Alterations of cellular physiology in *Escherichia coli* in response to oxidative phosphorylation impaired by defective F$_1$-ATPase

Sakiko Noda,¹ Yuji Takezawa,² Tomohiko Mizutani,¹ Tomoaki Asakura,¹ Eiichiro Nishiumi,¹ Kazunori Onoe,¹ Masaru Wada,¹ Fusao Tomita,² Kazunobu Matsushita³ and Atsushi Yokota¹*

Laboratory of Microbial Physiology,¹ and Laboratory of Applied Microbiology,² Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, Yamaguchi 753-8515, Japan³

*Corresponding author

Mailing address: Laboratory of Microbial Physiology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan

Tel: +81-11-706-2501; Fax: +81-11-706-4961

E-mail: yokota@chem.agr.hokudai.ac.jp.

Running Title: Physiology of F$_1$-ATPase mutant of *E. coli*
Abstract

The physiological changes in an F$_1$-ATPase-defective mutant of *E. coli* W1485 growing in a glucose-limited chemostat included a decreased growth yield (60%) and increased specific rates of both glucose consumption (168%) and respiration (171%). Flux analysis revealed that the mutant showed approximately twice as much flow in glycolysis but only an 18% increase in the tricarboxylic acid (TCA) cycle, owing to the excretion of acetate, where most of the increased glycolytic flux was directed. Genetic and biochemical analyses of the mutant revealed the downregulation of many TCA cycle enzymes, including citrate synthase, and the upregulation of the pyruvate dehydrogenase complex in both transcription and enzyme activities. These changes seemed to contribute to acetate excretion in the mutant. No transcriptional changes were observed in the glycolytic enzymes, despite the enhanced glycolysis. The most significant alterations were found in the respiratory chain components. The total activity of NADH dehydrogenases (NDHs) and terminal oxidases increased about twofold in the mutant, which accounted for its higher respiration rate. These changes primarily arose from the increased (3.7-fold) enzyme activity of NDH-2 and an increased amount of cytochrome bd in the mutant. Transcriptional upregulation appeared to be involved in these phenomena. As NDH-2 cannot generate an electrochemical gradient of protons and as cytochrome *bd* is inferior to cytochrome *bo*$_3$ in this ability, the mutant was able to recycle NADH at a higher rate than the parent and avoid generating an excess proton-motive force. We discuss the physiological benefits of the alterations in the mutant.
INTRODUCTION

The elucidation of the regulatory mechanism of glycolytic flux is critical for developing effective fermentation processes for the production of useful metabolites by microorganisms. Glycolytic flux in *Escherichia coli* is controlled primarily by the ATP demand of the cells, rather than by glycolytic enzymes (22). For example, defects in the activity of F$_{1}$F$_{o}$-ATP synthase that impair oxidative phosphorylation (21, 38, 40) or increased ATPase activity in hydrolyzing ATP (22), which both lead to a reduced [ATP]/[ADP] ratio (21, 22), result in enhanced rates of glucose consumption. The enhancement of glucose consumption by defective F$_{1}$F$_{o}$-ATP synthase activity has also been reported in the Gram-positive bacteria *Bacillus subtilis* (32) and *Corynebacterium glutamicum* (34), which are industrially important. Several attempts have been made to apply these findings to the production of useful metabolites from glucose by fermentation. Our group reported the first successful application of pyruvate production, using an *E. coli* mutant with a defective F$_{1}$-ATPase (40). In this case, enhanced pyruvate production was achieved with an increased rate of glucose consumption. The effectiveness of F$_{1}$F$_{o}$-ATP synthase defects for the production of acetate (9), as well as pyruvate (8), has also been reported in different *E. coli* mutants. Recently we demonstrated that the mutation also works for the improvement of glutamate production in *C. glutamicum* (1).

Although the [ATP]/[ADP] ratio is well accepted as a controlling factor of glycolysis, the underlying mechanisms by which enhanced glucose metabolism is established in response to an energy shortage are still not well understood. The allosteric activation of the key enzymes in the glycolytic pathway, *i.e.*, phosphofructokinase I (2)
and pyruvate kinase II (23), under a reduced [ATP]/[ADP] ratio is thought to contribute to this phenomenon. However, previous works (21, 38) have suggested the possibility that qualitative changes in certain cell components, such as an increase in $b$-type cytochrome contents, as well as allosteric control, are involved in the mechanism of enhanced glucose metabolism. To address this important question, we investigated the alterations in cellular physiology that occur in *E. coli* in response to impaired oxidative phosphorylation due to a defective F$_1$-ATPase. To avoid any metabolic distortion from unnecessary genetic background, we constructed a simple F$_1$-ATPase-defective mutant from the wild-type *E. coli* W1485. Glucose-limited chemostat culture was employed to ensure that cell samples grew at the same rate in the exponential phase. We conducted detailed analyses of metabolic flux, gene expression profiles, and central carbon metabolic and respiratory chain enzyme activities to elucidate the mechanism(s) of enhanced glucose metabolism.

**MATERIALS AND METHODS**

**Bacterial strains and culture conditions.** The wild-type strain *E. coli* W1485 (ATCC12435) was used. An F$_1$-ATPase-defective mutant, HBA-1 (*atpA401, bgl*), was constructed by the P1kc transduction of *atpA401* (4), a defective gene for the $\alpha$ subunit of F$_1$-ATPase, into strain W1485. This mutant allele was first isolated in 1971 by Butlin et al., (4) as a gene (*uncA401*) that causes uncoupling of phosphorylation associated with electron transport. The *E. coli* K12 strain carrying *uncA401* showed negligible activity of Ca$^{2+}$, Mg$^{2+}$-activated ATPase (4). A series of intensive investigations of this mutant allele has located this mutation in the $\alpha$ subunit of F$_1$-ATPase (13) and the sequence analysis
has revealed a single base change that resulted in the replacement of Ser 373 into Phe (29). This mutant F$_1$-ATPase has been shown to have virtually no ATPase activity yet retain the same subunits ($\alpha$, $\beta$, $\gamma$, $\delta$ and $\epsilon$) organization in terms of molecular weight, stoichiometry ($\alpha_3\beta_3\gamma\delta\epsilon$) and arrangement (6). This mutant F$_1$-ATPase has been suggested to bind to ATPase-depleted membranes and keep proton impermeability of the membrane (6). This was further confirmed in our preliminary experiment in which similar levels of valinomycin-induced artificial membrane potential were monitored using inside-out membrane vesicles prepared from strains W1485 and HBA-1 as monitored by fluorescence quenching method (probe: bis-(1,3-dibutylbarbituric acid)pentamethine oxonol (DiBAC$_4$(5)) (data not shown). Therefore, the membrane of the strain HBA-1 has also been confirmed to be sealed and maintain normal level of proton impermeability. To obtain transductants effectively, atpA401 was co-transduced with bgl$^+$, as described previously, using AN718bgl-7 as the donor strain (40). Almost no ATPase activity was detected in strain HBA-1, when enzyme activity was measured as described previously (40). Both strains were cultured in a glucose-limited chemostat in modified M9 minimal medium containing trace elements to stabilize the continuous culture. The medium contained 14.7 g/l Na$_2$HPO$_4$$\cdot$12H$_2$O, 3.0 g/l KH$_2$PO$_4$, 0.5 g/l NaCl, 1.0 g/l NH$_4$Cl, 1.0 mM MgSO$_4$, 0.1 mM CaCl$_2$, 1.0 $\mu$M FeCl$_3$, 0.03 $\mu$M (NH$_4$)$_6$Mo$_7$O$_{24}$, 4 $\mu$M H$_3$BO$_3$, 0.3 $\mu$M CoCl$_2$, 0.1 $\mu$M CuSO$_4$, 0.8 $\mu$M MnCl$_2$, 0.1 $\mu$M ZnSO$_4$, and 2 g/l glucose as a carbon source. The continuous chemostat culture was conducted at a dilution rate of 0.2 h$^{-1}$, with a working volume of 750 ml, in a 2-L jar fermentor. The cultures were aerated at 1.5 l/min (2 vvm), with stirring at 700 rpm. Dissolved oxygen (DO) in the culture broth of both parent and mutant was monitored by a DO electrode and was maintained at about 90%.
The culture temperature was controlled at 37°C, and the pH was adjusted to 7.0 with NaOH.

**Fermentation analysis.** Growth was measured by the spectrophotometric absorbance of the culture broth at 660 nm. The concentration of glucose remaining in the culture broth was determined by the glucose oxidase method, using Glucose C2 (Wako Pure Chemical Industries, Ltd., Osaka, Japan). Organic acids in the culture broth were determined by HPLC (column: AMINEX HPX-87H, Bio-Rad Laboratories, Hercules, CA, USA; mobile phase: 0.01 N H$_2$SO$_4$; flow rate: 0.6 ml/min; detection: absorbance at 210 nm). The respiration rate of the bacterial cells during chemostatic culture was measured using a dissolved oxygen analyzer (Model MD-1000, Iijima Electronics Corporation, Gamagori, Aichi, Japan) equipped with a Clark-type oxygen electrode. Measurements were conducted at 37°C in the air-tight chamber within the range yielding a linear relationship between the cell concentration and the oxygen-consumption rate. Our calculation assumed the oxygen solubility in the 37°C medium to be 0.214 mM. The results were expressed as mmol O$_2$ h$^{-1}$ (g dry cell weight)$^{-1}$. The dry cell weight of strains W1485 and HBA-1 was determined from the correspondence of one optical density unit at 660 nm to 0.414 mg and 0.411 mg dry cell weight per ml, respectively.

**Flux analysis.** The metabolic fluxes of the wild type strain and the mutant were estimated using the stochiometric approach described by Holms (18). This method provides the way to calculate metabolic fluxes within the central metabolic pathways in *E. coli* growing on various single carbon sources at a constant growth rate. The idea is to balance the metabolic events in the conversion of feedstock (glucose) to biomass and by-products using the defined metabolic pathways and the experimental data of growth
rate, glucose consumption, by-product formation and biomass production. The kinetic parameters (specific rates of glucose consumption and metabolites production) in chemostat culture and the amounts of precursor metabolites required for the biosynthesis of building blocks (27) were used to calculate the fluxes in the central metabolic pathways.

**Extraction of total RNA.** Cells in the chemostat culture were withdrawn and immediately mixed with crushed ice prepared at –80°C. The mixtures were centrifuged at 8,000 x g at 4°C for 10 min, and the supernatants were discarded. The RNA was isolated from the cell pellet with ISOGEN (Nippon Gene Co., Ltd., Toyama, Tomaya, Japan), according to the manufacturer’s instructions. The RNA was treated with RQ1 RNase-Free DNase (Promega Corporation, Madison, WI, USA) and extracted again with ISOGEN. The concentration and quality of the total RNA yield were determined spectrophotometrically and by agarose gel electrophoresis. The extracted RNA was kept at –80°C until used.

**DNA array analysis.** For *E. coli*-specific primed cDNA synthesis, 2 µg total RNA and 4 µl *E. coli* cDNA labeling primers (Sigma-Aldrich Corporation, St. Louis, MO, USA) were added to the transcription mixture (6 µl 5x first-strand buffer and 1 µl each of 10 mM dATP, 10 mM dGTP, and 10 mM dTTP), and the total volume was adjusted to 26.5 µl with RNase-free water. The samples were incubated at 90°C for 2 min and were kept at 42°C for 20 min. Then, 0.5 µl RNase inhibitor (20 U RNase OUT, Invitrogen Corporation, Carlsbad, CA, USA), 1 µl reverse transcriptase (200 U, SuperScript II, Invitrogen) and 2 µl [α-33P]dCTP (20 µCi; GE Healthcare Bio-Sciences Corp., Piscataway, NJ, USA) were added to the reaction mixture. After incubation at 42°C for
2.5 h, the labeled cDNA was purified on a Sephadex G-25 spin column (GE Healthcare Bio-Sciences). The purified cDNA was denatured at 94°C for 10 min and immediately chilled on ice. The cDNA probe thus prepared was used to perform the hybridization experiment using Panorama *E. coli* Gene Arrays (Sigma-Aldrich) as described in the manufacturer’s instructions. After hybridization, the arrays were exposed to Imaging Plates (Fuji Photo Film Co., Ltd., Minami-Ashigara, Kanagawa, Japan) for 48 h. The exposed Imaging Plates were scanned with BAS-5000 (Fuji Photo Film). Data analysis was performed with Array Gauge software (v 1.2; Fuji Photo Film). The data were calculated as the average and standard deviation of eight independent experiments and expressed as a fraction of the total hybridization signal on each DNA array filter. A two-tailed Student’s *t*-test *p* value < 0.05 was considered statistically significant.

**Northern blot analysis.** The extracted total RNA was separated by formaldehyde-agarose gel electrophoresis (9% formaldehyde, 1x MOPS buffer, pH 5.0, 5 mM sodium acetate, 1 mM EDTA, 1% agarose). The separated RNA was transferred onto a Hybond-N⁺ membrane (GE Healthcare Bio-Sciences) by the capillary method. To detect *hns* gene expression with the hybridization probe, a 0.41-kb DNA fragment was amplified by PCR using the following primer set: 5’-CGAAGCCTTAAAATTCTGA-3’ and 5’-TTATTGCTTGATCAGGAAAT-3’. Northern hybridization was carried out using AlkPhos Direct and ECF substrate (GE Healthcare Bio-Sciences). The signals were quantified by Typhoon 8600 (GE Healthcare Bio-Sciences) and ImageQuant software (v 5.2; Molecular Dynamics, Sunnyvale, CA, USA).

**Real-time PCR analysis.** The reaction mixture containing 5 μg total RNA, 1 μl random primers (300 ng, Invitrogen), and 1 μl 10 mM dNTP mixture in a total volume
of 12 µl was incubated at 65°C for 5 min and immediately chilled on ice. Then, 4 µl of 5x first-strand buffer, 2 µl 0.1 M dithiothreitol (DTT) and 1 µl RNase inhibitor (40 U RNase OUT, Invitrogen) were added, and the mixture was incubated at 25°C for 10 min and then at 42°C for 2 min. After that, 1 µl reverse transcriptase (200 U; SuperScript II, Invitrogen) was added, and the mixture was incubated at 42°C for 90 min, and then 70°C for 15 min.

The real-time PCR reaction was carried out in a 50-µl (total volume) mixture containing 25 µl 2x TaqMan Universal PCR Master Mix (Applied Biosystems, Foster City, CA, USA), 900 nM each of forward and reverse primers, 200 nM TaqMan probe specific for the target gene, and 5 µl of the cDNA sample. The amplification and detection of specific products were performed with the ABI PRISM 7000 sequence detection system (Applied Biosystems) using the following profile: incubation at 50°C for 2 min, 95°C for 10 min, and 40 cycles at 95°C for 15 s and at 60°C for 1 min. Data analysis was performed using the ABI PRISM 7000 sequence detection system software (v 1.0; Applied Biosystems). Each sample was analyzed in duplicate. The sequences of the TaqMan probes and primers for the target genes were as follows: *ndh* (Probe:

5'FAM-CTGCTGCGCCACAAACGAG-TAMRA-3'; Forward primer:

5'TGCCTTACCGCCACGTATC-3'; Reverse primer:

5'ACGCGAACGCAAGTTTC-3'); *cyoA* (Probe:

5'FAM-CTGCTGCGCCACAAACGAG-TAMRA-3'; Forward primer:

5'GGCTGATGTTGATGTCGT-3'; Reverse primer:

5'GGTACTTCCCCACATCTGGCTGCT-3'); *cydA* (Probe:

5'FAM-CTGCTGCGCCACAAACGAG-TAMRA-3'; Forward primer:

5'TGCCTTACCGCCACGTATC-3'; Reverse primer:

5'TGCCTTACCGCCACGTATC-3';
5'-CGAGCGTCAGTGGCACAA-3'). For the endogenous control, the 16S rRNA gene

rrsA was used (Probe: 5'-FAM-CCGGGCCTTTGTACACACCGCC-TAMRA-3'; Forward
primer: 5'-GAATGCCACGGTGAATACGTT-3'; Reverse primer: 5'-ACCCACTCCCATGGTGTGA-3'). A relative standard curve method was used to
calculate the relative expression level of the target gene. The expression ratio was
obtained by dividing the relative expression level of the mutant by that of the parent.

Measurement of enzymes in central carbon metabolism. Cells were
harvested by centrifugation, washed with an appropriate buffer, and kept at –20°C until
use. The cells were disrupted by sonication in the same buffer, and the cell debris was
removed by centrifugation at 39,000 x g at 4°C for 40 min. The supernatant was
gel-filtered using a PD-10 column (GE Healthcare Bio-Sciences) with the same buffer to
remove low-molecular-weight materials. The eluate was used as the crude enzyme for the
assay. The composition of the buffer system is described in the assay conditions of the
respective enzymes. Enzyme activity was monitored spectrophotometrically using a
Beckman DU 7400 spectrophotometer (Beckman Coulter, Inc., Fullerton, CA, USA) at
25°C. The protein concentration of the crude enzyme was determined using the Bio-Rad
Protein Assay (Bio-Rad Laboratories), with bovine serum albumin as the standard. The
specific activity of each enzyme under the assay conditions was expressed as n mole min⁻¹
(mg protein). For pyruvate dehydrogenase (PDH), 50 mM potassium phosphate buffer
(pH 8.1) was used as the washing and extraction buffer. The reaction mixture consisted of
50 mM potassium phosphate buffer (pH 8.1), 0.05 mM CoASH, 3 mM L-cysteine, 2.33
mM NAD⁺, 0.2 mM thiamine pyrophosphate, 1 mM MgSO₄, 2 mM sodium pyruvate, and
the crude enzyme. The reaction was initiated by the addition of sodium pyruvate, and the
NADH concentration increase was monitored at 340 nm (39). For acetate kinase (ACK), 50 mM of imidazole-HCl buffer (pH 7.3) containing 10 mM MgCl$_2$ was used as the washing and extraction buffer. The reaction mixture consisted of 50 mM imidazole-HCl buffer (pH 7.3), 10 mM MgCl$_2$, 12 mM acetyl phosphate, 5 mM ADP, 10 mM glucose, 1.6 mM NADP, hexokinase (56 U/ml), and glucose 6-phosphate-dehydrogenase (1.5 U/ml). The reaction was initiated by the addition of ADP, and ATP formation was monitored by the increase of the NADPH concentration at 340 nm (31). For citrate synthase (CS), 20 mM Tris-HCl (pH 8.0) containing 10 mM MgCl$_2$ and 1 mM EDTA was used as the washing and extraction buffer. Activity was measured in the reaction mixture, which contained 100 mM Tris-HCl buffer (pH 8.0), 0.16 mM acetyl-CoA, 0.2 mM oxaloacetic acid, and 0.1 mM 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB). The reaction was initiated by the addition of oxaloacetic acid. The CoA yield was monitored by the absorbance increase at 412 nm. The molecular extinction coefficient of 13,600 M$^{-1}$ cm$^{-1}$ for 5-mercapto-2-nitrobenzoic acid was used to calculate the enzyme activity (36). For succinyl-CoA synthetase (SCS) (7), 20 mM potassium phosphate buffer (pH 7.2) containing 20 mM MgCl$_2$ was used as the washing and extraction buffer. The reaction mixture contained 50 mM Tris-HCl buffer (pH 7.2), 10 mM MgCl$_2$, 100 mM KCl, 10 mM sodium succinate, 0.1 mM CoASH, and 0.4 mM ATP. The reaction was initiated by the addition of ATP, and the formation of succinyl-CoA was monitored by the absorbance increase at 230 nm. For succinyl-CoA, we used the molar extinction coefficient of 4900 M$^{-1}$cm$^{-1}$ at 230 nm to calculate enzyme activity. For malate dehydrogenase (MDH), 7 mM potassium phosphate buffer (pH 7.0) containing 30% glycerol and 3.5 mM DTT was used as the washing and extraction buffer. The reaction mixture consisted of 100 mM
potassium phosphate buffer (pH 7.2), 0.13 mM NADH, and 0.33 mM oxaloacetic acid. The reaction was initiated by the addition of oxaloacetic acid. The decrease of NADH, coupled with the formation of malate, was monitored at 340 nm (26).

Measurement of enzymes in the respiratory chain. Cells were washed with 50 mM potassium phosphate buffer (pH 7.5) containing 5 mM MgSO$_4$, 1 mM DTT, and 10% glycerol, resuspended in the same buffer, and then disrupted twice using a French pressure cell (Ohtake Works, Tokyo, Japan) at 16,000 psi. The mixtures were centrifuged at 8,000 x g at 4°C for 10 min, and the supernatant was ultracentrifuged at 120,000 x g, at 0°C for 2 h. The membrane fraction was suspended by homogenization with a teflon-coated homogenizer in the same buffer and used as the crude enzyme for the NADH dehydrogenase (NDH) assay. The activities of the NDHs were measured by monitoring the decrease of the NADH or deamino-NADH concentration at 340 nm. The reaction mixture consisted of 50 mM potassium phosphate buffer (pH 7.5), 5 mM MgSO$_4$, and 0.125 mM of either NADH or deamino-NADH substrate. The reaction was initiated by the addition of the crude enzyme. As deamino-NADH is the substrate for NDH-1 but not for NDH-2 (25), the NDH-2 activity was calculated by subtracting the deamino-NADH oxidase activity (NDH-1 activity) from the NADH oxidase activity (total NDH activity). The protein concentration of the crude enzyme was determined using the Bio-Rad Protein Assay (Bio-Rad Laboratories), with bovine serum albumin as the standard. The molar extinction coefficient of 6220 M$^{-1}$cm$^{-1}$ at 340 nm for both substrates was used to calculate the specific activity, which was expressed as nmole min$^{-1}$ (mg protein)$^{-1}$. The aerobic respiratory chain of E. coli contains two types of terminal oxidases, cytochrome bo$_3$ oxidase and cytochrome bd oxidase. The bo$_3$-type oxidase is
more efficient (2H+/e⁻) than the bd-type oxidase (1H+/e⁻) in creating the electrochemical gradient of protons. The activities of these oxidases cannot be measured separately, so the total activity was measured as ubiquinol-2 (Q₂H₂) oxidase activity. The crude enzyme for the assay of Q₂H₂ oxidase activity was prepared in the same manner as described for the NDHs, except that DTT and glycerol were omitted from the buffer used for cell washing and disruption. The measurement was conducted with 30 µM Q₂H₂ in 50 mM potassium phosphate buffer (pH 7.5) containing 0.1% Tween 20. The absorbance increase at 275 nm was monitored after the enzyme was added to start the reaction. The protein concentration of the crude enzyme was measured by the modified Lowry method with bovine serum albumin as the standard (12). The molar extinction coefficient of 12,250 M⁻¹cm⁻¹ at 275 nm was used to calculate the specific activity, which was expressed in nmole min⁻¹ (mg protein)⁻¹.

**Immunoblot analysis of the terminal oxidases.** Immunoblot analysis was conducted to investigate the abundance of each of the terminal oxidases. The membrane preparations used for the Q₂H₂ oxidase assay were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE; 23 µg protein per lane). After electrophoresis, the protein bands in the gel were transferred electrophoretically onto a polyvinylidene fluoride (PVDF) membrane (Millipore Corporation, Billerica, MA, USA) at 100 mA for 4 h. After blocking with 3% gelatin and washing, the membrane was incubated for 2 h with anti-cytochrome bo₃ or anti-cytochrome bd antibody. After incubated for 2 h with Protein A-peroxidase, the protein bands were visualized by the addition of color reagents and H₂O₂. Prestained marker proteins (Bio-Rad Laboratories) were used to estimate the relative molecular weights. Anti-cytochrome bo₃ serum was obtained against the
cytochrome bo₃ purified from E. coli (Matsushita, K., unpublished) and was used at a 50-fold dilution. Dr. Tatsushi Mogi (ATP System Project, ERATO, JST) kindly supplied the anti-cytochrome bd serum. The following pretreatment was carried out before use: the anti-cytochrome bd serum (0.1 ml) was mixed with 1 ml (~10 mg/ml) of the membranes suspension prepared from E. coli GO103 (ΔcydAB') (30) and then incubated at 30°C for 2 h. The mixture was centrifuged at 10,000 x g for 10 min to obtain the supernatant, which was used as the antibody after a 20-fold dilution.

RESULTS

Enhanced glucose metabolism in an F₁-ATPase-defective mutant HBA-1, as revealed by chemostat cultures. To evaluate the effects of an F₁-ATPase defect on glucose metabolism, the mutant HBA-1 and its parent W1485 were cultured in M9 minimal medium in a glucose-limited chemostat at the same growth rate (D = 0.2 h⁻¹), and the fermentation parameters of both strains were calculated. As shown in Table 1, the mutant exhibited reduced biomass production (60%), with increased specific rates of both glucose consumption (168%) and respiration (171%), compared with the parent. Analysis of the fermentation products revealed a substantial excretion of acetate by the mutant, whereas no acetate excretion was observed for the parent. These results clearly demonstrated that glucose metabolism by the F₁-ATPase-defective mutant was enhanced, in agreement with previous observations in different atp mutants (21, 40).

Flux analysis. Based on the observed fermentation parameters (Table 1), the metabolic fluxes within the central metabolic pathways were estimated by a
stoichiometric approach. As shown in Fig. 1, the glycolytic flux distribution in HBA-1 appeared to be approximately twice that in W1485. However, its distribution in the TCA cycle was only 18% higher in the mutant than in the parent. This difference was due to the acetate excretion observed for HBA-1, whereby the increased flux within the glycolytic pathway overflows, thereby reducing the flow of acetyl-CoA entering the TCA cycle. Increased flow of carbon through glycolytic pathway and in TCA cycle and increased excretion of acetate were also observed in a different atp mutant growing in glucose minimal medium under batch culture conditions (21).

**Transcriptome analysis.** To determine whether these alterations in glucose metabolism were accompanied by alterations in gene expression, a DNA array analysis was conducted to compare the genomic expression profiles of the parent and mutant. In general, the differences in the expression levels of most genes appeared to be relatively small (less than two-fold) and not statistically significant. Moreover, when differences were detected, most of the genes showed decreased expression levels in the mutant. The similar tendency was observed in the DNA array analysis using cells cultured at a 50% higher dilution rate ($D = 0.3 \text{ h}^{-1}$; data not shown). The results are summarized in Table 2, which lists only the genes of known function and relevance and shows the different expression levels in the two strains. Most striking is the absence of the genes involved in glycolysis, despite the enhanced glucose metabolism in the mutant. In contrast, the expression levels of several genes (gltA, icdA, sucA, sucB, sucD, and mdh) coding for enzymes in the TCA cycle were significantly decreased, to about 50% of the parental levels. Of these, the decreased expression of gltA (44% of the parental level), which codes for citrate synthase, appears to be important in the downregulation of the flux entering
into the TCA cycle. Also aceE and aceF (126% of the parental level), which code for enzymes of the PDH complex, showed a tendency to upregulate. We consider these changes, in combination with reduced expression of gltA, to favor the redirection of the glycolytic flux into acetate formation in the mutant (Table 1, Fig. 1). Moreover, the expression of the genes coding for the glyoxylate-shunt enzymes aceA and aceB were significantly decreased in the mutant (about 60% of the parental level). However, the most interesting finding involves the elevated expression of some genes coding for respiratory chain enzymes. Although the differences were not as prominent, the expression of ndh, coding for NDH-2, and cydA, coding for cytochrome bd oxidase subunit I, were elevated to about 130% of the parental levels. The cyoA expression also showed a tendency toward upregulation, but this was not statistically significant. These data suggest that increased respiration in the mutant may be accompanied by alterations in the composition of the respiratory enzymes, which are regulated at the transcription level. In addition to the genes involved in central metabolism, several genes coding for flagella formation and cellular structures (ompF) appeared to be significantly repressed. The expression levels of flhC and flhD, which code for a flagella transcriptional activator, were about 45% below those of the parent, and other flagellar genes (fliC, fliD, flgB, flgC, and flgL) were also repressed. Among the regulatory function genes, only hns, coding for the histone-like protein H-NS, was repressed in the mutant (~50%). Given that H-NS is an abundant DNA-binding protein involved in numerous cellular processes, including the replication, recombination, and transcriptional regulation of a large number of genes, a decrease in H-NS protein may have profound effects on *E. coli* cell physiology (33). Besides genes listed in Table 2, the following genes were worth to be referred to as
significantly downregulated ones in the mutant (~50%) with known function but with
apparently less physiological relevance in response to bioenergetic stress: *hupA* and *hupB*
(DNA-binding protein HU), *topA* (DNA topoisomerase I, omega protein I), *grpE* (heat
shock protein GrpE), *htpG* (heat shock protein HtpG), *mopB* (GroES protein), *cspD* (cold
shock-like protein CspD).

To verify the results of the DNA array analysis (Table 2), the expression of four
selected genes was monitored by either real-time PCR assay (*ndh*, *cyoA*, and *cydA*) or
Northern blot analysis (*hns*). The results, summarized in Table 3, showed comparable
tendencies between the DNA array experiments and the real-time PCR assay or Northern
blot analysis. Although we did not monitor all the genes listed in Table 2, these results
illustrate the reliability of the DNA array experiments for screening and locating
important changes in the mutant at the level of transcription.

**Enzyme activity in central carbon metabolism.** Based on the results of the
fermentation analysis (Table 1, Fig. 1) and the determination of the genomic expression
profile (Table 2), several enzymes important to central carbon metabolism were measured
to substantiate the observed metabolic changes, especially acetate production, in the
mutant (Table 4). In the mutant, the activity of the PDH complex, a key enzyme complex
in supplying acetyl-CoA, was twice that in the parent, whereas the activities of three TCA
cycle enzymes (citrate synthase, succinyl-CoA synthetase, and malate dehydrogenase) in
the mutant appeared to be about half those in the parent. These results agree well with the
results obtained in the transcriptome analysis (Table 2), thereby providing validation at
the level of enzyme activity. For further insight into the mechanism of acetate production
in the mutant, we measured acetate kinase activity, although the transcriptome analysis
(Table 2) detected no difference in this enzyme. However, as shown in Table 4, the acetate kinase activity in the mutant was 155% that in the parent. Thus, acetate production in the mutant appears to be triggered by increased acetyl-CoA accumulation attributable to the elevated activity of the PDH complex and the reduced activity of TCA cycle enzymes, especially citrate synthase. The accumulated acetyl-CoA is then readily metabolized into acetate through the acetate kinase-phosphotransacetylase pathway, in which acetate kinase activity is elevated.

**Total activities of NDHs and terminal oxidases.** The enhanced rate of respiration (Table 1) as well as the transcriptional upregulation of *ndh* and *cydA* (Tables 2 and 3) observed in the mutant led us to measure the total activity of NDHs and terminal oxidases. Two types of NDHs are known in the *E. coli* respiratory chain, NDH-1 and NDH-2 (25). NDH-1 couples the oxidation of NADH to the creation of the electrochemical gradient of protons, whereas NDH-2 does not. Thus, NDH-1 is primarily important for energy recovery from NADH oxidation, and NDH-2 is thought to work as a bypass to modulate electron flow in response to the growth environment. As shown in Fig. 2A, the total activity of the NDHs (NDH-1 + NDH-2) was increased 2.3-fold in the mutant compared with the parent. The mutant also showed a 1.8-fold increase in the total activity of the terminal oxidases (cytochrome *bo* oxidase + cytochrome *bd* oxidase; Fig. 2B). These changes in respiratory enzyme activity correspond to the increased respiration rate in the mutant (1.7-fold; Table 1).

**Analysis of the proportions of the NDHs.** The proportion of each NDH isozyme in the mutant (Fig. 2A) was particularly striking. In the parent, total NDH activity was composed of about 60% NDH-1 and 40% NDH-2. However, the NDH-2
activity in the mutant was dramatically elevated to 3.7-fold that in the parent, whereas only a slight increase (1.3-fold) was detected in the NDH-1 activity. Therefore, we concluded that the increased total activity of the NDHs was attained primarily through the preferential increase of NDH-2 activity in the mutant, which concurs with the observed upregulation of *ndh* transcription in the mutant (Tables 2 and 3). Consequently, NDH-2 activity is predominant in the mutant, comprising up to about 70% of total NDH activity, in contrast to about 40% in the parent.

**Analysis of the proportions of the terminal oxidases.** The increased total activity of the terminal oxidases in the mutant (Fig. 2B) prompted us to analyze in detail a possible alteration in the proportion of the terminal oxidases (cytochrome *bo*$_3$ oxidase + cytochrome *bd* oxidase). Thus, we have conducted an immunoblot analysis for the terminal oxidases to gain insight into the cytochrome components of the membrane (Fig. 3). The band corresponding to subunit I of the *bd*-type oxidase was more abundant in the membrane of the mutant (lane 1) than of the parent (lane 2), whereas the bands for subunits I and II of the *bo*-type oxidase in the membranes did not differ much between the mutant (lane 3) and parent (lane 4). These results correspond to the transcriptional upregulation observed for *cydA* in the mutant (Tables 2 and 3) and indicate an increase in the concentration of the *bd*-type oxidase relative to the *bo*-type oxidase in the mutant.

**DISCUSSION**

This study illustrated the overall alterations in an *E. coli* K-12 cell that are associated with defective oxidative phosphorylation due to a mutation in the F$_1$-ATPase.
The results appear to explain how metabolic changes leading to enhanced glucose consumption are possible in response to energy shortages caused by the F$_1$-ATPase defect.

The use of a glucose-limited chemostat for culturing the F$_1$-ATPase-defective mutant and its parent enabled a precise characterization of both strains growing exponentially at the same rate (D = 0.2 h$^{-1}$). The enhanced glucose metabolism in the mutant, as revealed by the fermentation parameters (Table 1), was further substantiated by flux analysis (Fig. 1). We calculated twice as much flux through the glycolytic pathway in the mutant. However, we obtained no evidence from the DNA array analysis to suggest the transcriptional upregulation of genes involved in glycolysis (Table 2). Thus, we suggest that the enhanced glycolytic flux was brought about by the allosteric activation of the key enzymes of this pathway, phosphofructokinase I (activation by ADP) (2) and pyruvate kinase II (activation by AMP) (21), under the reduced [ATP]/[ADP] ratio. Interestingly, in the mutant, the flux through the TCA cycle was only 18% higher than that in the parent, owing to a redirection of the flux into acetate (Fig. 1), which suggests a stringent metabolic regulation to prevent the flow of the glycolytic pathway from entering the TCA cycle. Results from the enzymatic activities (Table 4) revealed increased activities of the PDH complex and acetate kinase and decreased activities of several TCA cycle enzymes, including citrate synthase. The flux of the TCA cycle in *E. coli* has been shown to be controlled by citrate synthase through feedback inhibition by NADH as a negative effector (37). As the rate of NADH formation in the mutant with enhanced glucose metabolism would be higher than that in the parent, this inhibition, together with the observed alterations in the enzyme activities of the PDH
complex, citrate synthase, and acetate kinase, might direct the glycolytic flux into acetate.

From an energetic point of view, the number of ATPs generated by substrate-level phosphorylation from either the metabolism of acetyl-CoA through the TCA cycle (ATP generation at the succinyl-CoA synthetase reaction) or the acetate pathway (generation at the acetate kinase reaction) is the same (Fig. 1). Therefore, the physiological importance of the redirection of the glycolytic flux into acetate is not thought to be related to substrate-level phosphorylation in the acetate pathway, but rather to result from a different aspect. The best explanation is the suppression of additional NADH formation through the TCA cycle, because the $F_1$-ATPase-defective mutant had already generated excess NADH by enhanced glycolysis. As shown in Table 2, the downregulated genes of the TCA cycle enzymes include three ($icdA$, $sucA$, and $mdh$) coding for dehydrogenases generating NADH. These changes, together with reduced citrate synthase activity, appear to reduce NADH formation by the reduced metabolism of acetyl-CoA through the TCA cycle. Furthermore, the downregulation of genes ($aceA$, $aceB$) coding for enzymes in the glyoxylate shunt was also demonstrated (Table 2), which could also reduce NADH formation through malate dehydrogenase, while saving acetyl-CoA for substrate-level phosphorylation coupled with acetate formation (acetate kinase) or the TCA cycle (succinyl-CoA synthetase).

In this study, we showed that both the reduction of flow in the TCA cycle and the alteration of respiratory chain components to increase the respiration rate are necessary for the $F_1$-ATPase-defective mutant to achieve enhanced glucose metabolism. As shown in Figs. 2A and 3, preferential increases in NDH-2 activity and cytochrome $bd$ oxidase content were discovered in the respiratory chain of the $F_1$-ATPase-defective
mutant. As components of the respiratory chain of *E. coli*, each NDH and terminal oxidase isozyme exhibits a different efficiency in generating the electrochemical gradient of protons coupled with electron transfer (5, 14): NDH-1 \((2\text{H}^+/\text{e}^-)\) and NDH-2 \((0\text{H}^+/\text{e}^-)\); *bo*-type oxidase \((2\text{H}^+/\text{e}^-)\), and *bd*-type oxidase \((1\text{H}^+/\text{e}^-)\). The increased components of the respiratory chain are bioenergetically less effective, and the net result is that the mutant can recycle the excess NADH formed in its enhanced central metabolism, thus avoiding the generation of excess proton-motive force. In fact, a 20% higher membrane potential has been measured in the *atp*-deletion mutant (21). Therefore, this alteration in the respiratory components seems beneficial from a bioenergetics point of view for enabling the mutant to maintain homeostasis. The observed alterations in the respiratory chain components are a novel finding of an adaptive response in the F$_1$-ATPase-defective mutant (probably common to all *atp* mutants), and this is in accord with the aforementioned metabolic redirection strategy that limits NADH formation in the TCA cycle. Another interesting aspect was the mechanism for the transcriptional upregulation of NDH-2 and *bd*-type oxidase in response to the *atp* mutation (Tables 2 and 3). Under anaerobic conditions, the expression of *ndh*, which codes for NDH-2, is subject to repression by Fnr, the *fnr* (fumarate nitrate reduction) gene product (17). Under aerobic conditions, Fis (the *fis* gene product; a factor for inversion stimulation) exhibits a growth phase-dependent modulation of transcription from the *ndh* promoter. In the early logarithmic growth phase, when Fis expression is maximal, *ndh* expression is repressed by Fis, thus ensuring that energetically efficient NDH-1 is used. This repression is relieved at the stationary phase, when Fis expression decreases. Thus, NDH-2 seems to be fully expressed when cellular energy is sufficient (16). In this context, the mechanism of
the transcriptional upregulation of ndh in the F₁-ATPase-defective mutant is difficult to interpret and needs to be clarified in future work. On the other hand, the cydAB operon, coding for the bd-type oxidase, has been shown to be regulated by the interplay of three global regulatory proteins, Fnr, ArcA (aerobic respiration control; arcA gene product), and H-NS, in such a way that its expression is maximal under microaerobic conditions (11, 15, 19, 20). This is physiologically important because the bd-type oxidase has a high affinity for oxygen, thereby working effectively under microaerobic conditions. Under aerobic conditions, however, the expression of the cydAB operon is normally regulated at a low level because of repression by H-NS (15). In the F₁-ATPase-defective mutant, bd-type oxidase content increased even under aerobic conditions (Fig. 3). Interestingly, in the mutant, the expression of H-NS appeared to be repressed to half that of the parent (Tables 2 and 3). Thus, it seems reasonable to attribute the increase of bd-type oxidase content to the decrease of H-NS protein.

The transcription of seven genes involved in flagellar biogenesis and ompF coding for porin was found to be downregulated in the mutant (Table 2). The genes flhC and flhD constitute the master operon the expression of which switches on the expression of all the other genes involved in flagellar biogenesis (10). As flhC and flhD are downregulated to less than half in the mutant (Table 2), the expression of the other genes (flgB, flgC, flgL, fliC and fliD) seems to be affected accordingly. Once again, a decreased expression of hns is implicated in these phenomena, because H-NS has been demonstrated to be the positive transcriptional regulator of the flhDC operon in vivo (35), and the hns mutation has been shown to cause a loss of motility due to the lack of flagella (3). The advantages of these responses are not clear. However, the reduced synthesis of
such a large multi-component apparatus (flagellum) and one of the most abundant proteins in *E. coli* in terms of mass (porin) may contribute to cost-savings in biosynthesis (24, 28), especially in an *atp* mutant, in which the ATP supply is limited.

In this study, we clarified a series of physiological changes associated with an F$_1$-ATPase-defective mutation in *E. coli*. The mutation produced not only alterations in central carbon metabolism but also changes in respiratory chain and cellular structure components. The overall results illustrate a novel, yet reasonable, strategy enabling *E. coli* to survive energetically difficult conditions brought about by impaired oxidative phosphorylation. Although experimental evidence is lacking, the observed qualitative changes in the mutant, especially the downregulation of TCA cycle enzymes and the upregulation of cytochrome *bd* oxidase, are associated with the operation of the global control network(s), such as the Arc two-component system. The possibility of the involvement of some global control network in the adaptive response of the *atp* mutant and the identification of the signal that is sensed by the network(s) remain to be elucidated.

**Acknowledgments**

We thank Dr. Hisao Ito and Mr. Akira Imaizumi at Ajinomoto Co., Inc., (Kawasaki, Japan) for their valuable advice in the DNA array experiments. This study was supported in part by a Grant-in-Aid for Scientific Research (B) (10460033 to A. Y.), a Grant-in-Aid for Scientific Research (C) (13660072 to A. Y.) from the Japan Society for the Promotion of Science, and the Industrial Research Grant Program in 2004 (no.
04A07004 to M. W.) from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

References


23. **Kotlarz, D., H. Garreau, and H. Buc.** 1975. Regulation of the amount and of the activity of phosphofructokinases and pyruvate kinases in *Escherichia coli*. Biochim.


Table 1. Parameters in the chemostat cultures.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Y\textsubscript{CELL}\textsuperscript{a}</th>
<th>Fluxes\textsuperscript{b}</th>
<th>Respiration\textsuperscript{c}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glucose</td>
<td>Acetate</td>
<td>2-OGA</td>
</tr>
<tr>
<td>W1485</td>
<td>0.056 (1)</td>
<td>3.57 (1)</td>
<td>0.00</td>
</tr>
<tr>
<td>HBA-1</td>
<td>0.033 (0.6)</td>
<td>6.00 (1.68)</td>
<td>4.30</td>
</tr>
</tbody>
</table>

An F\textsubscript{1}-ATPase-defective mutant, HBA-1, and its parent strain, W1485, were cultured under glucose-limited chemostat conditions in M9 minimal medium at a dilution rate of 0.2 h\textsuperscript{-1}, as described in Materials and Methods.

\textsuperscript{a} Y\textsubscript{CELL}, cell yield in g dry cell/mmol glucose.

\textsuperscript{b} Fluxes, consumption of glucose or excretion of acetate or 2-oxo-glutarate (2-OGA) in mmol (g dry cell\textsuperscript{-1}) h\textsuperscript{-1}.

\textsuperscript{c} mmol O\textsubscript{2} h\textsuperscript{-1} (g dry cell\textsuperscript{-1}).

\textsuperscript{d} Fold difference between strains W1485 and HBA-1.
TABLE 2. Summary of genes showing different expression levels between strains W1485 and HBA-1 grown in glucose-limited chemostat culture, as revealed by DNA array analysis.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Gene product</th>
<th>Averaged spot intensities (^b)</th>
<th>Standard deviation</th>
<th>Ratio (^c) (HBA-1/W1485)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W1485</td>
<td>HBA-1</td>
<td>W1485</td>
</tr>
<tr>
<td>aceE</td>
<td>pyruvate dehydrogenase E1 component</td>
<td>1.18E –04</td>
<td>1.48E –04</td>
<td>2.09E –05</td>
</tr>
<tr>
<td>aceF</td>
<td>E2 of pyruvate dehydrogenase</td>
<td>1.52E –04</td>
<td>1.92E –04</td>
<td>2.79E –05</td>
</tr>
<tr>
<td>gltA</td>
<td>citrate synthase</td>
<td>4.05E –04</td>
<td>1.80E –04</td>
<td>7.80E –05</td>
</tr>
<tr>
<td>icdA</td>
<td>isocitrate dehydrogenase</td>
<td>2.95E –04</td>
<td>1.80E –04</td>
<td>4.53E –05</td>
</tr>
<tr>
<td>sucA</td>
<td>2-oxoglutarate dehydrogenase E1 component</td>
<td>1.34E –04</td>
<td>7.63E –05</td>
<td>3.45E –05</td>
</tr>
<tr>
<td>sucB</td>
<td>dihydrolipoamide succinyltransferase component (E2)</td>
<td>1.29E –04</td>
<td>6.19E –05</td>
<td>2.94E –05</td>
</tr>
<tr>
<td>sucD</td>
<td>succinyl-CoA synthetase (\alpha) chain</td>
<td>4.86E –04</td>
<td>1.72E –04</td>
<td>1.87E –04</td>
</tr>
<tr>
<td>mdh</td>
<td>malate dehydrogenase</td>
<td>3.18E –04</td>
<td>1.34E –04</td>
<td>1.14E –04</td>
</tr>
<tr>
<td>Gene</td>
<td>Function</td>
<td>FPKM</td>
<td>FPKM</td>
<td>FPKM</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>aceA</td>
<td>isocitrate lyase</td>
<td>2.37E-04</td>
<td>1.52E-04</td>
<td>5.90E-05</td>
</tr>
<tr>
<td>aceB</td>
<td>malate synthase A</td>
<td>3.82E-04</td>
<td>2.22E-04</td>
<td>7.72E-05</td>
</tr>
<tr>
<td>ndh</td>
<td>NADH dehydrogenase II</td>
<td>8.25E-05</td>
<td>1.09E-04</td>
<td>1.18E-05</td>
</tr>
<tr>
<td>nuoA</td>
<td>NADH dehydrogenase I chain A</td>
<td>5.78E-05</td>
<td>4.96E-05</td>
<td>1.27E-05</td>
</tr>
<tr>
<td>cydA</td>
<td>cytochrome <em>d</em> oxidase subunit I</td>
<td>3.00E-04</td>
<td>4.02E-04</td>
<td>1.61E-04</td>
</tr>
<tr>
<td>cyoA</td>
<td>cytochrome <em>o</em> oxidase subunit II</td>
<td>3.24E-04</td>
<td>4.19E-04</td>
<td>1.51E-04</td>
</tr>
<tr>
<td>flhC</td>
<td>flagellar transcriptional activator</td>
<td>1.99E-04</td>
<td>8.96E-05</td>
<td>4.14E-07</td>
</tr>
<tr>
<td>flhD</td>
<td>flagellar transcriptional activator</td>
<td>2.57E-04</td>
<td>1.12E-04</td>
<td>2.68E-07</td>
</tr>
<tr>
<td>fliC</td>
<td>flagellin</td>
<td>8.68E-04</td>
<td>3.64E-04</td>
<td>4.55E-05</td>
</tr>
<tr>
<td>fliD</td>
<td>flagellar hook-associated protein 2</td>
<td>1.43E-04</td>
<td>8.07E-05</td>
<td>1.68E-05</td>
</tr>
<tr>
<td>flgB</td>
<td>putative flagellar basal-body rod protein FlgB</td>
<td>3.19E-04</td>
<td>1.85E-04</td>
<td>1.85E-05</td>
</tr>
<tr>
<td>flgC</td>
<td>putative flagellar basal-body rod protein FlgC</td>
<td>1.52E-04</td>
<td>8.88E-05</td>
<td>6.24E-06</td>
</tr>
<tr>
<td>flgL</td>
<td>flagellar hook-associated protein 3</td>
<td>2.18E-04</td>
<td>1.20E-04</td>
<td>9.01E-06</td>
</tr>
<tr>
<td>ompF</td>
<td>outer membrane protein F precursor</td>
<td>2.58E-03</td>
<td>1.21E-03</td>
<td>5.83E-04</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>HBA-1</td>
<td>W1485</td>
<td>HBA-1/W1485</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>nmpC</td>
<td>outer membrane porin protein NmpC precursor</td>
<td>1.60E –04</td>
<td>1.10E –04</td>
<td>5.19E –05</td>
</tr>
<tr>
<td>hns</td>
<td>histone-like protein H-NS</td>
<td>1.20E –04</td>
<td>6.06E –04</td>
<td>3.18E –04</td>
</tr>
</tbody>
</table>

\(^a\) The results are from eight independent DNA array analyses.

\(^b\) Expressed as the percentage of the total intensity of all the spots on the DNA array.

\(^c\) Expression ratio of HBA-1 to W1485. The asterisk indicates significant t-test differences (\(p < 0.05\)).
Table 3. Comparison of the expression ratios of several genes, as determined by DNA array and Northern blot analysis or real-time PCR analysis.

<table>
<thead>
<tr>
<th>Gene</th>
<th>DNA array$^a$</th>
<th>Northern blot$^b$</th>
<th>Real-time PCR$^c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ndh</td>
<td>1.32*</td>
<td>ND$^b$</td>
<td>2.40</td>
</tr>
<tr>
<td>cyoA</td>
<td>1.30</td>
<td>ND</td>
<td>1.67</td>
</tr>
<tr>
<td>cydA</td>
<td>1.34*</td>
<td>ND</td>
<td>1.38</td>
</tr>
<tr>
<td>hns</td>
<td>0.50*</td>
<td>0.67</td>
<td>ND</td>
</tr>
</tbody>
</table>

$^a$ Adapted from Table 1. The asterisk indicates significant $t$-test differences ($p < 0.05$).

$^b$ Not determined.

$^c$ The assays were repeated two to three times.
Table 4. Activity of several central carbon metabolism enzymes.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Specific activity $^a$ (nmol/min/mg)</th>
<th>Ratio (HBA-1/W1485)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDH complex</td>
<td>74/152</td>
<td>2.05</td>
</tr>
<tr>
<td>Acetate kinase</td>
<td>2532/3933</td>
<td>1.55</td>
</tr>
<tr>
<td>Citrate synthase</td>
<td>597/375</td>
<td>0.63</td>
</tr>
<tr>
<td>Succinyl-CoA synthetase</td>
<td>384/217</td>
<td>0.57</td>
</tr>
<tr>
<td>Malate dehydrogenase</td>
<td>13064/6039</td>
<td>0.46</td>
</tr>
</tbody>
</table>

$^a$ Average values from at least two independent experiments.
Fig. 1. Flux analysis in the central metabolic pathways of the parent and mutant. The values in the boxes show the flux of the parent, W1485 (left), and the mutant, HBA-1 (right), in mmol (g dry cell)\(^{-1}\) h\(^{-1}\).

Fig. 2. Analysis of respiratory chain components based on enzyme activity measurements, expressed as nmol min\(^{-1}\) (mg protein)\(^{-1}\). (A) NDH-1 activity: W1485, 267 ± 125 (n = 10); HBA-1, 338 ± 110 (n = 8). NDH-2 activity: W1485, 197 ± 87 (n = 10); HBA-1, 723 ± 112 (n = 8). (B) Q\(_{2}\)H\(_2\) oxidase activity: W1485, 1400 ± 14 (n = 2); HBA-1, 2460 ± 594 (n = 2).

Fig. 3. Immunoblot analysis of terminal oxidases. After SDS polyacrylamide gel electrophoresis of the membrane preparations of the parent and mutant, the protein bands were transferred to PVDF membranes, and then probed with anti-cytochrome \(bo_3\) serum (\(bo\)) or anti-cytochrome \(bd\) serum (\(bd\)). Lanes 1 and 3, HBA-1; Lanes 2 and 4, W1485; M, marker proteins. The data shown are representative of at least three independent experiments that gave similar results.
FIG. 2. Noda et al.
FIG. 3. Noda et al.