical and spherical standing waves is
induced by the nonlinearity and geometrical effect irrespec-
tive of detuning.

II. FORMULATION OF THE PROBLEM

A. Coaxial cylinders and concentric spheres

We shall consider standing waves in an ideal gas be-
tween two infinitely long coaxial cylinders and two concen-
tric spheres. The sound is generated in the gas by a harmonic
oscillation of the radius of outer cylinder or sphere, given by

rb = r̄b − A0 cos �t*, �1�

where rb is the instantaneous radius at time t*, r̄b is the mean
radius, A0 is an amplitude, and � is an angular frequency of
the harmonic oscillation �see Fig. 1�. The inner cylinder or
sphere is fixed and thus a standing acoustic wave with cylin-
drical or spherical symmetry is formed in the gas. If the
driving frequency � matches a resonance frequency of the
system, the standing wave develops into a resonant oscilla-
tion. The problem can be described only by two independent
variables, the time t* from the beginning of the oscillation,
and the radial coordinate r* from the axis of the cylinders or
the center of the spheres. Consequently, the two problems for

cylindrical waves and spherical waves can be discussed in
parallel.

In order to formulate the problem mathematically, the
nondimensional variables are introduced:

r =
�r*

c0
, t = �t*, u =

u*

c0
, � =

�*�

c0
2 , �2�

where c0 is the speed of sound in the initial undisturbed gas,
u* is the radial component of the fluid velocity, �* is the
velocity potential defined by u*=��* /�r*.

Now, the most important parameter related to the geom-
etry of the problem is the radius ratio. The radius ratio � is
defined as

� �
ra

r̄b

�0 � � � 1� , �3�

where ra is the radius of inner cylinder or sphere. The pa-
rameter � can be regarded as a measure of geometrical
effect.21 In fact, when � is sufficiently small compared with
unity, the wave amplitude at the inner boundary increases
due to the focusing of cylindrical or spherical waves. The
case that the inner cylinder or sphere does not exist is in-
cluded in the present formulation as a limiting case of
�→0. On the other hand, if � becomes close to unity, with
keeping the spacing between inner and outer boundaries con-
stant, the wave motion becomes close to that of the plane
wave. However, the treatment of the case of �→1 requires
some care, because the nonlinear plane wave resonance al-
ways leads to the shock formation if the dissipation effect is
negligible, and the present method of analysis assumes the
shock free resonant oscillations.

The acoustic Mach number M at the outer cylinder or
sphere is defined as

M �
A0�

c0
�0 � M � 1� . �4�

This parameter measures the magnitude of nonlinearity for
the wave that has just been radiated from the sound source.
As shown in the previous numerical study,13 the shock wave
can be generated even if � is rather small, if M is larger than
the critical Mach number. In the present paper, we assume
that M is sufficiently small so as to not lead to the shock
formation. The geometrical effect on the shock formation in
nearly plane wave resonances has also been discussed by
Ockendon et al.22

By using the nondimensional variables defined above,
the radius of outer and inner cylinder or sphere can be non-
dimensionalized as

mean radius of outer cylinder �or sphere�: rs =
�r̄b

c0
, �5�

inner cylinder �of sphere�: �rs =
�ra

c0
. �6�

The parameter rs may be regarded as a nondimensional driv-
ing frequency. Note that M should be sufficiently small so
that an additional restriction A0� r̄b−ra, i.e., M � �1−��rs,
may be satisfied.

FIG. 1. Schematic of coaxial cylinders or concentric spheres. The acoustic
standing wave is excited by a harmonic oscillation of the radius of the outer
cylinder or sphere with an amplitude A0 and angular frequency �.
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B. Governing equation

The governing equation for the nondimensional velocity
potential ��r , t� derived from mass, momentum, and energy
conservation equations23 can be written as

	� −
�2�

�t2 =
�

�t
� ��

�r
�2

+
1

2

��

�r

�

�r
� ��

�r
�2

+ �
 − 1�	�	 ��

�t
+

1

2
� ��

�r
�2


−
1

Re
�3

4
+

�v

�
+


 − 1

Pr
� �

�t
	� , �7�

where 
, �, and �v are �all assumed to be constant� the
specific heat ratio of the ideal gas, coefficient of viscosity,
and coefficient of bulk viscosity, respectively, and 	 is a
Laplacian,

	 = �
1

r

�

�r
�r

�

�r
� for cylindrical waves

1

r2

�

�r
�r2 �

�r
� for spherical waves. � �8�

The last term in the right-hand side of Eq. �7� represents the
dissipation effect, and Re and Pr are Reynolds number24 and
Prandtl number, respectively,

Re �
c0

2

�0�
, Pr �

�0


0
, �9�

where �0 and 
0 are kinematic viscosity and thermal conduc-
tivity of initial undisturbed gas.

The boundary conditions are, in the nondimensional
form, given by

��

�r
= 0 at r = �rs �inner boundary� , �10�

��

�r
= M sin t at r = rs − M cos t �outer boundary� , �11�

where rs−M cos t is the nondimensional instantaneous radius
of the outer cylinder or sphere.

III. MULTIPLE SCALES ANALYSIS

Let us seek an approximate solution of Eq. �7� in the
form of an asymptotic expansion with a small parameter �,

� = ��1�r,t,T� + �2�2�r,t,T� + �3�3�r,t,T� + O��4� ,

�12�

where the expansion parameter � is set as the order of the
maximum wave amplitude, M1/3,

� � M1/3, �13�

and a slow time variable T defined by

T � �2t = M2/3t , �14�

is introduced as an independent variable in Eq. �12�. The
scaling, Eqs. �13� and �14�, is motivated by the result of the

previous numerical study.13 Thus we employ the method of
multiple scales17 with t and T�=�2t�.

In addition, we also introduce a detuning parameter �
and a damping parameter �,

rs = r0 + �2�,
1

Re
�3

4
+

�v

�
+


 − 1

Pr
� = �2� . �15�

Here, r0 is a resonance radius correspond to the resonance
frequency obtained from the linear wave equation �see the
next subsection�, �2� represents a distance between the reso-
nance radius and the mean radius of the outer boundary
called detuning, and �2� represents the dissipation effect.
Equation �15� means that the detuning and damping are as-
sumed to be comparable and very small. Actually, the damp-
ing coefficient � is always small unless the driving frequency
� is quite large �see Eq. �9�� in nonlinear problems with
small but finite M. For example, if M 
10−3, �
104, and
the gas is the air ��0
10−5 m2/s�, then Re
106 and hence
�
�−2 Re−1
10−4.

Substituting Eq. �12� into the governing equation �7� and
boundary conditions �10� and �11�, and equating coefficients
of equal powers of � leads to a sequence of linear problems
for �n�n=1,2 ,3 , . . . �, which are successively solved in the
subsequent subsections. Since the analysis in this section
aims at deriving the equation for complex wave amplitude,
which is capable of describing the modulation phenomenon,
only the first- and second-order problems are solved exactly.
In the third-order problem, the amplitude equation is derived
from the so-called solvability condition to make the
asymptotic expansion �12� uniformly valid.

A. First-order problem

The first-order problem is given by the linear wave equa-
tion

	�1 −
�2�1

�t2 = 0, �16�

and the boundary conditions

��1

�r
= 0 at r = �r0, �17�

��1

�r
= 0 at r = r0, �18�

where the resonance radius r0�r0�0� is to be determined.
By the method of separation of variables, the solution of

the boundary value problem �16�–�18� is written in the form
of a standing wave,

�1�r,�,t� = A�T�exp�it��1�r� + c.c., �19�

where i is the imaginary unit, A is an unknown complex
wave amplitude, �1 is a real function of r, and c .c. implies
the complex conjugate to all preceding terms. The functional
form of A with respect to the slow time variable T is deter-
mined by the amplitude equation derived later.

The spatial profile �1 satisfying the boundary condition
�17� is
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for cylindrical waves:

�1 =
J0�r�N1��r0� − J1��r0�N0�r�

Z��r0�
, �20�

for spherical waves:

�1 = ��r0�2�S�r�C���r0� − S���r0�C�r�� , �21�

where Jn and Nn�n=0,1� are Bessel and Neumann functions
of order n. The denominator Z��r0� in Eq. �20� is defined as

Z��r0� = ��J1��r0��2 + �N1��r0��2, �22�

and introduced to eliminate the singularity of the numerator
in the limit �→0. The functions S and C in Eq. �21� are
defined as

S�r� =
sin r

r
, C�r� =

cos r

r
, �23�

and the prime denotes the derivative with respect to its argu-
ment. The singularity of the derivatives of S and C functions
in the limit �→0 is eliminated by a factor �2 in Eq. �21�.

Applying boundary condition �18� to Eqs. �20� and �21�
gives the resonance conditions for cylindrical waves,

J1�r0�N1��r0� − J1��r0�N1�r0� = 0, �24�

and for spherical waves,

S��r0�C���r0� − S���r0�C��r0� = 0, �25�

respectively. For a given �, the resonance radius r0 is deter-
mined as a solution of Eq. �24� or Eq. �25�. In Fig. 2, the
resonance radius of each nth mode �n=1: the fundamental,
n=2,3 , . . .: higher modes� is plotted, where the solid curves
denote those for cylindrical waves and the dashed curves for
spherical waves. Except for small � ���0.2�, the difference
of r0 is small between the cylindrical and spherical waves.

B. Second-order problem

The second-order problem is given by

	�2 −
�2�2

�t2 =
�

�t
� ��1

�r
�2

+ �
 − 1�
�2�1

�t2

��1

�t
, �26�

��2

�r
= 0 at r = �r0 and r = r0. �27�

Since the boundary condition �27� does not allow a steady
component, we can put �2 in the form of the second har-
monics

�2 = iA2 exp�2it��2�r� + c.c., �28�

where �2 is a real function of r.
Substituting Eq. �28� into Eqs. �26� and �27�, we have a

linear two-point boundary value problem for �2, consisting
of an inhomogeneous second-order ordinary differential
equation and homogeneous Neumann boundary conditions at
r=�r0 and r=r0. As can be easily seen, the solvability con-
dition for the boundary value problem for �2 holds for an
arbitrary A, and hence we can obtain the explicit forms of �2

for the cylindrical wave,

�2 = �
J0�2r�N1�2�r0� − J1�2�r0�N0�2r�

J1�2r0�N1�2�r0� − J1�2�r0�N1�2r0�

� �
�r0

r0

�J1�2r0�N0�2�� − J0�2��N1�2r0���R2C���d�

− ��
�r0

r

�J0�2r0�N0�2�� − J0�2��N0�2r0���R2C���d� ,

�29�

where

R2C��� = �J1���N1��r0� − J1��r0�N1����2

−

 − 1

2
�J0���N1��r0� − J1��r0�N0����2, �30�

and for the spherical wave,

�2 = −
S�2r�C��2�r0� − S��2�r0�C�2r�

S��2r0�C��2�r0� − S��2�r0�C��2r0�

� �
�r0

r0 2r0 cos 2�r0 − �� − sin 2�r0 − ��
4r0

2 �R2S���d�

+ �
�r0

r sin 2�r − ��
2r

�R2S���d� , �31�

where

R2S��� = 2�S����C���r0� − S���r0�C�����2 − �
 − 1�

��S���C���r0� − S���r0�C����2. �32�

The calculation for deriving the explicit representation of �2,
Eqs. �29�–�32�, is slightly tedious but the result is indispens-
able for the evaluation of coefficients of the amplitude equa-
tion in Sec. IV.

FIG. 2. The resonance radius r0 calculated from �24� and �25�. Solid curves
denote those for cylindrical waves and dashed curves for spherical waves.
The number near each curve signifies the mode number beginning from n
=1 for the fundamental; the number is omitted for n�4.
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C. Third-order problem

Finally, we proceed to the third-order problem, where
the detuning and damping terms and the derivative with re-
spect to the slow time variable T first appear in the set of
equations and boundary conditions,

	�3 −
�2�3

�t2 = 2
�2�1

�t�T
− �

�3�1

�t3 + 2
�

�t
� ��1

�r

��2

�r
�

+ � ��1

�r
�2�2�1

�r2 + �
 − 1�� �2�1

�t2 	 ��2

�t

+
1

2
� ��1

�r
�2
 + 	�2

��1

�t
� , �33�

��3

�r
= 0 at r = �r0,

��3

�r
= sin t − �

�2�1

�r2 at r = r0.

�34�

Taking account of the fact that �1 is the fundamental
and �2 is the second harmonics with respect to t, it is clear
that the right-hand side of Eq. �33� is composed of only the
fundamental and third harmonics. We can therefore put �3 in
the form

�3 = �3�r�exp�it� + F�3r�exp�3it� + c.c., �35�

where �3 and F are complex-valued.
Substituting Eq. �35� into Eqs. �33� and �34�, after some

manipulation, we have a linear boundary value problem for
�3,

d

dr
�rnd�3

dr
� + rn�3 = rnR3�r� + c.c., �36�

d�3

dr
= 0 at r = �r0,

d�3

dr
= A��1 −

i

2
+ c.c. at r = r0,

�37�

where n=1 and n=2, respectively, correspond to cylindrical
and spherical waves, and

R3�r� = 2i
dA

dT
�1 + A2Ā�− 2

d�1

dr

d�2

dr
+ 3�d�1

dr
�2d2�1

dr2

+ �
 − 1�	− 2�1�2 +
1

2
�1�d�1

dr
�2


− �
 − 1�2�1
3� �38�

�Ā is the complex conjugate of A�. From the solvability con-
dition for the boundary value problem �36�–�38�, we obtain a
cubic nonlinear equation for complex wave amplitude A,

iP̂�2
dA

dT
+ �A� + Q̂A2Ā + R̂�A =

i

2
Ŝ , �39�

where coefficients P̂, Q̂, R̂, and Ŝ are defined as follows:

P̂ = �
�r0

r0

rn�1
2dr , �40�

Q̂ = �
�r0

r0

rn�1�− 2
d�1

dr

d�2

dr
+ 3�d�1

dr
�2d2�1

dr2 + �
 − 1�

�	− 2�1�2 +
1

2
�1�d�1

dr
�2
 − �
 − 1�2�1

3�dr , �41�

R̂ = − r0
n�1

2�r0�, Ŝ = − r0
n�1�r0� . �42�

The amplitude equation �39� is substantially equivalent to
that of a forced oscillator with cubic nonlinearity.18 In Ref.
16, another equivalent amplitude equation has been derived
for an acoustic resonance in a tube with an array of
Helmholtz resonators, with the analysis being focused on the
steady state, i.e., dA /dT=0. A qualitative discussion of am-
plitude equations has also been given in a problem of reso-
nance in nonuniform media.25

Once the oscillation mode is specified �e.g., the second
mode of cylindrical waves, the third mode of spherical
waves, and so on�, and the radius ratio � is given, the reso-
nance radius r0 is obtained as a function of � by Eq. �24� or

Eq. �25�, as shown in Fig. 2. Then, all the coefficients P̂, Q̂,

R̂, and Ŝ can be determined from Eqs. �40�–�42�, and the
nonlinear response of complex amplitude A can be examined
by solving the amplitude equation �39�. In the following, we
investigate the behavior of the amplitude and phase re-
sponses in the resonances of cylindrical and spherical stand-
ing waves. The discussion will be focused on the fundamen-
tal mode, where the geometrical effect manifests itself most
conspicuously.

IV. NONLINEAR RESPONSE OF THE RESONANT
OSCILLATION AND THE MODULATION

We shall introduce a polar form

A�T� = a�T�exp�i��T�� , �43�

where a�T� and ��T� are real functions of T. In the polar
form �43�, �a� is sometimes used instead of a. This does not
make a substantial difference. We prefer the use of a that
makes � continuous for −�����. Substituting Eq. �43�
into Eq. �39� and separating the real and imaginary parts, we
have

117107-5 Nonlinear analysis of periodic modulation Phys. Fluids 18, 117107 �2006�

Downloaded 22 Nov 2006 to 133.87.127.48. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



a
d�

dT
= �a3 − � sin � + ��a , �44�

da

dT
= � cos � −

1

2
�a , �45�

where

� =
Q̂

2P̂
, � =

Ŝ

4P̂
, � =

R̂

2P̂
. �46�

The coefficients �, �, and � are constants depending only on
�, since r0 is a function of � for a specified oscillation mode
�see Fig. 2�. In Fig. 3, �, �, and � are plotted as a function of
� for the fundamental modes of cylindrical waves �Fig. 3�a��
and spherical waves �Fig. 3�b��. As can be seen, � and � are
negative, while � is positive for 0���0.9. Furthermore, �
rapidly grows with the increase of �. These parameters are
essential for the analysis in the following.

A. Resonant oscillation without damping

If the dissipation effect is much smaller than the nonlin-
ear effect, namely �2 Re�1 �see the second of Eq. �15��, the

damping term with the factor � may be neglected in Eq. �45�.
In this case, we can obtain a first integral of systems �44� and
�45� with �=0.

When �=0, multiplying Eq. �44� by cos �, multiplying
Eq. �45� by sin �, and adding up the resulting two equations,
we have

d�a sin ��
dT

= ��a3 + ��a�cos � . �47�

Dividing Eq. �47� by Eq. �45� with �=0 yields

d�a sin ��
da

=
�a3 + ��a

�
, �48�

and integrating Eq. �48�, we obtain a first integral of systems
�44� and �45� with �=0,

a sin � − � �

4�
a4 +

��

2�
a2� = C , �49�

where C is an arbitrary constant determined by an initial data
at T=0.

In Fig. 4, the contours of first integral �49� for the fun-
damental mode of cylindrical waves with �=0.1 are shown
in the �a ,�� plane, where Fig. 4�a� shows the exact resonance
of �=0 and Fig. 4�b� shows the case of detuning �=5, and

FIG. 3. The dependence of coefficients �, �, and � on �. �a� Cylindrical
waves; �b� spherical waves. Solid, dotted, and dashed lines denote �, �, and
�, respectively.

FIG. 4. Phase plane for the cylindrical wave problem with �=0.1 and
�=0. �a� �=0; �b� �=5. The symbol � denotes a fixed point �steady state
oscillation�; P, P1, and P3 are centers and P2 is a saddle.
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each curve represents a contour line of Eq. �49� for a given
C. Since the entire set of curves in the �a ,�� plane is topo-
logically equivalent to the entire set of trajectories in the
�a ,da /dT� plane, the �a ,�� plane may also be called the
phase plane. Thick curves in the figures may be called the
separatrix, which separates a region of closed trajectories
from that of open trajectories. The symbol �, a fixed point of
system �44� and �45� with �=0, signifies a center or a saddle,
given by

�a3 + ��a = �, � =
�

2
+ m� �m = 0, ± 1, ± 2, . . . � .

�50�

The fixed point corresponds to a steady state oscillation, and
it has been examined,10–12 while other trajectories have been
left untouched.

As can be seen from Fig. 4, the amplitude a and the
phase � oscillate periodically along each closed trajectory,
and also along each open trajectory, since �a ,�+2�� can be
identified with �a ,�� in the phase plane. This means that the
resonant oscillation is subjected to a periodic modulation in
the slow time scale �−2�−1. The steady state oscillation
comes out only when the amplitude a and the phase � in an
initial stage of the nonlinear process agree with a fixed point
given by Eq. �50�. Otherwise, the modulation necessarily ap-
pears irrespective of whether �=0 or not and of whether the
trajectory in the phase plane is closed or open.

Here, it should be noted that the trajectory in the
�a ,�� plane can cross the line a=0 only at �=m�
�m=0, ±1, ±2, . . . �, and the flow directions of trajectories on
the both sides of the line a=0 are opposite as indicated by
arrows in Fig. 4�a�; this is a result of the use of the polar
form.

One of important trajectories is that passing through the
line a=0 of the phase plane, because the resonant oscillation
is usually started from an initial state uniform and at rest.
The trajectory passing through the origin �a ,��= �0,0� is a
separatrix

sin � =
�

4�
a3, �51�

for �=0, indicated by a thick curve in Fig. 4�a�. In Fig. 5, we
present the envelopes of acoustic pressure at the surface of
the inner cylinder, where acoustic pressure p� is defined as
the pressure fluctuation from the reference pressure,
p�= p*− p0. In the leading order of approximation in weakly
nonlinear acoustics problems, the acoustic pressure is
given by p�=−�0���* /�t*�, and hence p� / ��0c0

2�
=2�A�T��1�r�sin t. The solid curves in Fig. 5 denote
2A�T��1��r0� evaluated from the solution of Eq. �51� with
Eq. �44�, and dashed curves are the numerical solution of
Euler equations for M =10−4,13 obtained by using a TVD
finite-difference method.26 One can see that the wave motion
corresponding to the separatrix agrees with the numerical
solution started from an initial state of uniform and at rest.
The difference between solid and dashed curves are caused
by the higher-order nonlinear effects that are not included in
systems �44� and �45�.

Along the separatrix �51�, an extremum of a is reached
at �=� /2+m� �m=0, ±1, ±2, . . . �. The maximum ampli-
tude of the modulated oscillation when �=�=0 is therefore
given by

amax = �−
4�

�
�1/3

, �52�

where ��0 and ��0 �see Fig. 3�. On the other hand, the
amplitude of steady state oscillation for �=�=0 is immedi-
ately obtained from Eq. �50� as a= �−� /��1/3. Figure 6 shows
the dependence of amax on �, where thick solid and dashed
lines indicate those in the fundamental modes of cylindrical
and spherical waves, respectively. The amplitudes of steady
state oscillations are also plotted with thin solid and dashed
lines for cylindrical and spherical waves. All curves mono-
tonically decrease with an increase in �, and this is simply
because � increases with an increase in � �see Fig. 3�. The
amplitude modulation is thus reduced as the wave motion
approaches that in the plane wave, or in other words the

FIG. 5. The envelope of acoustic pressure at the surface of the inner cylin-
der for �=0.1 and �=�=0. The solid curves are the solution of amplitude
equation and the dashed curves are the numerical solution of Euler
equations.

FIG. 6. The wave amplitude as a function of � for �=�=0. The thick solid
and dashed curves are the maximum wave amplitudes of modulated reso-
nant oscillations, while the thin solid and dashed curves are the wave am-
plitudes of steady state oscillations.
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modulation is weakened as the geometrical effect decreases.
Substituting Eq. �51� into Eq. �44� with �=0, and inte-

grating the result, we can evaluate the period of modulation
TP along the separatrix passing through the origin as

TP =
4

3
� 4

��2�1/3�
0

�/2 d�

sin2/3 �
=

2���1/6��2

3���2�1/3��1/3�
, �53�

with the help of a formula27

�
0

�/2

sin�−1 xdx = 2�−2B��

2
,
�

2
� , �54�

where ��p� is the Gamma function and B�q ,r� is the beta
function. Figure 7 shows the dependence of the period TP of
amplitude modulation on the radius ratio � for the funda-
mental mode of cylindrical standing waves for �=�=0.
Black circles denote the results of numerical solutions of
Euler equations.13 Clearly, the modulation period decreases
monotonically with increasing �.

The trajectories in Fig. 4�b� are those for detuning �=5,
where two centers �P1 and P3� are separated by two types of
separatrices passing through a saddle �P2� and the origin.
These three fixed points explains the frequency response of
the steady state oscillation.10–12 Even in the case of detuning,
as long as the dissipation effect is negligible, the resonant
oscillation starting from the initial quiescent gas experiences
the periodic modulation along the separatrix passing through
the origin.

B. Resonant oscillation with damping

As mentioned in the beginning of Sec. III, the damping
coefficient � is usually small. However, if the driving fre-
quency � is quite large, say �
107, and M 
10−3, then
�
0.1 in the air. We now deal with such a relatively large
damping effect on the resonant oscillations.

Figure 8 shows the trajectories in the phase plane for the
fundamental mode of cylindrical standing waves with �
=0.1, �=0.3, and �=0 �Fig. 8�a�� or �=5 �Fig. 8�b��. It can
be seen from the figure that trajectories spiral into a fixed
point, which is easily verified as a stable focus of systems

�44� and �45� with ��0. That is, the modulation of ampli-
tude and phase decay with time due to the dissipation effect,
and finally, the resonant oscillation reaches a steady state
oscillation. In the figure, the trajectory issuing from the ori-
gin is immediately attracted to the focus at �
 ±� /2, since
the damping effect is relatively large.

The amplitude response of the steady state oscillation
can be examined by the amplitude equation �or fixed point
equation�

��a2 + ���2 −
�2

a2 +
�2

4
= 0, �55�

which is derived by setting da /dT=d� /dT=0 in Eqs. �44�
and �45�. Figure 9 shows the amplitude response of steady
state oscillation for varying � for the fundamental mode of
the cylindrical waves with �=0.1. The symbols P, P1, P2,
and P3, respectively, correspond to fixed points shown in
Figs. 4 and 8. As can be seen, the amplitude response curve
is hardly affected by the dissipation effect, while the trajec-
tories in the phase plane for �=0.3 are drastically changed
from those in the case of �=0 �see Figs. 4 and 8�. Since Eq.
�55� can be rewritten into a bicubic equation for a, the num-
ber of positive solutions a can be examined by making use of
the analysis presented in Appendices A and B. The result for

FIG. 7. The dependence of period of modulation on the radius ratio �. The
solid curve denotes TP defined by Eq. �53�, and the black circles denote
those estimated from the numerical solution of Euler equations.

FIG. 8. Phase plane for the cylindrical wave problem with �=0.1 and
�=0.3. �a� �=0; �b� �=5. The symbols P, P1, and P3 are stable foci and P2

is a saddle.
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the cylindrical wave for �=0 is shown in Fig. 10. The region
of three solutions �one is a saddle, the others are centers�
decreases with the increase of �.

V. CONCLUSION

We have theoretically studied the weakly nonlinear
shock free resonant oscillation with cylindrical or spherical
symmetry generated between two coaxial cylinders or two
concentric spheres. By applying the method of multiple
scales, the cubic nonlinear amplitude equation has been de-
rived as well as the explicit representations of its coefficients.
Then, we have examined a first integral of the amplitude
equation for �=0, thereby demonstrating that the resonant
oscillation is accompanied by the periodic modulation. The
period of modulation has also been obtained explicitly for
the oscillation beginning from the initial quiescent inviscid
gas. Furthermore, the brief discussion on the dissipation ef-
fect has been given.

Since the modulation of shock free cylindrical and
spherical standing waves is caused by the combination of
nonlinear and geometrical �dissonant� effects, it is essential
to address how the modulation is affected by the geometrical
effect. The problem setup of two coaxial cylinders and two
concentric spheres and introduction of the parameter � have
enabled us to clarify the geometrical effect.

The studies on the acoustic resonances of spherical and
cylindrical symmetric waves have so far been limited to the
steady state oscillations in a sphere and in a cylinder without
the inner boundary. By the present theoretical analysis and
the previous numerical study, we have completed the prob-
lem with spherical or cylindrical symmetry. The analysis of a
resonant oscillation between two eccentric cylinders, where
an asymmetric mode of the standing waves is excited, is now
underway.28

APPENDIX A: STEADY STATE OSCILLATION

The amplitude of the steady state oscillation can be
found as a solution of Eq. �55� or the following bicubic equa-
tion:

�2a6 + 2���a4 + ��2�2 +
�2

4
�a2 − �2 = 0. �A1�

Introducing expressions,

A� =
2��

�
, B� =

1

�2��2�2 +
�2

4
�, C� = −

�2

�2 , x = a2,

we can rewrite Eq. �A1� into a cubic equation as

f�x� = x3 + A�x2 + B�x + C� = 0. �A2�

By means of Cardano’s formula, a solution for Eq. �A2� is
given as

x = Xn −
1

3
A �n = 1,2,3�, A = B� −

A�

3
,

where Xn is defined by

X1 = u1 + v1, X2 = �u1 + �2v1, X3 = �2u1 + �v1,

u1 =�3 B
2

+ �D, v1 =�3 B
2

− �D ,

with �= �−1±�3i� /2 and

B =
2A�3

27
−

A�B�

3
+ C�, D =

B2

4
+

A3

27
.

If D�0, Eq. �A2� has three distinct real solutions. In con-
trast, when D�0, Eq. �A2� has only one real solution.

In particular, when �=�=0 �in this case, D is always
positive�, Eq. �A2� is reduced to �a3=�, and hence we have
a= �−� /��1/3.

APPENDIX B: STEADY STATE OSCILLATION
IN INVISCID GAS

The explicit representation for the amplitude of the
steady state oscillation for �=0 can be obtained by making
use of Cardano’s formula shown in Appendix A. Here, we
note that in the case of �=0,

B = −
1

�
�2�3�3

27�
+ �2� , �B1�

FIG. 10. The number of solutions for the steady state oscillation of the
fundamental mode of cylindrical standing waves with �=0.

FIG. 9. Amplitude response in the steady state oscillations. Solid and
dashed curves denote those for �=0 and �=0.3, respectively.
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D =
�2

�4��3�3

27�
+

�2

4
� , �B2�

where ��0, ��0, and ��0 �see Fig. 3�.

1. D<0 „Three distinct real solutions…

In the case of D�0, u1 and v1 are complex numbers.
From Eq. �B2�, � should be positive because ��0 and
��0; A� is therefore negative when D�0. Hence, we can
write �D=��D�i and then

�u1
3� = �v1

3� =��−
B
2
�2

+ �D� =��−
B
2
�2

− D ,

�−
B
2
�2

− D =
1

4�4�4�6�6

272�2 +
4�3�3�2

27�
+ �4�

−
�2

�4��3�3

27�
+

�4

4
� = ���

3�
�6

,

� �u1� = �v1� = ���

3�
� .

According to an inequality

�u1 + v1� � �u1� + �v1� = �2��

3�
� = �A�

3
� ,

it is found that x is always positive,

x = X1 −
A�

3
= u1 + v1 −

A�

3
� 0. �B3�

Similar discussions can be made for X2 and X3.

2. DÐ0 „Only one real solution…

In this case, B defined by Eq. �B1� is always negative,
and therefore −B /2 is positive. Moreover, from a relation,

�−
B
2
�2

− D = ���

3�
�6

� 0, �B4�

it can be seen that both u1 and v1 are positive. Therefore, by
the arithmetic-geometric mean inequality,

u1 + v1 =�3 −
B
2

+ �D +�3 −
B
2

− �D

� 2 ·�6 �−
B
2
�2

− D = 2 ·�6 ���

3�
�6

,

�B5�

�u1 + v1 �
1

3
�2��

�
� = �A�

3
� � 0.

In the case of ��0, A� is negative because of ��0 and
��0, and hence

u1 + v1 � −
A�

3
� 0,

�B6�

�x = X1 −
A�

3
= u1 + v1 −

A�

3
� −

2

3
A� � 0.

In the case of ��0, since A� is positive, from Eq. �B5�,

u1 + v1 �
A�

3
,

�B7�

�x = X −
A�

3
= u1 + v1 −

A�

3
� 0.

From Eqs. �B3�, �B6�, and �B7�, it can be seen that Eq.
�A2� has only one real solution for D�0 and three distinct
real solutions for D�0, and moreover, these solutions are
always positive independent of the sign of D.
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