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One-dimensional linear dispersive waves in water flows containing a number of small spher-

ical air bubbles are analytically studied on the basis of a set of averaged equations recently

derived by the present authors. The set of equations consists of the conservation laws for

gas and liquid phases and the equation of motion of bubble wall. In addition to the volume-

averaged pressure in each phase, the surface-averaged liquid pressure at the bubble wall is

incorporated. The compressibility of water is taken into account as well as that of gas in

bubbles, and a model of virtual mass force is included, although the Reynolds stress, vis-

cosity, heat conductivity, and the phase change across the bubble wall are disregarded. The

results are summarized as follows: (i) the waves are decomposed into the fast mode, slow

mode, and convection mode (void wave). (ii) In the uniform flows, the three modes stably

exist for all real wave numbers. (iii) In the limit of infinitesimal void fraction, the explicit

representation of the elementary solution is obtained. (iv) The instability does not appear

in the range where the present averaged equations are applicable.

KEYWORDS: linear dispersive wave, averaged equations, bubbly flow, bubble dynamics, void

wave

1. Introduction

The characteristics of wave motions in bubbly liquids are considerably different from those

in a pure (single phase) fluid, as shown by van Wijngaarden,1) Caflisch et al.,2) Pauchon and

Banerjee,3,4) Commander and Prosperetti,5) Lahey,6) Park et al.,7) Gavrilyuk and Saurel,8)

and many other researchers. The appearance of dispersion is common there. The considerable

decrease of the speed of sound of long wavelength is well known as one of the most remarkable

features of the waves in the bubbly liquids.1) The propagation of the so-called void wave (or

convection wave) and the onset of its instability have also been major topics.6) The dynamics

of bubble oscillation, however, has not always been included into the analyses. In this paper,

we shall analytically study the linear wave motions in a bubbly flow, where a number of small

spherical gas bubbles are contained in a compressible fluid (water), and the bubble oscillations

can be excited by the wave motions.

∗E-mail address: yano@mech-me.eng.hokudai.ac.jp
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Recently, the present authors have analyzed linear wave motions in a bubbly liquid uniform

and at rest on the basis of a set of averaged equations derived by ourselves.9) The set of

equations consists of mass and momentum conservation laws for each phase and the Keller

equation of motion of bubble wall.10) According to Jones and Prosperetti,11) the surface-

averaged liquid pressure at the bubble wall is introduced as a dependent variable as well as

the volume-averaged liquid and gas pressures. The compressibility of fluid in the liquid phase

is taken into account, Focusing on the fundamental property in wave propagation processes,

the Reynolds stress, viscosity, and heat conductivity, which are mainly responsible for wave

attenuation, are neglected. The phase change across the bubble wall are not considered for

simplicity. On the basis of these equations, we have studied the one-dimensional linear wave

motions for the case that the bubbly liquid is uniform and at rest.9) We have demonstrated

that a fast mode, which is induced by the compressibility of fluid in the liquid phase, appears

and sometimes behaves like a precursor of the classical pressure wave (slow mode). In the

following, we shall extend the previous study to the linear wave motions in steady bubbly

flows.

2. Governing Equations

We shall analyze the bubbly water flows containing a number of small spherical air bubbles

on the basis of the averaged equations. The system of governing equations is composed of the

mass and momentum conservation laws for gas and liquid phases, the Keller equation for the

oscillation of spherical bubble, the equations of state for gas and liquid, and so on.9) For the

one-dimensional flows the mass and momentum conservation laws can be written as follows

(see also the book by Drew and Passman12)):
∂

∂t
(αρ

G
) +

∂

∂x
(αρ

G
u

G
) = 0, (1)

∂

∂t
[(1 − α)ρ

L
] +

∂

∂x
[(1 − α)ρ

L
u

L
] = 0, (2)

∂

∂t
(αρ

G
u

G
) +

∂

∂x
(αρ

G
u

G

2) + α
∂p

G

∂x
= F, (3)

∂

∂t
[(1 − α)ρ

L
u

L
] +

∂

∂x
[(1 − α)ρ

L
u

L

2]

+(1 − α)
∂p

L

∂x
+ P

∂α

∂x
= −F, (4)

where α is the volume fraction of gas phase (0 < α < 1), ρ is the density, u is the velocity, p

is the pressure, F represents the interfacial momentum transport, and the subscripts G and

L denote the volume-averaged quantities in gas and liquid phases, respectively. In addition

to the volume-averaged pressures p
G

and p
L
, the liquid pressure averaged on the gas-liquid

interface, P , is introduced in the system of equations.11) The energy conservation laws are not

considered, as consistent with the implicit assumption of constant temperature.
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In the previous paper,9) as the interfacial momentum transport F , we have employed a

model of virtual mass force,

F = −β
[ D

G

Dt
(αρ

L
u

G
) − D

L

Dt
(αρ

L
u

L
)
]
, (5)

with β = 1/2 used by Kameda and Matsumoto.13) However, the operator u
G
(D

G
/Dt) −

u
L
(D

L
/Dt) in eq. (5) is not invariant under the Galilean transformation, τ = t, ξ = x − V t,

and v = u − V . We therefore introduce a different model,14,15)

F = −β1αρ
L

(D
G
u

G

Dt
− D

L
u

L

Dt

)

− β2ρL
(u

G
− u

L
)
D

G
α

Dt
− β3α(u

G
− u

L
)
D

G
ρ
L

Dt
, (6)

which is invariant under the Galilean transformation. The values of coefficients β1, β2, and β3

may be set as 1/2. The importance of such invariance has been discussed in detail by Drew

et al.16) The previous analysis9) has been confined to the linear waves in quiescent bubbly

liquids, and hence the results are not affected by the unfavorable character of eq. (5). The

drag is not included in F , because we neglect the effects responsible for wave attenuation, as

mentioned in Introduction.

The conservation laws of mass and momentum for the bubbly liquid, eqs. (1)–(4), are

augmented by the Keller equation,10)

(
1 − 1

c
L0

D
G
R

Dt

)
R

D
G

2R

Dt2
+

3
2

(
1 − 1

3c
L0

D
G
R

Dt

)(D
G
R

Dt

)2

=
(
1 +

1
c
L0

D
G
R

Dt

) P

ρ
L0

+
R

ρ
L0

c
L0

D
G

Dt
(p

L
+ P ), (7)

(R is the radius of bubble, c
L0

and ρ
L0

are, respectively, the speed of sound and density in an

unperturbed water), the Tait equation of state for water,

(p
L

+ B)ρ
L0

n = (p
L0

+ B)ρ
L

n, (8)

(p
L0

is the water pressure in the unperturbed state, B = 304.9MPa, and n = 7.15), the

isothermal equation of state for gas,

p
G
ρ
G0

= p
G0

ρ
G
, (9)

(ρ
G0

and p
G0

are, respectively, the density and pressure inside the bubble in the unperturbed

state), the conservation law of mass for the gas inside each bubble,

ρ
G
R3 = ρ

G0
R3

0, (10)

(R
0

is the radius of the bubble in the unperturbed state), and the pressure balance at the

interface,

p
G
− (p

L
+ P ) =

2σ

R
, (11)
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where σ is the surface tension. Note that the variables in the initial undisturbed state, ρ
G0

,

p
G0

, ρ
L0

, p
L0

, and R0, are all constants.

All the variables are nondimensionalized and linearized as follows

x = Lx∗, t =
L

c
L0

t∗,
R

R0
= 1 + εR ′,

u
G

c
L0

= u
G0
∗ + εu

G

′,
u

L

c
L0

= u
L0
∗ + εu

L

′,

α = α
0
∗(1 + εα′),

p
L

ρ
L0

c
L0

2
= p

L0
∗(1 + εp

L

′),

p
G

ρ
L0

c
L0

2
= p

G0
∗(1 + εp

G

′),
P

ρ
L0

c
L0

2
= εP ′,

ρ
G

ρ
L0

= ρ
G0
∗(1 + ερ

G

′),
ρ
L

ρ
L0

= 1 + ερ
L

′,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

where L is a characteristic length of the initial perturbation, ε (� 1) is a measure of the

amplitude of the perturbation, the prime indicates the normalized perturbation of the order

of unity. The quantities with ∗ are the nondimensionalized ones and the subscript 0 denotes

the value in the unperturbed steady flow; u
G0
∗, u

L0
∗, α

0
∗, p

L0
∗, p

G0
∗, and ρ

G0
∗ are nondimensional

constants, which are not necessarily of the order of unity. In the following analysis, only the

nondimensional variables are used, and therefore the prime and the asterisk will be omitted.

As a result, we have the following set of the linearized equations: the mass conservation

law in gas phase,
∂

∂t
(α − 3R) +

∂

∂x

[
u

G0
(α − 3R) + u

G

]
= 0, (13)

the mass conservation law in liquid phase,
∂

∂t

[
α
0
α + (α

0
− 1)p

L0
p
L

]
+

∂

∂x

[
α
0
u

L0
α + (α

0
− 1)(p

L0
u

L0
p
L

+ u
L
)
]

= 0, (14)

the momentum conservation law in gas phase,
∂

∂t

[
(u

G0
− u

L0
)(β2α + β3pL0

p
L
) + (β1 + ρ

G0
)u

G
− β1uL

]
+

∂

∂x

[
u

G0
(u

G0
− u

L0
)(β2α + β3pL0

p
L
) − 3p

G0
R

+(β1 + ρ
G0

)u
G0

u
G
− β1uL0

u
L

]
= 0, (15)

the momentum conservation law in liquid phase,
∂

∂t

[
α
0
(u

G0
− u

L0
)(β2α + β3pL0

p
L
)

+β1α0
(u

G
− u

L
) + (α

0
− 1)u

L

]
+

∂

∂x

[
α
0
u

G0
(u

G0
− u

L0
)(β2α + β3pL0

p
L
) + (α

0
− 1)p

L0
p
L
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Fig. 1. The dispersion relation of fast and slow modes in the bubbly quiescent liquid: u
G0 = u

L0 =

U = 0, δ = 0.01, and R0 = 1mm.

+β1α0
(u

G0
u

G
− u

L0
u

L
) + (α

0
− 1)u

L0
u

L

]
= 0, (16)

and the linearized Keller equation,
∂R

∂t
+ u

G0

∂R

∂x
= S, (17)

∂S

∂t
+ u

G0

∂S

∂x
=

(2σ̂ − 3p
G0

)R − p
L0

p
L

δ2
, (18)

where

δ =
R

0

L
, σ̂ =

σ

ρ
L0

c
L0
2R

0

, p
G0

= p
L0

+ 2σ̂. (19)

In the equation of motion of bubble wall (18), we neglect some terms responsible for the wave

attenuation due to acoustic radiation during the bubble oscillation.

3. Linear Dispersive Waves

The linear analysis is started by substituting a plane wave solution, i.e., α =

a exp[i(ωt − κx)] etc., into the system of the linearized equations (13)–(18), where a is a

constant, κ/L is a wavenumber (κ is a normalized wavenumber), and ωc
L0

/L is an angular

frequency (ω is a normalized angular frequency). The dispersion relation f(κ, ω) = 0 is ob-

tained as the eigenequation (or secular equation) of the resulting system, where f(κ, ω) is a

polynomial of sixth order in κ and ω. Its explicit representation is too long to be written here

and we may proceed the discussion without showing it.

Here, we shall remark that the description on the basis of the averaged equations (1)–(11),

and hence eqs. (13)–(18), may be subject to the restrictions,

R
0
� 3

√
V � L and R

0
� n

0
−1/3 � 3

√
V , (20)
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or

δ3 � V

L3
� 1 and L3δ3n

0
� 1 � V n

0
, (21)

where V is the volume for averaging, n
0

is the number density of bubble in the unperturbed

steady state, and n
0
−1/3 represents a typical inter-bubble distance. The void fraction in the

unperturbed state α
0

therefore is sufficiently small compared with unity, i.e.,

α
0
=

4
3
πL3δ3n

0
� 1. (22)

The wavelength of the perturbation λ = 2πL/κ has to be sufficiently large compared with

R0, and at least it is as large as 3
√

V . This leads to another restriction,
R0

λ
= δκ � 2π. (23)

3.1 Waves in uniform bubbly flow

Firstly, we shall consider the case that the gas and liquid phases move with the same

speed in the same direction in the initial unperturbed state, namely u
G0

= u
L0

= U . Then, the

dispersion relation can be written as

f(κ, ω) =
{
2β1[κ2 − (ω − κ U)2] [δ2 (ω − κ U)2 − ω

B

2]

+ 2α
0
β1(ω − κ U)2[3 − 2ω

B

2 + 2δ2(ω − κ U)2]

− 2α
0
2β1(ω − κ U)2 [3 − ω

B

2 + δ2 (ω − κ U)2]

− α
0
κ2 [(3 + β1)ωB

2 − 3(1 + β1)pL0
+ 2β1δ

2(ω − κ U)2]

+ 3α
0
2κ2 (ω

B

2 − p
L0

)
}
(ω − κ U)2 = 0, (24)

where ω
B

=
√

3p
L0

+ 4σ̂ is the nondimensionalized eigenfrequency of a bubble in the initial

unperturbed state. The linear dispersion relation is independent of the coefficients β2 and β3

in eq. (6). Note that we neglect ρ
G0

here and hereafter since ρ
G0

is small (∼= 10−3) and the

result is not affected substantially.

In the case of β1 = 1/2, for an arbitrary real κ in all realistic conditions in bubbly flows

of water and air bubbles, we have five real ω’s as the solutions of eq. (24),

ω1± = κU ±
√

A −√
A2 − 4B

2δ2
, (25)

ω2± = κU ±
√

A +
√

A2 − 4B

2δ2
, (26)

ω3 = κU (27)

where

A =
δ2κ2

1 − α
0

+ ω
B

2 +
3α

0

1 − α
0

, (28)
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Fig. 2. The dispersion relations of the six propagation modes in the bubbly flows with different gas-

and liquid-phase velocities. The open circle indicates the maximum of the fast mode. (a): δ = 0.01,

α0 = 0.0002, u
G0 = 0.4, u

L0 = 0.3; (b): δ = 0.01, α0 = 0.0002, u
G0 = 0.5, u

L0 = 0.2. The virtual

mass coefficients are set as β1 = β2 = β3 = 1
2 and R0 = 0.1mm in both cases.

B =
[
ω
B

2 +
3α

0
(3 − 2α

0
)p

G0

1 − α
0

]
δ2κ2

1 − α
0

. (29)

When U = 0, eqs. (25) and (26) reduce to the results in the bubbly liquid uniform and at

rest studied in the previous paper (Egashira et al. 2004), where ω1± and ω2± are, respectively,

referred to as the slow mode and the fast mode. The third mode ω3 = κU may be called a

convection mode. The fact that the five ω’s are real for an arbitrary real κ means that the

one-dimensional steady flow of u
G0

= u
L0

= U described by the present model is linearly stable
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Fig. 3. The dispersion relation in the limit of α0 → 0: u
G0 = 0.5, u

L0 = 0.2, δ = 0.01, β1 = β2, and

R0 = 0.1mm. The dashed curves are those for α0 = 0.00001.

under the one-dimensional perturbations.

Figure 1 shows the dispersion relation of the fast and slow modes for U = 0 studied by

Egashira et al. (2004). The corresponding curves for U �= 0 can be given by adding κU .

3.2 Waves in non-uniform flow

In the case that u
G0

�= u
L0

, the angular frequency ω cannot be expressed explicitly in

terms of simple functions of κ. However, the stability of convection mode when the difference

between u
G0

and u
L0

is sufficiently small can readily be examined in the following way.

Expanding f(κ, ω) around ω = κU and u
G0

= u
L0

= U with respect to ω, u
G0

, and u
L0

gives

f(κ, ω) = 1
2(ω − κU)2

∂2f

∂ω2

∣∣∣∣
0

+ 1
2(u

G0
− U)2

∂2f

∂u
G0

2

∣∣∣∣
0

+ 1
2(u

L0
− U)2

∂2f

∂u
L0
2

∣∣∣∣
0

+ (ω − κU)(u
G0

− U)
∂2f

∂ω∂u
G0

∣∣∣∣
0

+ (ω − κU)(u
L0

− U)
∂2f

∂ω∂u
L0

∣∣∣∣
0

+ (u
G0

− U)(u
L0

− U)
∂2f

∂u
G0

∂u
L0

∣∣∣∣
0

+ O(3), (30)

where the partial derivative with the subscript 0 denotes the value evaluated at ω = κU and

u
G0

= u
L0

= U , and we have used the fact that

f(κ, κU)
∣∣∣∣
u

G0
=u

L0
=U

=
∂f

∂ω

∣∣∣∣
0

=
∂f

∂u
G0

∣∣∣∣
0

=
∂f

∂u
L0

∣∣∣∣
0

= 0. (31)
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Without loss of generality, we can put u
G0

�= u
L0

= U , and then we have

f(κ, ω) ∼= 1
2(ω − κU)2

∂2f

∂ω2

∣∣∣∣
0

+ 1
2(u

G0
− U)2

∂2f

∂u
G0

2

∣∣∣∣
0

+ (ω − κU)(u
G0

− U)
∂2f

∂ω∂u
G0

∣∣∣∣
0

= 0. (32)

Clearly, eq. (32), the quadratic equation for ω, has two real roots, if and only if an inequality(
∂2f

∂ω∂u
G0

∣∣∣∣
0

)2
�

(
∂2f

∂ω2

∣∣∣∣
0

)(
∂2f

∂u
G0

2

∣∣∣∣
0

)
, (33)

holds. The partial derivatives in eq. (33) can be given from the complete form of f(κ, ω) as

∂2f

∂ω2

∣∣∣∣
0

=
2κ2p

L0

δ2
[β1(ωB

2+ 2α
0
σ̂) + (α

0
− α

0
2)(ω

B

2+ 2σ̂)], (34)

∂2f

∂u
G0

2

∣∣∣∣
0

=
2κ4p

L0

δ2
(1 − α

0
)(β1 − β2)(ωB

2 + 2α
0
σ̂), (35)

∂2f

∂ω∂u
G0

∣∣∣∣
0

=
κ3p

L0

δ2
(α

0
−1)(2β1 − β2)(ωB

2+ 2α
0
σ̂). (36)

Note that the above three derivatives are independent of U and β3.

In the simplest case β1 = β2, the inequality (33) holds for arbitrary real κ and U , and the

solution of (32) for β1 = β2 is given as

ω =

⎧⎪⎨
⎪⎩

κU,

κ

[
U − C

D
(u

G0
− u

L0
)
]
,

(37)

where

C = β1(1 − α
0
)(ω

B

2 + 2α
0
σ̂), (38)

D = β1ωB

2 + α
0
[ω

B

2 + 2(1 + β1)σ̂] − 3α
0
2(p

L0
+ 2σ̂). (39)

The same ω as eq. (37) with eqs. (38) and (39) can be obtained even if we put u
G0

= U in

eq. (30). As a result, it is found that the convection mode when the difference between u
G0

and

u
L0

is sufficiently small is the stable propagation mode for arbitrary real κ, if the inequality

(33) holds. In other words, the bubbly flows with different gas- and liquid-phase velocities are

stable if the difference in flow velocities are sufficiently small. The third coefficients of virtual

mass force β3 does not affect the above results.

Simple analytical approach as shown above cannot be applied to the case that the differ-

ence in the flow velocities is not small. It is, however, easy to examine the dispersion relation

numerically. The dispersion relations for the six propagation modes are numerically evaluated

and plotted in Fig. 2. As shown in the figure, all the six modes seem to be stable for moder-

ately small α
0

in the entire range of κ, even if the difference in the flow velocities is not very

small. Further numerical examination suggests that the angular frequency of convection mode

9/18
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does not become complex in the wavenumber range shown in eq. (23).

Incidentally, one can see two important features in Fig. 2: one is the intersection of the

slow mode and convection mode, which suggests the existence of interaction of these two

modes in the nonlinear problem. The other is the maximum in the ω-κ curve of fast mode

propagating in the opposite direction to the bubbly flow, denoted by an open circle. Since

the maximum means the zero group velocity, this may lead to a kind of localization of the

wave energy of corresponding wavenumber component, and cause some interesting nonlinear

phenomenon. The nonlinear problem will be studied in a future work.

3.3 The limit of infinitesimal void fraction

In the limit of α
0
→ 0, the linearized mass and momentum conservation equations for

liquid phase, eqs. (14) and (16), are simplified as
∂

∂t
(p

L0
p
L
) +

∂

∂x
(p

L0
u

L0
p
L

+ u
L
) = 0, (40)

∂u
L

∂t
+

∂

∂x
(p

L0
p
L

+ u
L0

u
L
) = 0, (41)

which are the same as those for an inviscid compressible fluid with the Tait equation of state

(8). The dispersion relation for the system (13), (40), (15), (41), (17), and (18) can then be

given as

(ω − κu
G0

)[δ2(ω − κu
G0

)2 − ω
B

2][(ω − κu
L0

)2 − κ2]

× [β2κ(u
G0

− u
L0

) + β1(ω − κu
G0

)] = 0. (42)

Again, β3 disappears in the dispersion relation. From eq. (42), we immediately have

ω1± = κu
G0

± ω
B

δ
, (43)

ω2± = κu
L0

± κ, (44)

ω3± =

⎧⎪⎨
⎪⎩

κu
G0

κ
[
u

G0
− β2

β1
(u

G0
− u

L0
)
]
,

(45)

where the slow mode ω1± represents the free oscillation of bubbles convected with u
G0

and

the fast mode ω2± is the acoustic wave in the liquid moving with u
L0

. The dispersion relation

for each mode is shown in Fig. 3. As can be seen, the three modes in the limit α
0
→ 0 are

almost equal to those for α
0
= 10−5. The fast and convection modes are almost dispersionless

at α
0
= 10−5.

The expressions of the system of equations and the set of angular frequencies are now

quite simple, and therefore we can explicitly write down the linear dispersive waves in the

form suitable for the initial-value problem,
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q(x, t) =
3∑

n=1

∫ ∞

−∞
an(κ)q̂n+(κ) exp[i(ωn+t − κx)] dκ

+
3∑

n=1

∫ ∞

−∞
bn(κ)q̂n−(κ) exp[i(ωn−t − κx)] dκ, (46)

where an(κ) and bn(κ) (n = 1, 2, 3) are the expansion coefficients, q(x, t) is a column vector

q(x, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(x, t)

R(x, t)

p
L
(x, t)

u
G
(x, t)

u
L
(x, t)

S(x, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (47)

and q̂n±(κ) (n = 1, 2, 3) are expressed as follows:

q̂1±(κ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3iδ[∓2β1ωB

2 ± δ2κ2Q]

2iδω
B
(∓β1ωB

− β2δκV )

0

3iδω
B
[δκQ ± 2β2ωB

V ]

0

2ω
B

2(β1ωB
± β2δκV )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (48)

q̂2±(κ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ip
L0

[Z∓ + 6β1(V ∓ 1)2]

2ip
L0

(V ∓ 1)Y∓

2iT∓(V ∓ 1)Y∓

−ip
L0

(V ∓ 1)[Z∓ + 6β2(V ∓ 1)V ]

±2ip
L0

T∓(V ∓ 1)Y∓

2κp
L0

(V ∓ 1)2Y∓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (49)

q̂3+(κ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, q̂3−(κ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1

0

0

−β2V

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (50)
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V = u
G0

− u
L0

,

Q = ω
B

2 − p
L0

(= 2p
L0

+ 4σ̂),

T∓ = δ2κ2(V ∓ 1)2 − ω
B

2,

Y∓ = ∓β1 + (β1 − β2)V,

Z∓ = −3Q + 2T∓[β1 + β3(V ∓ 1)V ].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(51)

The vectors q̂n±(κ) may be regarded as eigenvectors associated with the eigenvalues ωn±(κ).

From eqs. (48)–(50), one can see that the slow mode (48), which corresponds to the

classical pressure wave in bubbly flows, is independent of the liquid-phase variables p
L

and u
L
,

whereas the fast mode (49) affects all the variables in gas and liquid phases. The convection

mode (50) consists of only α and u
G

components, and hence it may deserve to be called the

void wave.

Once an initial condition q(x, 0) is given, we have from eq. (46)

3∑
n=1

[
an(κ)q̂n+(κ) + bn(κ)q̂n−(κ)

]

=
1
2π

∫ ∞

−∞
q(x, 0) eiκxdx. (52)

For the demonstration, we shall consider two simple examples: (i) p
L
(x, 0) �= 0 and the other

initial values are all zero; (ii) α(x, 0) �= 0 and the other initial values are all zero. Furthermore,

we assume β1 = β2 = β3.

In the first example, the expansion coefficients are given as

a1(κ) =
ip

L0
p̂
L
(κ)

δω
B

2[(δκV + ω
B
)2 − δ2κ2]

, (53)

b1(κ) =
ip

L0
p̂
L
(κ)

δω
B

2[δ2κ2 − (δκV − ω
B
)2]

, (54)

a2(κ) =
ip̂

L
(κ)

(1 − V )[ω
B

2 − δ2κ2(1 − V )2]
, (55)

b2(κ) =
ip̂

L
(κ)

(1 + V )[ω
B

2 − δ2κ2(1 + V )2]
, (56)

a3(κ) =
2p

L0
[3(ω

B

2 − p
L0

) + 2β1ωB

2V 2]p̂
L
(κ)

ω
B

2(V 2 − 1)
, (57)

b3(κ) = −4p
L0

p̂
L
(κ), (58)

where p̂
L
(κ) is the Fourier transform of p

L
(x, 0). The second example immediately gives

a1(κ) = a2(κ) = b1(κ) = b2(κ) = b3(κ) = 0, (59)

a3(κ) = α̂(κ), (60)

where α̂(κ) is the Fourier transform of α(x, 0).
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3.4 Numerical examples

In this subsection, we shall present typical examples obtained by solving the system of

the linearized equations (13)–(18) for some initial conditions with a finite difference method.

Figures 4–7 show the evolution of wave profiles of pressure, bubble radius, and void fraction.

In these figures, wave profiles are plotted from t = 0 to t = 50, and the bold dashed line

indicates the locus of wave front. The wave amplitudes in Figs. 4–7 are nondimensional and

scaled by the same nondimensional factor.

The case that only the pressure perturbation is imposed at t = 0 is shown in Figs. 4 and

5. The pressure profile in Fig. 4(a) is the fast mode, and the amplitudes of the waves of the

bubble radius and void fraction are small in this case. Figure 5 is the case for α
0
= 10−5, and

as shown in Fig. 3, the fast mode and convection mode are almost dispersionless, although

the convection mode is not clearly seen.

Figures 6 and 7 are the case that the perturbation of void fraction only is applied at t = 0.

In the both figures, a convection mode appears and its amplitude is large compared with the

other modes. In particular, only the void wave is strongly excited in the case of α
0

= 10−5

shown in Fig. 7. This corresponds to the analytical result, eqs. (59) and (60).

4. Conclusions

The detailed analysis of the linear dispersive wave in bubbly flows has been carried out

based on the averaged equations composed of conservation laws and equation of motion of bub-

ble wall. The result suggests that all the three types of waves may be stable in the wavenumber

range where the present set of averaged equations is applicable. Gavrilyuk and Saurel8) have

also obtained a similar stability result in a different method of analysis. Their model equa-

tion contains an analogue of Rayleigh-Plesset equation for bubble dynamics.17) The bubble

dynamics may have some important effect on the wave motion in the bubbly flows.
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Fig. 4. Wave profiles in the case of α0 = 0.0002, u
G0 = 0.5, u

L0 = 0.2, δ = 0.01, β1 = β2 = β3 = 0.5,

and R0 = 0.1mm: (a) pressure, (b) bubble radius, (c) void fraction. The initial condition is

p
L

= exp(−x2) and α = R = u
L

= u
G

= S = 0 at t = 0.
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Fig. 5. Wave profiles in the case of α0 = 0.00001, u
G0 = 0.5, u

L0 = 0.2, δ = 0.01, β1 = β2 = β3 = 0.5,

and R0 = 0.1mm: (a) pressure, (b) bubble radius, (c) void fraction. The initial condition is

p
L

= exp(−x2) and α = R = u
L

= u
G

= S = 0 at t = 0.
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Fig. 6. Wave profiles in the case of α0 = 0.0002, u
G0 = 0.5, u

L0 = 0.2, δ = 0.01, β1 = β2 = β3 = 0.5,

and R0 = 0.1mm: (a) pressure, (b) bubble radius, (c) void fraction. The initial condition is

α = exp(−x2) and R = p
L

= u
L

= u
G

= S = 0 at t = 0.
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Fig. 7. Wave profiles in the case of α0 = 0.00001, u
G0 = 0.5, u

L0 = 0.2, δ = 0.01, β1 = β2 = β3 = 0.5,

and R0 = 0.1mm: (a) pressure, (b) bubble radius, (c) void fraction. The initial condition is

α = exp(−x2) and R = p
L

= u
L

= u
G

= S = 0 at t = 0.
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