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Abstract

Inductive inference can be considered as one of the fundamental paradigms of algo-
rithmic learning theory. We survey results recently obtained and show their impact
to potential applications.

Since the main focus is put on the efficiency of learning, we also deal with postu-
lates of naturalness and their impact to the efficiency of limit learners. In particular,
we look at the learnability of the class of all pattern languages and ask whether or
not one can design a learner within the paradigm of learning in the limit that is
nevertheless efficient.

For achieving this goal, we deal with iterative learning and its interplay with the
hypothesis spaces allowed. This interplay has also a severe impact to postulates of
naturalness satisfiable by any learner.

Furthermore, since a limit learner is only supposed to converge, one never knows
at any particular learning stage whether or not the learner did already succeed. The
resulting uncertainty may be prohibitive in many applications. We survey results
to resolve this problem by outlining a new learning model, called stochastic finite
learning. Though pattern languages can neither be finitely inferred from positive
data nor PAC-learned, our approach can be extended to a stochastic finite learner
that exactly infers all pattern languages from positive data with high confidence.

Finally, we apply the techniques developed to the problem of learning conjunctive
concepts.

1 Introduction

Inductive inference can be considered as one of the fundamental paradigms
of algorithmic learning theory. In particular, inductive inference of recursive
functions and of recursively enumerable languages has been studied intensively
within the last four decades (cf., e.g., [3,4,30,16]). The basic model considered
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within this framework is learning in the limit which can be informally de-
scribed as follows. The learner receives more and more data about the target
and maps these data to hypotheses. Of special interest is the investigation of
scenarios in which the sequence of hypotheses stabilizes to an accurate and fi-
nite description (e.g. a grammar, a program) of the target. Clearly, then some
form of learning must have taken place. Here by data we mean either any
infinite sequence of pairs argument-value (in case of learning recursive func-
tions) such that all arguments appear eventually or any infinite sequence of
all members of the target language (in case of language learning from positive
data). Alternatively, one can also study language learning from both positive
and negative data.

Most of the work done in the field has been aimed at the following goals:
showing what general collections of function or language classes are learnable,
characterizing those collections of classes that can be learned, studying the im-
pact of several postulates on the behavior of learners to their learning power,
and dealing with the influence of various parameters to the efficiency of learn-
ing. However, defining an appropriate measure for the complexity of learning
in the limit has turned out to be quite difficult (cf. Pitt [31]). Moreover, when-
ever learning in the limit is done, in general one never knows whether or not
the learner has already converged. This is caused by the fact that it is in
general undecidable whether or not convergence already occurred. But even
if it is decidable, it is practically infeasible to do so. Thus, there is always an
uncertainty which may be prohibitive in many applications of learning.

Therefore, different learning models have been proposed. In particular, Val-
iant’s [46] model of probably approximately correct (abbr. PAC) learning has
been very influential. As a matter of fact, this model puts strong emphasis on
the efficiency of learning and avoids the problem of convergence at all. In the
PAC model, the learner receives a finite labeled sample of the target concept
and outputs, with high probability, a hypothesis that is approximately correct.
The sample is drawn with respect to an unknown probability distribution and
the error of as well as the confidence in the hypothesis are measured with
respect to this distribution, too. Thus, if a class is PAC learnable, one obtains
nice performance guarantees. Unfortunately, many interesting concept classes
are not PAC learnable.

Consequently, one has to look for other models of learning or one is back to
learning in the limit. So, let us assume that learning in the limit is our method
of choice. What we would like to present in this survey is a rather general way
to transform learning in the limit into stochastic finite learning. It should also
be noted that our ideas may be beneficial even in case that the considered
concept class is PAC learnable.

Furthermore, we aim to outline how a thorough study of limit learnability of
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concept classes may nicely contribute to support our new approach. We exem-
plify the research undertaken by looking at the class of all pattern languages
introduced by Angluin [1]. As Salomaa [37] has put it “Patterns are every-
where” and thus we believe that our research is worth the effort undertaken.

There are several problems that have to be addressed when dealing with the
learnability of pattern languages. First, the nice thing about patterns is that
they are very intuitive. Therefore, it seems desirable to design learners out-
putting patterns as their hypotheses. Unfortunately, membership is known to
be NP -complete for the pattern languages (cf. [1]). Thus, many of the usual
approaches used in machine learning will directly lead to infeasible learning
algorithms. As a consequence, we shall ask what kind of appropriate hypothe-
sis spaces can be used at all to learn the pattern languages, and what are the
appropriate learning strategies.

In particular, we shall deal with the problem of redundancy in the hypothesis
space chosen, with consistency, conservativeness, and iterative learning. Here
consistency means that the intermediate hypotheses output by the learner do
correctly reflect the data seen so far. Conservativeness addresses the prob-
lem to avoid overgeneralization, i.e., preventing the learner from guessing a
proper superset of the target language. These requirements are naturally aris-
ing desiderata, but this does not mean that they can be fulfilled. With iterative
learning, the learning machine, in making a conjecture, has access to only its
previous conjecture and the latest data item coming in. Iterative learning is
also a natural requirement whenever learning in the limit is concerned, since
no practical learner can process at every learning stage all examples provided
so far, it may even not be able to store them.

Then, we address the question how efficient the overall learning process can be
performed, and how we can get rid of the uncertainty of not knowing whether
or not the learner has already converged.

Finally, we show our ideas to be beneficial for a class known to be PAC learn-
able by looking at the class of all concepts describable by a monomial. A
concept is describable by a monomial m if its elements are precisely the as-
signments satisfying m .

2 Preliminaries

Unspecified notation follows Rogers [35]. By N = {0, 1, 2, . . .} we denote the
set of all natural numbers. We set N+ = N \ {0} . The cardinality of a set S
is denoted by |S| . Let ∅, ∈, ⊂, ⊆ , ⊃ , and ⊇ denote the empty set, element
of, proper subset, subset, proper superset, and superset, respectively.
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Let ϕ0, ϕ1, ϕ2, . . . denote any fixed acceptable programming system for all
(and only) the partial recursive functions over N (cf. Rogers [35]). Then ϕk
is the partial recursive function computed by program k .

In the following subsection we define the main learning models considered
within this paper.

2.1 Learning in the Limit

Gold’s [12] model of learning in the limit allows one to formalize a rather
general class of learning problems, i.e., learning from examples. For defining
this model we assume any recursively enumerable set X and refer to it as the
learning domain. By ℘(X ) we denote the power set of X . Let C ⊆ ℘(X ) ,
and let c ∈ C be non-empty; then we refer to C and c as a concept class
and a concept, respectively. Let c be a concept, and let t = (xj)j∈N be any
infinite sequence of elements xj ∈ c such that range(t) := {xj j ∈ N} = c .
Then t is said to be a positive presentation or, synonymously, a text for c .
By text(c) we denote the set of all positive presentations for c . Moreover, let
t be a positive presentation, and let y ∈ N . Then, we set ty = x0, . . . , xy ,
i.e., ty is the initial segment of t of length y+1 , and t+y := {xj j ≤ y} . We
refer to t+y as the content of ty .

Furthermore, let σ = x0, . . . , xn−1 be any finite sequence. Then we use |σ| to
denote the length n of σ , and let σ+ denote the content of σ . Additionally,
let t be a text and let τ be a finite sequence; then we use σ � t and σ � τ to
denote the sequence obtained by concatenating σ onto the front of t and τ ,
respectively.

Alternatively, one can also consider complete presentations or, synonymously,
informants. An informant for a concept c is an infinite sequence of all elements
of the underlying learning domain that are classified with respect to their
containment in c . More formally, we define informants as follows. Let c be
a concept; then any sequence i = (xj, bj)j∈N of labeled examples, where bj ∈
{0, 1} such that {xj j ∈ N} = X and i+ = {xj (xj, bj) = (xj, 1), j ∈ N} =
c and i− = {xj (xj, bj) = (xj, 0), j ∈ N} = X \ c is called an informant
for c . For the sake of presentation, the following definitions are only given for
the text case, the generalization to the informant case should be obvious. We
sometimes use the term data sequence to refer to both text and informant,
respectively.

An inductive inference machine (abbr. IIM) is an algorithm that takes as input
larger and larger initial segments of a text and outputs, after each input, a
hypothesis from a prespecified hypothesis space H = (hj)j∈N . The indices
j are regarded as suitable finite encodings of the concepts described by the
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hypotheses. A hypothesis h is said to describe a concept c iff c = h .

A sequence (jn)n∈N of natural numbers is said to converge to number j if
jn = j for all but finitely many n ∈ N .

Definition 1. Let C be any concept class, and let H = (hj)j∈N be a hy-
pothesis space for it. C is called learnable in the limit from text with respect
to H iff there is an IIM M such that for every c ∈ C and every text t for c ,

(1) for all n ∈ N+ , M (tn) is defined,
(2) there is a j such that c = hj and the sequence (M (tn))n∈N converges

to j .

The set of all concepts classes that are learnable in the limit with respect to H
is denoted by LimTxtH . By LimTxt we denote the collection of all concepts
classes C for which there is a hypothesis space H such that C is learnable
in the limit from text 1 with respect to H .

Note that instead of LimTxt sometimes TxtEx is used. In our notation, Lim
stands for “limit.” Suppose, an IIM learns some concept c . That means, after
having seen only finitely many data of c the IIM reached its (unknown) point
of convergence and it computed a correct and finite description of the target
concept. Hence, some form of learning must have taken place.

Note that Definition 1 does not contain any requirement concerning efficiency.
Before we are going to deal with efficiency, we want to point to another crucial
parameter of our learning model, i.e., the hypothesis space H . Since our goal
is algorithmic learning, we can consider the special case that X = N and let C
be any subset of the collection of all recursively enumerable sets over N . Let
Wk = domain(ϕk) , where ϕk is the partial recursive function computed by
program k in the fixed acceptable programming system. In this case, (Wk)k∈N
is the most general hypothesis space.

Within this setting many learning problems can be described. Moreover, this
setting has been used to study the general capabilities of different learning
models which can be obtained by suitable modifications of Definition 1. There
are numerous papers performing studies along this line of research (cf., e.g.,
[16,30] and the references therein). On the one hand, the results obtained con-
siderably broaden our general understanding of algorithmic learning. On the
other hand, one has also to ask what kind of consequences one may derive
from these results for practical learning problems. This is a non-trivial ques-
tion, since the setting of learning recursively enumerable languages is very
rich. Thus, it is conceivable that several of the phenomena observed hold in

1 If learning from informant is considered we use LimInf H and LimInf in an
analogous way.
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this setting due to the fact that too many sets are recursively enumerable and
that there are no counterparts within the world of efficient computability.

As a first step to address this question we mainly consider the scenario that
indexable concept classes with uniformly decidable membership have to be
learned (cf. Angluin [2]). A class of non-empty concepts C is said to be an
indexable class with uniformly decidable membership provided there are
an effective enumeration c0, c1, c2, ... of all and only the concepts in C and a
recursive function f such that for all j ∈ N and all elements x ∈ X we have

f(j, x) =

 1, if x ∈ cj,

0, otherwise.

In the following we refer to indexable classes with uniformly decidable mem-
bership as to indexable classes for short. Furthermore, we call any enumeration
(cj)j∈N of C with uniformly decidable membership problem an indexed family.

Since the paper of Angluin [2], learning of indexable concept classes has at-
tracted much attention (cf., e.g., Zeugmann and Lange [52]). Let us shortly
provide some-well known indexable classes. Let Σ be any finite alphabet
of symbols, and let X be the free monoid over Σ , i.e., X = Σ∗ . We set
Σ+ = Σ∗ \ {λ} , where λ denotes the empty string. As usual, we refer to sub-
sets L ⊆ X as languages. Then the set of all regular languages, context-free
languages, and context-sensitive languages are indexable classes.

Next, let Xn = {0, 1}n be the set of all n -bit Boolean vectors. We consider
X =

⋃
n≥1Xn as learning domain. Then, the set of all concepts expressible

as a monomial, a k -CNF, a k -DNF, and a k -decision list form indexable
classes.

When learning indexable classes C , it is generally assumed that the hypoth-
esis space H has to be an indexed family, too. We distinguish class preserv-
ing learning and class comprising learning defined by C = range(H) and
C ⊆ range(H) , respectively. When dealing with class preserving learning, one
has the freedom to choose as hypothesis space a possibly different enumer-
ation of the target class C . In contrast, when class comprising learning is
concerned, the hypothesis space may enumerate, additionally, languages not
belonging to C . Note that, in general, one has to allow class comprising hy-
pothesis spaces to obtain the maximum possible learning power (cf. Lange
and Zeugmann [20,22]). Finally, we call an hypothesis space redundant if it is
larger than necessary, i.e., there is at least one hypothesis in H not describing
any concept from the target class or one concept possesses at least two differ-
ent descriptions in H . Thus, non-redundant hypothesis spaces are as small as
possible.
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Formally, a hypothesis space H = (hj)j∈N is non-redundant for some target
concept class C iff range(H) = C and hi 6= hj for all i, j ∈ N with i 6= j .
Otherwise, H is a redundant hypothesis space for C .

Next, let us come back to the issue of efficiency. Looking at Definition 1 we see
that an IIM M has always access to the whole history of the learning process,
i.e., in order to compute its actual guess M is fed all examples seen so far. In
contrast to that, next we define iterative IIMs. An iterative IIM is only allowed
to use its last guess and the next element in the positive presentation of the
target concept for computing its actual guess. Conceptionally, an iterative IIM
M defines a sequence (Mn)n∈N of machines each of which takes as its input
the output of its predecessor.

Definition 2 (Wiehagen [47]). Let C be a concept class, let c be a concept,
and let H = (hj)j∈N be a hypothesis space. An IIM M ItLimTxtH -learns c
iff for every t = (xj)j∈N ∈ text(c) the following conditions are satisfied:

(1) for all n ∈ N , Mn(t) is defined, where M0(t) := M (x0) and for all
n ≥ 0 : Mn+1(t) := M (Mn(t), xn+1) ,

(2) the sequence (Mn(t))n∈N converges to a number j such that c = hj .

Finally, M ItLimTxtH -learns C iff, for each c ∈ C , M ItLimTxtH -learns c .
By ItLimTxt we denote the collection of all concept classes for which there
are an IIM M and a hypothesis space H such that M ItLimTxtH -learns C .

In the latter definition Mn(t) denotes the (n+ 1) st hypothesis output by M
when successively fed the text t . So, it is justified to make the following
convention. Let σ = x0, . . . , xn be any finite sequence of elements from X .
Moreover, let C be any concept class over X , and let M be any IIM that
iteratively learns C . Then we denote by My(σ) the (y + 1) st hypothesis
output by M when successively fed σ provided y ≤ n , and there exists a
concept c ∈ C with σ+ ⊆ c . Furthermore, we let M∗(σ) denote M|σ|−1(σ) .

Moreover, when learning a concept class from text, a major problem one has
to deal with is avoiding or detecting overgeneralization. An overgeneralization
occurs if the learner is guessing a superconcept of the target concept. Clearly,
such an overgeneralized guess cannot be detected by using the incoming posi-
tive data only. Hence, one may be tempted to disallow overgeneralized guesses
at all. Learners behaving thus are called conservative. Intuitively speaking a
conservative IIM maintains its actual hypothesis at least as long as it has not
seen data contradicting it. More formally, an IIM M is said to be conservative
iff for all concepts c in the target class C , all texts t for c and all y, z ∈ N
the condition “if M (ty) 6= M (ty+z) then t+y+z 6⊆ hM (ty) ” is fulfilled.

Another property of learners quite often found in the literature is consistency
(cf., e.g., Wiehagen and Zeugmann [49] and the references therein). A learner
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is called consistent if all its intermediate hypotheses correctly reflect the data
seen so far. Formally, an IIM M is said to be consistent iff t+x ⊆ hM (tx) for
all x ∈ N and every text t for every concept c in the target class C .

Whenever one talks about the efficiency of learning besides the storage needed
by the learner one has also to consider the time complexity of the learner.
When talking about the time complexity of learning, it does not suffice to
consider the time needed to compute the actual guess. What really counts
in applications is the overall time needed until successful learning. Therefore,
following Daley and Smith [10] we define the total learning time as follows.

Let C be any concept class, and let M be any IIM that learns C in the limit.
Then, for every c ∈ C and every text t for c , let

Conv(M , t) := the least number m ∈ N+

such that for all n ≥ m, M (tn) = M (tm)

denote the stage of convergence of M on t (cf. [12]). Moreover, by TM (tn)
we denote the time to compute M (tn) . We measure this time as a function of
the length of the input and call it the update time. Finally, the total learning
time taken by the IIM M on successive input t is defined as

TT (M , t) :=
Conv(M ,t)∑

n=1

TM (tn).

Clearly, if M does not learn the target concept from text t then the total
learning time is infinite.

Two more remarks are in order here. First, it has been argued elsewhere that
within the learning in the limit paradigm a learning algorithm is invoked only
when the current hypothesis has some problem with the latest observed data.
However, such a viewpoint implicitly assumes that membership in the target
concept is decidable in time polynomial in the length of the actual input. This
may be not the case. Therefore, directly testing consistency would immediately
lead to a non-polynomial update time provided membership is not known to
be in P .

Second, Pitt [31] addresses the question with respect to what parameter one
should measure the total learning time. In the definition given above this pa-
rameter is the length of all examples seen so far. Clearly, now one could try to
play with this parameter by waiting for a large enough input before declaring
success. However, when dealing with the learnability of non-trivial concept
classes, in the worst-case the total learning time will be anyhow unbounded.
This effect is caused by the requirement to learn from all input sequences.
Clearly, there are input sequences that start with many repetitions of data not
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containing enough information for successful learning. Thus, it does not make
much sense to deal with the worst-case. Instead, we shall study the expected
total learning time. In such a setting one cannot simply wait for long enough
inputs. We shall then restrict ourselves to probability distributions that gen-
erate data sequences from which the target can be learned. Therefore, using
the definition of total learning time given above seems to be reasonable.

Next, we define important concept classes which we are going to consider
throughout this survey.

2.2 The Pattern Languages

Following Angluin [1] we define patterns and pattern languages as follows.
Let A = {0, 1, . . .} be any finite alphabet containing at least two elements.
Let X = {xi i ∈ N} be an infinite set of variables such that A ∩ X = ∅ .
Patterns are non-empty strings over A ∪X , e.g., 01, 0x0111, 1x0x00x1x2x0

are patterns. The length of a string s ∈ A∗ and of a pattern π is denoted
by |s| and |π| , respectively. A pattern π is in canonical form provided that
if k is the number of different variables in π then the variables occurring in
π are precisely x0, . . . , xk−1 . Moreover, for every j with 0 ≤ j < k − 1 , the
leftmost occurrence of xj in π is left to the leftmost occurrence of xj+1 . The
examples given above are patterns in canonical form. In the sequel we assume,
without loss of generality, that all patterns are in canonical form. By Pat we
denote the set of all patterns in canonical form.

If k is the number of different variables in π then we refer to π as to a
k -variable pattern. By Patk we denote the set of all k -variable patterns.
Furthermore, let π ∈ Patk , and let u0, . . . , uk−1 ∈ A+ ; then we denote by
π[x0/u0, . . . , xk−1/uk−1] the string w ∈ A+ obtained by substituting uj for
each occurrence of xj , j = 0, . . . , k − 1 , in the pattern π . For example, let
π = 0x01x1x0 . Then π[x0/10, x1/01] = 01010110 . The tuple (u0, . . . , uk−1)
is called a substitution. Furthermore, if |u0| = · · · = |uk−1| = 1 , then we refer
to (u0, . . . , uk−1) as to a shortest substitution. Let π ∈ Patk ; we define the
language generated by pattern π by

L(π) = {π[x0/u0, . . . , xk−1/uk−1] u0, . . . , uk−1 ∈ A+} .

By PAT k we denote the set of all k -variable pattern languages. Finally,
PAT =

⋃
k∈N PAT k denotes the set of all pattern languages over A .

Furthermore, we let Q range over finite sets of patterns and define L(Q) =⋃
π∈Q L(π) , i.e., the union of all pattern languages generated by patterns from

Q . Moreover, we use Pat(k) and PAT (k) to denote the family of all unions
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of at most k canonical patterns and the family of all unions of at most k
pattern languages, respectively. That is, Pat(k) = {Q Q ⊆ Pat , |Q| ≤ k}
and PAT (k) = {L(Q) Q ∈ Pat(k)} . Finally, let L ⊆ A+ be a language,
and let k ∈ N+ ; we define Club(L, k) = {Q |Q| ≤ k, L ⊆ L(Q), (∀Q′)[Q′ ⊂
Q⇒ L 6⊆ L(Q′)]} . Club stands for consistent least upper bounds.

The pattern languages and variations thereof have been intensively inves-
tigated (cf., e.g., Salomaa [37,38], and Shinohara and Arikawa [43] for an
overview). Nix [29] as well as Shinohara and Arikawa [43] outlined interesting
applications of pattern inference algorithms. For example, pattern language
learning algorithms have been successfully applied for solving problems in
molecular biology (cf., e.g., Shimozono et al. [39], Shinohara and Arikawa [43]).

As it turned out, pattern languages and finite unions of pattern languages are
subclasses of Smullyan’s [45] elementary formal systems (abbr. EFS). Arikawa
et al. [5] have shown that EFS can also be treated as a logic programming
language over strings. Recently, the techniques for learning finite unions of
pattern languages have been extended to show the learnability of various sub-
classes of EFS (cf. Shinohara [42]). The investigations of the learnability of
subclasses of EFSs are interesting because they yield corresponding results
about the learnability of subclasses of logic programs. Hence, these results are
also of relevance for Inductive Logic Programming (ILP) [28,23,8,24]. Miyano
et al. [26] intensively studied the polynomial-time learnability of EFSs.

Therefore, we may consider the learnability of pattern languages and of unions
thereof as a nice test bed for seeing what kind of results one may obtain by
considering the corresponding learning problems within the setting of learning
in the limit.

3 Results Concerning Patterns

Within this section we ask whether or not the pattern languages and finite
unions thereof can be learned efficiently. The principal learnability of the pat-
tern languages from text with respect to the hypothesis space Pat has been
established by Angluin [1]. However, her algorithm is based on computing
descriptive patterns for the data seen so far. Here a pattern π is said to be
descriptive (for the set S of strings contained in the input provided so far)
if π can generate all strings contained in S and no other pattern with this
property generates a proper subset of the language generated by π . Since no
efficient algorithm is known for computing descriptive patterns, and finding
a descriptive pattern of maximum length is NP -hard, its update time is
practically intractable.
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There are also serious difficulties when trying to learn the pattern languages
within the PAC model introduced by Valiant [46]. In the original model, the
sample complexity depends exclusively on the VC dimension of the target
concept class and the error and confidence parameters ε and δ , respectively.
Recently, Mitchell et al. [25] have shown that even the class of all one-variable
pattern languages has infinite VC dimension. Consequently, even this special
subclass of PAT is not uniformly PAC learnable. Moreover, Schapire [40] has
shown that pattern languages are not PAC learnable in the generalized model
provided P /poly 6= NP /poly with respect to every hypothesis space for
PAT that is uniformly polynomially evaluable. Though this result highlights
the difficulty of PAC learning PAT it has no clear application to the setting
considered in this paper, since we aim to learn PAT with respect to the
hypothesis space Pat . Since the membership problem for this hypothesis space
is NP -complete, it is not polynomially evaluable (cf. [1]).

In contrast, Kearns and Pitt [18] have established a PAC learning algorithm for
the class of all k -variable pattern languages. Positive examples are generated
with respect to arbitrary product distributions while negative examples are
allowed to be generated with respect to any distribution. In their algorithm
the length of substitution strings is required to be polynomially related to the
length of the target pattern. Finally, they use as hypothesis space all unions
of polynomially many patterns that have k or fewer variables 2 . The overall
learning time of their PAC learning algorithm is polynomial in the length of
the target pattern, the bound for the maximum length of substitution strings,
1/ε , 1/δ , and |A| . The constant in the running time achieved depends doubly
exponential on k , and thus, their algorithm becomes rapidly impractical when
k increases.

Finally, Lange and Wiehagen [19] have proposed an inconsistent but iterative
and conservative algorithm that learns PAT with respect to Pat . We shall
study this algorithm below in some more detail.

But before doing it, we aim to figure out under which circumstances iterative
learning of PAT is possible at all. A first answer is given by the following
theorems from Case et al. [9]. Note that Pat is a non-redundant hypothesis
space for PAT .

Theorem 1 (Case et al. [9]). Let C be any concept class, and let H =
(hj)j∈N be any non-redundant hypothesis space for C . Then, every IIM M
that ItLimTxtH -learns C is conservative.

2 More precisely, the number of allowed unions is at most poly(|π|, s, 1/ε, 1/δ, |A|) ,
where π is the target pattern, s the bound on the length on substitution strings,
ε and δ are the usual error and confidence parameter, respectively, and A is the
alphabet of constants over which the patterns are defined.
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Proof. Recall that we use M∗(σ) to denote M|σ|−1(σ) for any finite sequence
σ = x0, . . . , xn of elements from X (cf. Definition 2).

Suppose the converse, i.e., there are a concept c ∈ C , a text t = (xj)j∈N ∈
text(c) , and a y ∈ N such that, for j = M∗(ty) and k = M∗(ty+1) =
M (j, xy+1) , both j 6= k and t+y+1 ⊆ hj are satisfied. The latter implies
xy+1 ∈ hj , and thus we may consider the following text t̃ ∈ text(hj) . Let
t̂ = (x̂j)j∈N be any text for hj and let t̃ = x̂0, xy+1, x̂1, xy+1, x̂2, . . . . Since M
has to learn hj from t̃ there must be a z ∈ N such that M∗(t̃z+r) = j for all
r ≥ 0 . But M∗(t̃2z+1) = M (j, xy+1) = k , a contradiction. 2

Next, we point to another peculiarity of PAT , i.e., it meets the superset con-
dition defined as follows. Let C be any indexable class. C meets the superset
condition if, for all c, c′ ∈ C , there is some ĉ ∈ C being a superset of both c
and c′ .

Theorem 2. (Case et al. [9]). Let C be any indexable class meeting the
superset condition, and let H = (hj)j∈N be any non-redundant hypothesis
space for C . Then, every consistent IIM M that ItLimTxtH -learns C may
be used to decide the inclusion problem for H .

Proof. Let X be the underlying learning domain, and let (wj)j∈N be an
effective enumeration of all elements in X . Then, for every i ∈ N , ti = (xij)j∈N
is the following computable text for hi . Let z be the least index such that
wz ∈ hi . Recall that, by definition, hi 6= ∅ , since H is an indexed family, and
thus wz must exist. Then, for all j ∈ N , we set xij = wj , if wj ∈ hi , and
xij = wz , otherwise.

We claim that the following algorithm Inc decides, for all i, k ∈ N , whether
or not hi ⊆ hk .

Algorithm Inc: “On input i, k ∈ N do the following:
Determine the least y ∈ N with i = M∗(t

i
y) . Test whether or not ti,+y ⊆ hk .

In case it is, output ‘Yes,’ and stop. Otherwise, output ‘No,’ and stop.”

Clearly, since H is an indexed family and ti is a computable text, Inc is
an algorithm. Moreover, M learns hi on every text for it, and H is a non-
redundant hypothesis space. Hence, M has to converge on text ti to i , and
therefore Inc has to terminate.

It remains to verify the correctness of Inc . Let i, k ∈ N .

Clearly, if Inc outputs ‘No,’ a string s ∈ hi \hk has been found, and hi 6⊆ hk
follows.

Next, consider the case that Inc outputs ‘Yes.’ Suppose to the contrary that
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hi 6⊆ hk . Then, there is some s ∈ hi \hk . Now, consider M when fed the text
t = tiy � tk . Since ti,+y ⊆ hk , t is a text for hk . Since M learns hk , there is
some r ∈ N such that k = M∗(t

i
y � tkr) . By assumption, there are some ĉ ∈ C

with hi∪hk ⊆ ĉ , and some text t̂ for ĉ having the initial segment tiy � s � tkr .

By Theorem 1, M is conservative. Since s ∈ hi and i = M∗(t̂y) , we obtain
M∗(t̂y+1) = M (i, s) = i . Consequently, M∗(t

i
y � s � tkr) = M∗(t

i
y � tkr) . Finally,

since s ∈ t̂+y+r+2 , k = M∗(t
i
y � tkr) , and s /∈ hk , M fails to consistently learn

ĉ from text t̂ , a contradiction. This proves the theorem. 2

Taking into account that the inclusion problem for Pat is undecidable (cf.
Jiang et al. [17]) and that PAT meets the superset condition, since L(x0) =
A+ , by Theorem 2, we immediately arrive at the following corollary.

Corollary 3 (Case et al. [9]). If an IIM M ItLimTxtPat -learns PAT
then M is inconsistent.

As a matter of fact, the latter corollary generalizes to all non-redundant hy-
pothesis spaces for PAT . All the ingredients to prove this can be found in
Zeugmann et al. [53]. Consequently, if one wishes to learn the pattern lan-
guages or unions of pattern languages iteratively, then either redundant hy-
pothesis spaces or inconsistent learners cannot be avoided.

As for unions, the first result goes back to Shinohara [41] who proved the
class of all unions of at most two pattern languages to be in LimTxtPat(2) .
Wright [50] extended this result to PAT (k) ∈ LimTxtPat(k) for all k ≥ 1 .
Moreover, Theorem 4.2 in Shinohara and Arimura’s [44] together with a lemma
from Blum and Blum [6] shows that

⋃
k∈N PAT (k) is not LimTxtH -learnable

for every hypothesis space H .

The iterative learnability of PAT (k) has been established by Case et al. [9].
Our learner is also consistent. Thus, the hypothesis space used had to be
designed to be redundant. We only sketch the proof here.

Theorem 4.

(1) Club(L, k) is finite for all L ⊆ A+ and all k ∈ N+ ,
(2) If L ∈ PAT (k) , then Club(L, k) is non-empty and contains a set Q ,

such that L(Q) = L .

Proof. Part (2) is obvious. Part (1) is easy for finite L . For infinite L , it
follows from the lemma below.

Lemma 1. Let k ∈ N+ , let L ⊆ A+ be any language, and suppose t =
(sj)j∈N ∈ text(L). Then,

(1) Club(t+0 , k) can be obtained effectively from s0 , and Club(t+n+1, k) is ef-
fectively obtainable from Club(t+n , k) and sn+1
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(* note the iterative nature *).
(2) The sequence Club(t+0 , k), Club(t+1 , k), . . . converges to Club(L, k).

Putting it all together, one directly gets the following theorem.

Theorem 5. For all k ≥ 1 , PAT (k) ∈ ItLimTxt .

Proof. Let can(·) , be some computable bijection from finite classes of finite
sets of patterns onto N . Let pad be a 1–1 padding function such that, for all
x, y ∈ N , Wpad(x,y) = Wx . For a finite class S of sets of patterns, let g(S)
denote a grammar obtained, effectively from S , for

⋂
Q∈S L(Q) .

Let L ∈ PAT (k) , and let t = (sj)j∈N ∈ text(L) . The desired IIM M is
defined as follows. We set

M0(t) = M (s0) = pad(g(Club(t+0 , k)), can(Club(t+0 , k))) , and for all n > 0 ,

Mn+1(t) = M (Mn(t), sn+1)

= pad(g(Club(t+n+1, k)), can(Club(t+n+1, k))) .

Using Lemma 1 it is easy to verify that Mn+1(t) = M (Mn(t), sn+1) can be
obtained effectively from Mn(t) and sn+1 . Therefore, M ItLimTxt -identifies
PAT (k) . 2

So far, the general theory provided substantial insight into the iterative learn-
ability of the pattern languages. But still, we do not know anything about
the number of examples needed until successful learning and the total amount
of time to process them. Therefore, we address this problem in the following
subsection.

3.1 Stochastic Finite Learning

As we have already mentioned, it does not make much sense to study the
worst-case behavior of learning algorithms with respect to their total learning
time. The reason for this phenomenon should be clear, since an arbitrary text
may provide the information needed for learning very late. Therefore, in the
following we always assume a class D of admissible probability distributions
over the relevant learning domain. Ideally, this class should be parameterized.
Then, the data fed to learner are generated randomly with respect to one
of the probability distributions from the class D of underlying probability
distributions. Furthermore, we introduce a random variable CONV for the
stage of convergence. Note that CONV can be also interpreted as the total
number of examples read by the IIM M until convergence. We therefore
also refer to CONV as to the sample complexity. The first major step to be
performed consists now in determining the expectation E[CONV ] . Clearly,
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E[CONV ] should be finite for all concepts c ∈ C and all distributions D ∈ D .
Second, one has to deal with tail bounds for E[CONV ] . The easiest way to
perform this step is to use Markov’s inequality, i.e., we always know that

Pr(CONV ≥ t · E[CONV ]) ≤ 1

t
for all t ∈ N+ .

However, quite often one can obtain much better tail bounds. If the underlying
learner is known to be conservative and rearrangement-independent we always
get exponentially shrinking tail bounds. A learner is said to be rearrangement-
independent if its output depends exclusively on the range and length of its
input (cf. [21] and the references therein). These tail bounds are established
by the following theorem.

Theorem 6 (Rossmanith and Zeugmann [36]). Let CONV be the sam-
ple complexity of a conservative and rearrangement-independent learning al-
gorithm. Then

Pr(CONV ≥ 2t · E[CONV ]) ≤ 2−t for all t ∈ N .

Proof. First, recall the definition of median. If X is a random variable then
µX is a median of X iff

Pr(X ≥ µX) ≥ 1/2 and Pr(X ≤ µX) ≥ 1/2.

A nonempty set of medians exists for each random variable and consists either
of a single real number or of a closed real interval. We will denote the smallest
median of X by µX , since this choice gives the best upper bounds.

Now, we can establish the following claim.

Claim 1. Let X be the sample complexity of a conservative and rearrangement-
independent learning algorithm. Then Pr(X ≥ t · µX) ≤ 2−t for all t ∈ N .

We divide the text s0, s1, . . . into blocks of length µX . The probability that
the algorithm converges after reading any of the blocks is then at least 1/2 .
Since the algorithm is rearrangement-independent the order of the blocks does
not matter and since the algorithm is conservative it does not change its
hypothesis after computing once the right hypothesis. This proves Claim 1.

Claim 2. µX ≤ 2E[X] for every positive random variable X .

Claim 2 is a direct consequence of the Markov inequality and the definition of
median.

Putting Claims 1 and 2 together directly yields the theorem. 2
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Theorem 6 puts the importance of rearrangement-independent and conserva-
tive learners into the right perspective. As long as the learnability of indexed
families is concerned, these results have a wide range of potential applications,
since every conservative learner can be transformed into a learner that is both
conservative and rearrangement-independent provided the hypothesis space is
appropriately chosen (cf. Lange and Zeugmann [21]).

Furthermore, since the distribution of CONV decreases geometrically for all
conservative and rearrangement-independent learning algorithms, all higher
moments of CONV exist in this case, too. Thus, instead of applying The-
orem 6 directly, one can hope for further improvements by applying even
sharper tail bounds using, for example, Chebyshev’s inequality.

Additionally, the learner takes a confidence parameter δ as input. But in
contrast to learning in the limit, the learner itself decides how many examples
it wants to read. Then it computes a hypothesis, outputs it and stops. The
hypothesis output is correct for the target with probability at least 1− δ .

The explanation given so far explains how it works, but not why it does.
Intuitively, the stochastic finite learner simulates the limit learner until an
upper bound for twice the expected total number of examples needed until
convergence has been met. Assuming this to be true, by Markov’s inequality
the limit learner has now converged with probability 1/2 . All what is left, is
to decrease the probability of failure. This is done by using the tail bounds
for CONV . Applying Theorem 6, one easily sees that increasing the sample
complexity by a factor of O(log 1

δ
) results in a probability of 1− δ for having

reached the stage of convergence. If Theorem 6 is not applicable, one can still
use Markov’s inequality but then the sample complexity needed will increase
by a factor of 1/δ .

It remains to explain how the stochastic finite learner can calculate the upper
bound for E[CONV ] . This is precisely the point where we need the param-
eterization of the class D of underlying probability distributions. Since in
general, it is not known which distribution from D has been chosen, one has
to assume a bit of prior knowledge or domain knowledge provided by suitable
upper and/or lower bounds for the parameters involved. A more serious dif-
ficulty is to incorporate the unknown target concept into this estimate. This
step depends on the concrete learning problem on hand, and requires some
extra effort. We shall exemplify it below.

Now we are ready to formally define stochastic finite learning.

Definition 3 ([33,34,36]). Let D be a set of probability distributions on the
learning domain, C a concept class, H a hypothesis space for C , and δ ∈
(0, 1) . (C,D) is said to be stochastically finitely learnable with δ -confidence
with respect to H iff there is an IIM M that for every c ∈ C and every D ∈
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D performs as follows. Given any random data sequence θ for c generated
according to D , M stops after having seen a finite number of examples and
outputs a single hypothesis h ∈ H . With probability at least 1 − δ (with
respect to distribution D ) h has to be correct, that is c = h .

If stochastic finite learning can be achieved with δ -confidence for every δ > 0
then we say that (C,D) can be learned stochastically finite with high confi-
dence.

Note that there are subtle differences between our model and PAC learning.
By its definition, stochastic finite learning is not completely distribution inde-
pendent. A bit of additional knowledge concerning the underlying probability
distributions is required. Thus, from that perspective, stochastic finite learn-
ing is weaker than the PAC-model. On the other hand, we do not measure
the quality of the hypothesis with respect to the underlying probability dis-
tribution. Instead, we require the hypothesis computed to be exactly correct
with high probability. Note that exact identification with high confidence has
been considered within the PAC paradigm, too (cf., e.g., Goldman et al. [13]).
Conversely, we also can easily relax the requirement to learn probably exactly
correct but whenever possible we shall not do it.

Furthermore, in the uniform PAC model as introduced in Valiant [46] the
sample complexity depends exclusively on the VC dimension of the target
concept class and the error and confidence parameters ε and δ , respectively.
This model has been generalized by allowing the sample size to depend on the
concept complexity, too (cf., e.g., Blumer et al. [7] and Haussler et al. [15]).
Provided no upper bound for the concept complexity of the target concept is
given, such PAC learners decide themselves how many examples they wish to
read (cf. [15]). This feature is also adopted to our setting of stochastic finite
learning. However, all variants of PAC learning we are aware of require that
all hypotheses from the relevant hypothesis space are uniformly polynomially
evaluable. Though this requirement may be necessary in some cases to achieve
(efficient) stochastic finite learning, it is not necessary in general as we shall
see below.

Next, let us exemplify our model by looking at the concept class of all pattern
languages. The results presented below have been obtained by Zeugmann [51]
and Rossmanith and Zeugmann [36]. Our stochastic finite learner uses Lange
and Wiehagen’s [19] pattern language learner as a main ingredient. We con-
sider here learning from positive data only.

Recall that every string of a particular pattern language is generated by at
least one substitution. Therefore, it is convenient to consider probability dis-
tributions over the set of all possible substitutions. That is, if π ∈ Patk , then
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it suffices to consider any probability distribution D over A+ × · · · × A+︸ ︷︷ ︸
k−times

. For

(u0, . . . , uk−1) ∈ A+×· · ·×A+ we denote by D(u0, . . . , uk−1) the probability
that variable x0 is substituted by u0 , variable x1 is substituted by u1 , . . . ,
and variable xk−1 is substituted by uk−1 .

In particular, we mainly consider a special class of distributions, i.e., product
distributions. Let k ∈ N+ , then the class of all product distributions for Patk
is defined as follows. For each variable xj , 0 ≤ j ≤ k − 1 , we assume an
arbitrary probability distribution Dj over A+ on substitution strings. Then
we call D = D0 × · · · × Dk−1 product distribution over A+ × · · · × A+ ,
i.e., D(u0, . . . , uk−1) =

∏k−1
j=0 Dj(uj) . Moreover, we call a product distribution

regular if D0 = · · · = Dk−1 . Throughout this paper, we restrict ourselves to
deal with regular distributions. We therefore use d to denote the distribution
over A+ on substitution strings, i.e, D(u0, . . . , uk−1) =

∏k−1
j=0 d(uj) . We call a

regular distribution admissible if d(a) > 0 for at least two different elements
a ∈ A . As a special case of an admissible distribution we consider the uniform
distribution over A+ , i.e., d(u) = 1/(2 · |A|)` for all strings u ∈ A+ with
|u| = ` . Note that here only strings of equal length have the same probability
and not each elementary event.

We will express all estimates with the help of the following parameters: E[Λ] ,
α and β , where Λ is a random variable for the length of the examples drawn.
α and β are defined below. To get concrete bounds for a concrete implemen-
tation one has to obtain c from the algorithm and has to compute E[Λ] ,
α , and β from the admissible probability distribution D . Let u0, . . . , uk−1

be independent random variables with distribution d for substitution strings.
Whenever the index i of ui does not matter, we simply write u or u′ .

The two parameters α and β are now defined via d . First, α is simply the
probability that u has length 1, i.e.,

α = Pr(|u| = 1) =
∑
a∈A

d(a).

Second, β is the conditional probability that two random strings that get
substituted into π are identical under the condition that both have length 1 ,
i.e.,

β = Pr (u = u′ | |u| = |u′| = 1) =
∑
a∈A

d(a)2
/(∑

a∈A
d(a)

)2

.

Note that we have omitted the assumption of a text to exhaust the target
language. Instead, we only demand the data sequence fed to the learner to
contain “enough” information to recognize the target pattern. The meaning
of “enough” is mainly expressed by the parameter α .
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The model of computation as well as the representation of patterns we assume
is the same as in Angluin [1]. In particular, we assume a random access machine
that performs a reasonable menu of operations each in unit time on registers
of length O(log n) bits, where n is the input length.

Lange and Wiehagen’s [19] algorithm (abbr. LWA) works as follows. Let hn be
the hypothesis computed after reading s0, . . . , sn , i.e., hn = M (s0, . . . , sn) .
Then h0 = s0 and for all n ≥ 1 :

hn =



hn−1, if |hn−1| < |sn|

sn, if |hn−1| > |sn|

hn−1 ∪ sn, if |hn−1| = |sn|

The algorithm computes the new hypothesis only from the latest example and
the old hypothesis. If the latest example is longer than the old hypothesis, the
example is ignored, i.e., the hypothesis does not change. If the latest example
is shorter than the old hypothesis, the old hypothesis is ignored and the new
example becomes the new hypothesis. If, however, |hn−1| = |sn| the new
hypothesis is the union of hn−1 and sn . In order to explain the union, we
need the following notation. Let π ∈ Pat , 1 ≤ i ≤ |π| ; we use π(i) to denote
the i -th symbol in π . Now, the union % = π ∪ s of a canonical pattern π
and a string s of the same length is defined as

%(i) =



π(i), if π(i) = s(i)

xj, if π(i) 6= s(i) & ∃k < i : [%(k) = xj, s(k) = s(i),

π(k) = π(i)]

xm, otherwise, where m = #var(%(1) . . . %(i− 1))

where %(0) = λ for notational convenience. Note that the resulting pattern is
again canonical.

If the target pattern does not contain any variable then the LWA converges
after having read the first example. Hence, this case is trivial and we therefore
assume in the following always k ≥ 1 , i.e., the target pattern has to contain
at least one variable.

Figure 1 displays the union operation for π = 01x0x121x0x201x0x1 and s =
120021010212 . Since the letters in the first column are different and there is
no previous column, %(1) = x0 . The letters in the second column are different,
and the second column is not equal to the first column, so %(2) = x1 . Next,
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π(3) = x0 and π(4) = x1 , and thus % must also contain different variables at
positions 3 and 4 . Consequently, these variables get renamed, i.e., %(3) = x2

and %(4) = x3 . The letters in the 5th and 6th column are identical, hence
%(5) = 2 and %(6) = 1 (cf. the first case in the definition of the union
operation). In the 7th column, we have x0 and 0 and this column is equal
to the third column. Therefore, the second case in the definition of the union
operation applies and %(7) = x2 . Now, %(8) = x4 and %(9) = 0 are obvious.
The 10th column is identical to the second one, thus %(10) = x1 . Next, we have
x0 and 1 while both the third and 7th column contain x0 and 0 . Therefore,
a new variable has to be introduced and %(11) = x5 (cf. the third case in the
definition of the union operation). Analogously, the x1 in the 12th column
has to be distinguished from the x1 in 4th column resulting in %(12) = x6 .

π 0 1 x0 x1 2 1 x0 x2 0 1 x0 x1

s 1 2 0 0 2 1 0 1 0 2 1 2

% = π ∪ s x0 x1 x2 x3 2 1 x2 x4 0 x1 x5 x6

Figure 1

Our next theorem analyzes the complexity of the union operation.

Theorem 7 (Rossmanith and Zeugmann [36]). The union operation can be
computed in linear time.

Furthermore, the following bound for the stage of convergence for every target
pattern from Patk can be shown.

Theorem 8 (Rossmanith and Zeugmann [36]).

E[CONV ] = O
(

1

αk
· log1/β(k)

)
for all k ≥ 2 .

Hence, by Theorem 7, the expected total learning time can be estimated by

E[TT ] = O
(

1

αk
E[Λ] log1/β(k)

)
for all k ≥ 2 .

For a better understanding of the bound obtained we evaluate it for the uni-
form distribution and compare it to the minimum number of examples needed
for learning a pattern language via the LWA.

Theorem 9 (Rossmanith and Zeugmann [36]). To learn a pattern π ∈ Patk ,
k ≥ 2 , from texts randomly generated with respect to the uniform distribution,
the LWA has the expected total learning time E[TT ] = O

(
2k|π| log|A|(k)

)
.

Theorem 10 (Zeugmann [51]). To learn a pattern π ∈ Patk the LWA needs
exactly blog|A|(|A|+ k − 1)c+ 1 examples in the best case.
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The main difference between the two bounds just given is the factor 2k which
precisely reflects the time the LWA has to wait until it has seen the first
shortest string from the target pattern language. Moreover, in the best-case
the LWA is processing shortest examples only. Thus, we introduce MC to
denote the number of minimum length examples read until convergence. Then,
one can show that

E[MC ] ≤ 2 ln(k) + 3

ln(1/β)
+ 2 .

Note that Theorem 8 is shown by using the bound for E[MC ] just given.

More precisely, we have E[CONV ] =
(
1/αk

)
E[MC ] . Now, we are ready to

transform the LWA into a stochastic finite learner.

Theorem 11 (Rossmanith and Zeugmann [36]). Let α∗, β∗ ∈ (0, 1) . Assume
D to be a class of admissible probability distributions over A+ such that
α ≥ α∗ , β ≤ β∗ and E[Λ] is finite for all distributions D ∈ D . Then
(PAT ,D) is stochastically finitely learnable with high confidence from text.

Proof. Let D ∈ D , and let δ ∈ (0, 1) be arbitrarily fixed. Furthermore, let
t = s0, s1, s2, . . . be any randomly generated text with respect to D for the
target pattern language. The wanted learner M uses the LWA as a subroutine.
Additionally, it has a counter for memorizing the number of examples already
seen. Now, we exploit the fact that the LWA produces a sequence (τn)n∈N of
hypotheses such that |τn| ≥ |τn+1| for all n ∈ N .

The learner runs the LWA until for the first time C many examples have been
processed, where

C =
(

1

α∗

)|τ |
·
(

2 ln(|τ |) + 3

ln(1/β∗)
+ 2

)
(A)

and τ is the actual output made by the LWA.

Finally, in order to achieve the desired confidence, the learner sets γ = dlog 1
δ
e

and runs the LWA for a total of 2 · γ ·C examples. This is the reason we need
the counter for the number of examples processed. Now, it outputs the last
hypothesis τ produced by the LWA, and stops thereafter.

Clearly, the learner described above is finite. Let L be the target language
and let π ∈ Patk be the unique pattern such that L = L(π) . It remains to
argue that L(π) = L(τ) with probability at least 1− δ .

First, the bound in (A) is an upper bound for the expected number of examples
needed for convergence by the LWA that has been established in Theorem 8
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(via the reformulation using E[MC ] given above). On the one hand, this follows
from our assumptions about the allowed α and β as well as from the fact
that |τ | ≥ |π| for every hypothesis output. On the other hand, the learner
does not know k , but the estimate #var(π) ≤ |π| is sufficient. Note that we
have to use in (A) the bound for E[MC ] given above, since the target pattern
may contain zero or one different variables.

Therefore, after having processed C many examples the LWA has already con-
verged on average. The desired confidence is then an immediate consequence
of Corollary 6. 2

The latter theorem allows a nice corollary which we state next. Making the
same assumption as done by Kearns and Pitt [18], i.e., assuming the additional
prior knowledge that the target pattern belongs to Patk , the complexity of
the stochastic finite learner given above can be considerably improved. The
resulting learning time is linear in the expected string length, and the constant
depending on k grows only exponentially in k in contrast to the doubly
exponentially growing constant in Kearns and Pitt’s [18] algorithm. Moreover,
in contrast to their learner, our algorithm learns from positive data only,
and outputs a hypothesis that is correct for the target language with high
probability.

Again, for the sake of presentation we shall assume k ≥ 2 . Moreover, if the
prior knowledge k = 1 is available, then there is also a much better stochastic
finite learner for PAT 1 (cf. [34]).

Corollary 12. Let α∗, β∗ ∈ (0, 1) . Assume D to be a class of admissible
probability distributions over A+ such that α ≥ α∗ , β ≤ β∗ and E[Λ] is
finite for all distributions D ∈ D . Furthermore, let k ≥ 2 be arbitrarily fixed.
Then there exists a learner M such that

(1) M learns (PAT k,D) stochastically finitely with high confidence from
text, and

(2) The running time of M is O
(
α̂k∗E[Λ] log1/β∗(k) log2(1/δ)

)
.

(* Note that α̂k∗ and log1/β∗(k) now are constants. *)

This finishes our exposition concerning the pattern languages and unions
thereof.

In the following section we show our ideas to be beneficial for a class known
to be PAC learnable by looking at the class of all concepts describable by a
monomial.
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4 Learning Conjunctive Concepts

In this section we exemplify the general approach outlined above by using the
class of all concepts describable by a monomial. For all details omitted the
reader is referred to Reischuk and Zeugmann [33].

To define the classes of concepts we deal with in this section, let Ln =
{x1, x̄1, x2, x̄2 . . . , xn, x̄n} be a set of literals. xi is a positive literal and x̄i
a negative one. A conjunction of literals defines a monomial. For a monomial
m let #(m) denote its length, that is the number of literals in it.

A monomial m describes a subset L(m) of Xn , in other words a concept, in
the obvious way: the concept contains exactly those binary vectors for which
the monomial evaluates to 1, that is L(m) := {b ∈ Xn m(b) = 1} . The
collection of objects we are going to learn is the set Cn of all concepts that
are describable by monomials over Xn . There are two trivial concepts, the
empty subset and Xn itself. Xn , which will also be called “TRUE”, can be
represented by the empty monomial. The concept “FALSE” has several de-
scriptions. To avoid ambiguity, we always represent “FALSE” by the monomial
x1x̄1 . . . xnx̄n . Furthermore, we often identify the set of all monomials over Ln
and the concept class Cn . Note that |Cn| = 3n + 1 .

For the concept class Cn we choose as hypothesis space the set of all monomials
over Ln and denote this hypothesis space by Hn . We shall distinguish learning
from positive data only and learning from both positive and negative data.
Note that when considering learning from positive data only, one cannot decide
whether or not the learner has already converged. When learning from positive
and negative data is considered, the stage of convergence is decidable, but one
would have to read the data sequence until all Boolean vectors did appear.
Thus, for any interesting n , decidability is practically infeasible.

The learner used is essentially Haussler’s [14] Wholist algorithm. We present
it here as an iterative learner. The iterative learner is defined in stages, where
Stage ` conceptually describes M` .

Algorithm IML: “Let c ∈ Cn , let i = (b0,m(b0)), (b1,m(b1)), . . . be any
informant for c . Go to Stage 0.

Stage 0. IML receives as input (b0,m(b0)) .
Initialize hini = x1x̄1 . . . xnx̄n .
If m(b0) = 0 then hini remains unchanged; else
for j := 1 to n do

if bj0 = 1 then delete x̄j in hini else delete xj in hini .

Denote the result by h0 , output h0 and go to Stage 1.

Stage ` , ` ≥ 1 . IML receives as input h`−1 and the (` + 1) th element
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(b`,m(b`)) of i .
If m(b`) = 0 then set h` = h`−1 ; else

for j := 1 to n do

if bj0 = 1 then delete x̄j in h`−1 else delete xj in h`−1 .

Denote the result by h` , output h` and go to Stage `+ 1 .

By convention, if all literals have been removed, then h` = ∅ , and h`(b) = 1
for all b ∈ Xn .
end.”

The following example illustrates Algorithm IML . Let n = 7 , and let
m = x1x̄2x4x7 be the target monomial. Suppose the input sequence to start
as follows: 〈1001111, 1, 0110110, 0, 1011101, 1, 1011001, 1, . . .〉 . In Stage 0
the loop is executed and all literals that do not evaluate to 1 are removed
from hini . Thus, the hypothesis computed is h0 = x1x̄2x̄3x4x5x6x7 . Next,
h0 and 0110110, 0 are read and since the label is 0, the hypothesis output
is again x1x̄2x̄3x4x5x6x7 , i.e., h1 = h0 . In Stage 2, IML receives h1 and
1011101, 1 and executes the loop resulting in h2 = x1x̄2x4x5x7 . Now, IML
reads h2 and 1011001, 1 and executes the loop in Stage 3. The result is
h3 = x1x̄2x4x7 which equals the target monomial. Consequently, Algorithm
IML has reached the stage of convergence.

Now, we can directly state the following theorem.

Theorem 13. Algorithm IML ItLimInf Hn
-learns Cn .

Moreover, Algorithm IML can be easily adapted to learn from positive data
only. We have just to omit the tests whether or not m(bn) = 0 . We call the
resulting algorithm IMLP . Now, the following corollary is obvious.

Corollary 14. Algorithm IMLP ItLimTxtHn -learns Cn .

If the target monomial is the concept “FALSE”, then Algorithms IML and
IMLP immediately converge. Thus, we call “FALSE” the minimal concept.
If the target concept contains precisely n literals, then one positive example
suffices. This positive example is unique. Thus, for these two cases everything
is clear and therefore, we call these concepts trivial. Also, the set of probability
distributions D on the set of positive examples for these trivial c are trivial,
too.

To study the general case, let us call the literals appearing in a non-minimal
monomial m relevant. All the other literals in Ln will be called irrelevant for
m . There are 2n − #(m) irrelevant literals. Recall that #(m) denotes the
number of literals in monomial m .

We call bit i relevant for monomial m if xi or x̄i is relevant for m and use
k := k(m) = n−#(m) to denote the number of irrelevant bits.
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4.1 Learning Monomials from Positive Data

First, we consider learning from positive data. To avoid the trivial cases, we
let c = L(m) ∈ Cn be a concept with monomial m =

∧#(m)
j=1 `ij such that

k = k(m) = n−#(m) > 0 . There are 2k positive examples for c . For the sake
of presentation, we assume these examples to be binomially distributed. That
is, in a random positive example all entries corresponding to irrelevant bits are
selected independently of each other. With some probability p this will be a 1 ,
and with probability q a 0 , where q = 1−p . We shall consider only nontrivial
distributions where 0 < p < 1 . Note that otherwise the data sequence does
not contain all positive examples. We aim to compute the expected number of
examples taken by IMLP until convergence. Again we use CONV to denote
a random variable counting the number of examples read till convergence.

The first example received forces IMLP to delete precisely n of the 2n
literals in hini . Thus, this example always plays a special role. Note that the
resulting hypothesis h0 depends on b0 , but the number k of literals that
remain to be deleted from h0 until convergence is independent of b0 . Using
tail bound techniques, we can show the following theorem.

Theorem 15 (Reischuk and Zeugmann [33]). Let c = L(m) be a non-minimal
concept in Cn , and let the positive examples for c be binomially distributed
with parameter p . Define ψ := min{ 1

1−p ,
1
p
} and τ := max{ p

1−p ,
1−p
p
} . Then

the expected number of positive examples needed by algorithm IMLP until
convergence can be bounded by

E[CONV ] ≤ dlogψ k(m)e+ τ + 2 .

Proof. Let k = k(m) and let q = 1−p . The first positive example contains ν

times a 1 and k−ν times a 0 with probability
(
k
ν

)
pνqk−ν at the positions not

corresponding to a literal in the target monomial m . Now, assuming any such
vector, we easily see that h0 contains ν positive irrelevant literals and k− ν
negative irrelevant literals. Therefore, in order to achieve convergence, the
Algorithm IMLP now needs positive examples that contain at least one 0 for
each positive irrelevant literal and at least one 1 for each negative irrelevant
literal. Thus, the probability that at least one irrelevant literal survives µ
subsequent positive examples is bounded by νpµ + (k − ν)qµ . Therefore,

Pr(CONV − 1 > µ) ≤
k∑
ν=0

(
k

ν

)
pνqk−ν · (νpµ + (k − ν)qµ) .

Next, we derive a closed formula for the sum given above.
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Claim 1.
k∑
ν=0

(
k

ν

)
pνqk−ν · ν = kp and

k∑
ν=0

(
k

ν

)
pνqk−ν · (k − ν) = kq

The first equality can be shown as follows.

k∑
ν=0

(
k

ν

)
pνqk−ν · ν =

k∑
ν=1

(
k

ν

)
pνqk−ν · ν

=
k−1∑
ν=0

(
k

ν + 1

)
pν+1qk−1−ν · (ν + 1)

=
k−1∑
ν=0

k ·
(
k − 1

ν

)
pν+1qk−(ν+1)

= kp ·
k−1∑
ν=0

(
k − 1

ν

)
pνq(k−1)−ν

= kp · (p+ q)k−1 = kp .

The other equality can be proved analogously, which yields Claim 1.

Now, proceeding as above, we obtain

E[CONV − 1] =
∞∑
µ=0

Pr(CONV − 1 > µ)

≤ λ+
∞∑
µ=λ

k∑
ν=0

(
k

ν

)
pνqk−ν · (νpµ + (k − ν)qµ)

= λ+
∞∑
µ=λ

k∑
ν=0

(
k

ν

)
pνqk−ν · νpµ +

∞∑
µ=λ

k∑
ν=0

(
k

ν

)
pνqk−ν · (k − ν)qµ

= λ+
∞∑
µ=λ

pµ ·
k∑
ν=0

(
k

ν

)
pνqk−νν︸ ︷︷ ︸

=kp by Claim 1

+
∞∑
µ=λ

qµ ·
k∑
ν=0

(
k

ν

)
pνqk−ν · (k − ν)︸ ︷︷ ︸

=kq by Claim 1

= λ+ kp ·
∞∑
µ=λ

pµ + kq ·
∞∑
µ=λ

qµ = λ+ k ·
(
p

q
· pλ +

q

p
· qλ

)

≤ λ+ k ·
(
p

q
· ψ−λ +

q

p
· ψ−λ

)
≤ λ+ kψ−λ · (1 + τ) .

Finally, choosing λ = dlogψ ke gives the statement of the theorem as an easy
calculation shows. 2
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Now, taking into account that τ does not depend on the dimension n of the
learning domain {0, 1}n , we can easily determine the expected total learning
time.

Corollary 16 (Reischuk and Zeugmann [33]). For every binomially dis-
tributed text with parameter 0 < p < 1 the average total learning time of
Algorithm IMLP for concepts in Cn is at most O(n log n) .

Also, Algorithm IMLP possesses the two favorable properties needed to ap-
ply Theorem 6, i.e., it is rearrangement-independent and conservative. Thus,
we can conclude

Pr(CONV > 2 t · E[CONV ]) ≤ 2−t for all t ∈ N .

Next, we turn our attention to the design of a stochastic finite learner. We
study the case that the positive examples are binomially distributed with
parameter p . But we do not require precise knowledge about the under-
lying distribution. Instead, we reasonably assume that prior knowledge is
provided by parameters plow and pup such that plow ≤ p ≤ pup for the
true parameter p . Binomial distributions fulfilling this requirement are called
(plow, pup)–admissible distributions. Let Dn[plow, pup] denote the set
of such distributions on Xn .

If bounds plow and pup are available, the Algorithm IMLP can be trans-
formed into a stochastic finite learner inferring all concepts from Cn with high
confidence.

Theorem 17 (Reischuk and Zeugmann [33]). Let 0 < plow ≤ pup < 1 and
ψ := min{ 1

1−plow
, 1
pup
} . Then (Cn,Dn[plow, pup]) is stochastically finitely learn-

able with high confidence from text. To achieve δ -confidence no more than
O
(
log2 1/δ · logψ n

)
many examples are necessary.

Proof. The stochastic finite learner is based on Algorithm IMLP and a
counter for the number of examples already processed. We set

τmax =

⌈
max

{
plow

1− plow

,
1− plow

plow

,
pup

1− pup

,
1− pup

pup

}⌉
.

If Algorithm IMLP is run for ϑ := dlogψ ne + τmax + 2 many examples,
Theorem 15 implies that ϑ is at least as large as the expected convergence
stage E[CONV ] .

In order to achieve the desired confidence, the learner sets γ := dlog 1
δ
e and

runs Algorithm IMLP for a total of 2 γ · ϑ examples. This is the reason
why we need a counter for the number of examples processed. The algorithm
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outputs the last hypothesis h2 γ·ϑ produced by Algorithm IMLP and stops
thereafter. The reliability follows from the tail bounds established in Theo-
rem 6. 2

4.2 Learning Monomials from Informant

Finally, we ask how the results obtained so far translate to the case of learning
from informant. Since Algorithm IML does not learn anything from negative
examples, one may expect that it behaves much poorer in this setting. First, we
investigate the uniform distribution over Xn . Again, we have the trivial cases
that the target concept is “FALSE” or m is a monomial without irrelevant
bits. In the first case, no example is needed at all, while in the latter one,
there is only one positive example having probability 2−n . Thus the expected
number of examples needed until successful learning is 2n = 2#(m) .

Theorem 18 (Reischuk and Zeugmann [33]). Let c = L(m) ∈ Cn be a non-
trivial concept. If a data sequence for c is generated from the uniform distri-
bution on the learning domain by independent draws, the expected number of
examples needed by Algorithm IML until convergence is bounded by

E[CONV ] ≤ 2#(m) (dlog2 k(m)e+ 3) .

Proof. Let CONV + be a random variable for the number of positive examples
needed until convergence. Every positive example is preceded by a possibly
empty block of negative examples. Thus, we can partition the initial segment
of any randomly drawn informant read until convergence into CONV + many
blocks Bj containing a certain number of negative examples followed by pre-
cisely one positive example. Let Λj be a random variable for the length of
block Bj . Then CONV = Λ1 + Λ2 + · · · + ΛCONV+ , where the Λj are in-
dependently identically distributed. In order to compute the distribution of
Λj , it suffices to calculate the probabilities to draw a negative and a positive
example, respectively. Since the overall number of positive examples for c is
2k with k = k(m) , the probability to generate a positive example is 2k−n .
Hence, the probability to draw a negative example is 1− 2k−n . Consequently,

Pr(Λj = µ+ 1) =
(
1− 2k−n

)µ
· 2k−n .

Therefore,

E[CONV ] = E[Λ1 + Λ2 + · · ·+ ΛCONV +]

=
∞∑
ζ=0

E[Λ1 + Λ2 + · · ·+ Λζ | CONV + = ζ] · Pr(CONV + = ζ)
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=
∞∑
ζ=0

ζ · E[Λ1] · Pr(CONV + = ζ)

= E[CONV +] · E[Λ1]

By Theorem 15, we have E[CONV +] ≤ dlog2 ke + 3 , and thus it remains to
estimate E[Λ1] . A simple calculation shows

Lemma 2. For every 0 < a < 1 , it holds:

∞∑
µ=0

(µ+ 1) · aµ = (1− a)−2 .

Using this estimation we can conclude

E[Λ1] =
∞∑
µ=0

(µ+ 1) · Pr(Λ1 = µ+ 1)

= 2k−n
∞∑
µ=0

(µ+ 1) ·
(
1− 2k−n

)µ
= 2n−k ,

and thus the theorem follows. 2

Hence, as long as the length of m is constant, and therefore k(m) = n−O(1) ,
we still achieve an expected total learning time of order n log n . But if #(m)
grows linearly the expected total learning becomes exponential. On the other
hand, if there are many relevant literals then even h0 may be considered as
a not too bad approximation for c . Consequently, it is natural at this point
to introduce an error parameter ε ∈ (0, 1) as in the PAC model, and to ask
whether one can achieve an expected sample complexity for computing an
ε -approximation that is bounded by a function depending on log n and 1/ε .

To answer this question, let us formally define errorm(hj) = D(L(hj)4L(m))
to be the error made by hypothesis hj with respect to monomial m . Here
L(hj)4L(m) stands for the symmetric difference of L(hj) and L(m) and D
for the underlying probability distribution with respect to which the examples
are drawn. Note that by construction of Algorithm IML we can conclude
errorm(hj) = D(L(m) \ L(hj)) .

We call hj an ε –approximation for m if errorm(hj) ≤ ε . Furthermore, we
redefine the stage of convergence. Let m be any monomial, and let d = (dj)j∈N
be an informant for L(m) , then

CONV ε(d) := the least number j such that

errorm(IML(di)) ≤ ε for all i ≥ j .
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Note that once the Algorithm IML has reached an ε -approximate hypothe-
sis all further hypotheses will also be at least that close to the target monomial.

The following theorem gives an affirmative answer to the question posed above.

Theorem 19 (Reischuk and Zeugmann [33]). Let c = L(m) ∈ Cn be a non-
trivial concept. Assuming that examples are drawn at random independently
from the uniform distribution, the expected number of examples needed by Al-
gorithm IML until converging to an ε –approximation for c can be bounded
by

E[CONV ε] ≤ 1

ε
· (dlog2 k(m)e+ 3) .

Proof. It holds errorm(hini) = 2k(m)−n , since hini misclassifies exactly the
positive examples. Therefore, if errorm(h0) ≤ ε , we are already done. Now
suppose errorm(h0) > ε . Consequently, 1/ε > 2n−k(m) , and thus the bound
stated in the theorem is larger than 2n−k(m)(dlog2 k(m)e+3) , which, by The-
orem 18 is the expected number of examples needed until convergence to a
correct hypothesis. 2

Thus, additional knowledge concerning the underlying probability distribu-
tion pays off again. Applying Theorem 6 and modifying the stochastic finite
learner presented above mutatis mutandis, we get a learner identifying ε -
approximations for all concepts in Cn stochastically with high confidence us-
ing O(1

ε
· log 1

δ
· log n) many examples. Comparing this bound with the sample

complexity given in the PAC model, we see that it is reduced exponentially,
i.e., instead of a factor n now we have the factor log n .

Finally, we can generalize the last results to the case that the data sequences
are binomially distributed for some parameter p ∈ (0, 1) . This means that
any particular vector containing ν times a 1 and n− ν a 0 has probability
pν(1− p)n−ν since a 1 is drawn with probability p and a 0 with probability
1− p . First, Theorem 18 generalizes as follows.

Theorem 20 (Reischuk and Zeugmann [33]). Let c = L(m) ∈ Cn be a non-
trivial concept. Let m contain precisely π positive literals and ν negative
literals. If the labeled examples for c are independently binomially distributed
with parameter p and ψ := min{ 1

1−p ,
1
p
} and τ := max{ p

1−p ,
1−p
p
} , then the

expected number of examples needed by Algorithm IML until convergence
can be bounded by

E[CONV ] ≤ 1

pπ(1− p)ν
(dlogψ k(m)e+ τ + 2) .

Proof. Assuming the same notation as in the proof of Theorem 18, it is easy to
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see that we only have to recompute E[Λ1] , and thus Pr(Λ1 = µ+1) , too. Since
m contains precisely π positive literals and ν negative literals, the probability
to draw a positive example is clearly pπ(1− p)ν , and thus the probability to
randomly draw a negative example is 1− pπ(1− p)ν . Consequently,

Pr(Λ1 = µ+ 1) = (1− pπ(1− p)ν)µ · pπ(1− p)ν ,

and Lemma 2 gives E[Λ1] = 1
pπ(1−p)ν . 2

Theorem 19 directly translates into the setting of binomially distributed in-
puts, too.

Theorem 21 (Reischuk and Zeugmann [33]). Let c = L(m) ∈ Cn be a
nontrivial concept. Assume that the examples are drawn with respect to a
binomial distribution with parameter p , and let ψ := min{ 1

1−p ,
1
p
} and

τ := max{ p
1−p ,

1−p
p
} . Then the expected number of examples needed by Al-

gorithm IML until converging to an ε -approximation for c can be bounded
by

E[CONV ] ≤ 1

ε
· (dlogψ k(m)e+ τ + 2) .

Finally, one can also get stochastic finite approximations with high confidence
from informant with an exponentially smaller sample complexity.

Theorem 22 (Reischuk and Zeugmann [33]). Let 0 < plow ≤ pup < 1 and
ψ := min{ 1

1−plow
, 1
pup
} . For (Cn,Dn[plow, pup]) ε -approximations are stochasti-

cally finitely learnable with δ -confidence from informant for any ε, δ ∈ (0, 1) .

For this purpose, O
(

1
ε
· log2 1/δ · logψ n

)
many examples suffice.

5 Conclusions

The present paper surveyed results recently obtained concerning the itera-
tive learnability of the class of all pattern languages and finite unions thereof.
In particular, it could be shown that there are strong dependencies between
iterative learning, the class of admissible hypothesis spaces and additional
requirements to the learner such as consistency, conservativeness and the de-
cidability of the inclusion problem for the hypothesis space chosen. Looking
at these results, we have seen that the LWA is in some sense optimal.

Moreover, by analyzing the average-case behavior of Lange and Wiehagen’s
pattern language learning algorithm with respect to its total learning time
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and by establishing exponentially shrinking tail bounds for a rather rich class
of limit learners, we have been able to transform the LWA into a stochastic
finite learner. The price paid is the incorporation of a bit prior knowledge
concerning the class of underlying probability distributions. When applied to
the class of all k -variable pattern languages, where k is a priori known, the
resulting total learning time is linear in the expected string length.

Thus, the present paper provides evidence that analyzing the average-case
behavior of limit learners with respect to their total learning time may be
considered as a promising path towards a new theory of efficient algorithmic
learning. Recently obtained results along the same path as outlined in Erlebach
et al.[11] as well as in Reischuk and Zeugmann [32,34] provide further support
for the fruitfulness of this approach.

In particular, in Reischuk and Zeugmann [32,34] we have shown that one-
variable pattern languages are learnable for basically all meaningful distribu-
tions within an optimal linear total learning time on the average. Furthermore,
this learner can also be modified to maintain the incremental behavior of Lange
and Wiehagen’s [19] algorithm. Instead of memorizing the pair (PRE, SUF) , it
can also store just the two or three examples from which the prefix PRE and
the suffix SUF of the target pattern has been computed. While it is no longer
iterative, it is still a bounded example memory learner. A bounded example
memory learner is essentially an iterative learner that is additionally allowed
to memorize an a priori bounded number of examples (cf. [9] for a formal
definition).

While the one-variable pattern language learner from [34] is highly practical,
our stochastic finite learner for the class of all pattern languages is still not
good enough for practical purposes. But our results surveyed point to possi-
ble directions for potential improvements. However, much more effort seems
necessary to design a stochastic finite learner for PAT (k) .

Additionally, we have applied our techniques to design a stochastic finite
learner for the class of all concepts describable by a monomial which is based
on Haussler’s [14] Wholist algorithm. Here we have assumed the examples to
be binomially distributed. The sample size of our stochastic finite learner is
mainly bounded by log(1/δ) log n , where δ is again the confidence parameter
and n is the dimension of the underlying Boolean learning domain. Thus, the
bound obtained is exponentially better than the bound provided within the
PAC model.

Our approach also differs from U-learnability introduced by Muggleton [27].
First of all, our learner is fed with positive examples only, while in Muggle-
ton’s [27] model examples labeled with respect to their containment in the
target language are provided. Next, we do not make any assumption concern-
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ing the distribution of the target patterns. Furthermore, we do not measure
the expected total learning time with respect to a given class of distributions
over the targets and a given class of distributions for the sampling process,
but exclusively in dependence on the length of the target. Finally, we require
exact learning and not approximately correct learning.
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